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Let H
n be the Heisenberg group. The fundamental manifold of the radial function space for H

n can
be denoted by [0,+∞)×R, which is just the Laguerre hypergroup. In this paper the multiresolution
analysis on the Laguerre hypergroup K = [0,+∞) × R is defined. Moreover the properties of Haar
wavelet bases for L2

a(K) are investigated.
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1. Introduction

In the past decade research on the multiresolution analysis has made considerable progress
due to its wide applications. For the basic theory of multiresolution we refer readers to the
work in [1, 2]. Recently, we find that a lot of authors try to extend the theory of wavelets on
the Euclidean space to nilpotent Lie groups (see [3–6]).

In this paper we will give the definition of acceptable dilations on the Laguerre
hypergroup. The multiresolution analysis on the Laguerre hypergroup K = [0,+∞) × R is
also defined. Moreover the properties of Haar wavelet bases for L2

a(K) are investigated. We
will prove the results analogous to those on R

n in [2], on H
n in [6], and on H

1 × H
1 × · · · × H

1

in [7].
Let dma(x, t) be the positive measure defined on K, for a ≥ 0, by

dma(x, t) =
1

πΓ(a + 1)
x2a+1dxdt; (1.1)
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and L2
a(K) denotes the space of all measurable functions on K such that

∥
∥f
∥
∥
2
L2
a
=
∫

K

|f(x, t)|2dma(x, t) <∞. (1.2)

The generalized translation operator Ta(x,t) on K is defined by

Ta(x,t)f
(

y, s
)

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

1
2π

∫2π

0
f
((

x2 + y2 + 2xy cos θ
)1/2

, t + s + xysin θ
)

dθ, if a = 0,

a

π

∫1

0

∫2π

0
f
((

x2 + y2 + 2xyρ cos θ
)1/2

, t + s + xyρsin θ
)

ρ(1 − ρ2)a−1dθdρ, if a > 0,

(1.3)

for all (x, t) ∈ K, f ∈ L2
a(K). It is said to be the Fourier transform of a function f ∈ L2

a(K)
defined as follows:

f̂(λ,m) =
∫

K

ϕ−λ,m(x, t)f(x, t)dma(x, t), (1.4)

where ϕλ,m(x, t) = eiλtLa
m(|λ|x2), and the Laguerre function La

m is defined on R
+ by La

m(x) =
e−x/2(Lam(x)/L

a
m(0)), and L

a
m is the Laguerre polynomial of degree m and order a. We know

that for a pair of functions f and g, the generalized convolution product on the Laguerre
hypergroup is defined by

f ∗ g(x, t) =
∫

K

Ta(x,t)f
(

y, s
)

g
(

y,−s)dma

(

y, s
)

, ∀ (x, t) ∈ K. (1.5)

Further if f and g are in L1(K), then we have

f̂ ∗ g = f̂ · ĝ. (1.6)

The functional analysis and Fourier analysis on K and its dual have been extensively studied
in [8, 9].

Let Γ = {(m,n) : m ∈ N, n ∈ Z} be a discrete subspace of K. An automorphism D is
said to be an acceptable dilation for Γ if it satisfies the following properties:

(1) D leaves Γ invariant, that is, DΓ ⊆ Γ,

(2) all the eigenvalues, λi, of D satisfy |λi| > 1.

The acceptable dilation D on L2
a(K) is defined by Df(x, t) = f(D(x, y)), for all f ∈

L2
a(K). Let δr (r > 0) be the dilation on the Laguerre hypergroup. Hence for all (x, y) ∈ K,

δr(x, y) = (rx, r2y). Clearly, for every r ∈ N and r ≥ 2, δr is just an acceptable dilation on the
Laguerre hypergroup. Nowwe give the definition ofmultiresolution analysis on the Laguerre
hypergroup.
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Definition 1.1 ((MRA(K), Γ, D)). A multiresolution analysis on K is an increasing sequence
{Vj}j∈Z

of closed subspaces of L2
a(K) satisfying the following conditions:

(1)
⋂

j∈Z
Vj = {0}, ⋃j∈Z

Vj = L2
a(K);

(2) f ∈ Vj ⇔ Df ∈ Vj+1;
(3) f ∈ V0 ⇔ Taγ f ∈ V0, for all γ ∈ Γ;

(4) there exists a scaling function φ ∈ V0 such that {Taγ φ}γ∈Γ forms an orthonormal basis
of V0.

From the above definition it is clear that {DTaγ φ}γ∈Γ is an orthonormal basis of V1. It
follows from V0 ⊆ V1 and φ ∈ V0 ⊆ V1 that there exists a sequence {h(γ)}γ∈Γ such that

φ =
∑

γ∈Γ
h
(

γ
)

DTaγ φ. (1.7)

The solution of (1.7) is often called a refinable function or a scaling function and {h(γ)}γ∈Γ is
called a refinement sequence.

2. Acceptable Dilations on the Laguerre Hypergroup

In this section we will investigate the acceptable dilations on the Laguerre hypergroup. From
the previous argument, we know that the acceptable dilations on the Laguerre hypergroup
must satisfy three conditions:

(1) they must be a automorphism of Laguerre hypergroup;

(2) they must leave Γ invariant;

(3) the modulus of their eigenvalues must be more than 1.

Theorem 2.1. The acceptable dilations on K must be the form

D =

(

k1 0

k2 k3

)

, (2.1)

where k1, k2, k3 ∈ Z and k1 > 1, |k3| > 1.

Proof. Let
(
a b
c d

)

be the acceptable dilations on K, where a, b, c, d ∈ R. From the condition (1),
we can obtain

D

(
x
y

)

=
(

ax + by cx + dy
) ∈ K, ∀(x, t) ∈ K, (2.2)

which implies that ax + by ≥ 0 for all x ≥ 0 and y ∈ R. This yields b = 0 and a ≥ 0. From
DΓ ⊆ Γ, we get a, c, d ∈ Z. By using the condition (3) we can obtain that a > 1 and |d| > 1.
This concludes the proof of the theorem.
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3. Multiresolution Analysis on the Laguerre Hypergroup

In this section, we only consider the dilation δr , where r ∈ N and r > 1. For simplicity we
denote it by δr = α. In order to obtain the main theorem, we need to give some lemmas to
characterize the properties of the multiresolution analysis on K.

Lemma 3.1. SupposeVj ⊆ Vj+1 (j ∈ Z) where Vj ⊂ L2
a(K) and {Vj}j∈Z

satisfies (2) and (4) of the
definition of multiresolution analysis on the Laguerre hypergroup. The characteristic function χQ of
the set Q is a scaling function of multiresolution analysis. Then

⋂

j∈Z
Vj = {0}.

Proof. Let γ1, γ2 ∈ Γ and γ1 /= γ2. By using the property (4) of the Definition 1.1 we can obtain

〈Taγ1χQ, Taγ2χQ〉 = 0, (3.1)

which implies that
∫

K
Taγ1χQT

a
γ2χQdma = 0. From (1.3), we know that Taγ χQ ≥ 0 and there exists

a constant C > 0 such that |Taγ χQ| ≤ C for all a ≥ 0 and γ ∈ K. This yields Taγ1χQT
a
γ2χQ = 0,

which implies that Taγ1χQ and Taγ2χQ cannot be nonzero at the same time.
Let f ∈ ⋂j∈Z

Vj . Then f ∈ V−j for any j ∈ Z which implies that αjf ∈ V0. Thus there
exists a sequence {bj(γ)}γ∈Γ such that αjf =

∑

γ∈Γbj(γ)T
a
γ χQ. This yields

∣
∣
∣αjf

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∑

γ∈Γ
bj
(

γ
)

Taγ χQ

∣
∣
∣
∣
∣
∣

≤ sup
γ∈Γ

∣
∣bj
(

γ
)∣
∣
∑

r∈Γ

∣
∣
∣Taγ χQ

∣
∣
∣ ≤
∥
∥{bj(γ)}

∥
∥
l2

∑

γ∈Γ

∣
∣
∣Taγ χQ

∣
∣
∣, (3.2)

which implies that |αjf | ≤ C‖{bj(γ)}‖l2 . Then we can see that

∣
∣f(P)

∣
∣ =
∣
∣
∣αj
(

α−jf(P)
)∣
∣
∣ =
∣
∣
∣αjf

(

α−jP
)∣
∣
∣ ≤ C

∥
∥{bj(γ)}

∥
∥
l2(Γ) = C

∥
∥
∥αjf

∥
∥
∥
L2
a

. (3.3)

Notice that

∥
∥
∥αjf

∥
∥
∥
L2
a

=
(∫

K

|αjf(P)|2dma

)1/2

=
(∫

K

∣
∣
∣f
(

αjP
)∣
∣
∣

2
dma

)1/2

=

(∫+∞

−∞

∫+∞

0

∣
∣
∣f
(

rjx, r2jy
)∣
∣
∣

2 x2a+1

πΓ(a + 1)
dxdy

)1/2

= r−(a+2j)
∥
∥f
∥
∥
L2
a
.

(3.4)

If we let j tend to infinity, then we can obtain f = 0. This implies that
⋂

j∈Z
Vj = {0}. The

desired result is thus obtained.

Lemma 3.2. Suppose Vj ⊆ Vj+1 (j ∈ Z), where Vj ⊂ L2
a(K) and {Vj}j∈Z

satisfies (2), (3), and (4) of
the definition of multiresolution analysis on the Laguerre hypergroup. If the scaling function φ in (4)
is in L1

a(K) and
∫

K
φdma /= 0, then

⋃

j∈Z
Vj = L2

a(K).
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Proof. Let P = (x, t) ∈ K and a > 0. Then we have

TaαPf
(

y, s
)

= Ta(rx,r2t)f
(

y, s
)

=
a

π

∫2π

0

∫1

0
f
(

(r2x2 + y2 + 2rxyr ′ cos θ)
1/2
, s + r2t + rxyr ′sin θ

)

r′(1 − r ′2)a−1dr ′dθ

=
a

π

∫2π

0

∫1

0
f

(

r

(

x2+
y

r2

2
+2x

y

r
r ′ cos θ

)1/2

, r2
(
s

r2
+t + x

y

r
r ′sin θ

))

r ′(1 − r ′2)a−1dr ′dθ

= Ta(x,t)δrf
(
y

r
,
s

r2

)

= α−1Ta(x,t)αf,
(3.5)

which implies TaαP = α−1TaPα. For a = 0, we can get the same result. It is easy to see that
Ta
αlP

= α−lTaPα
l, for all l ∈ Γ and a ≥ 0.

Let ϕ ∈ ⋃j∈Z
Vj. Then there exists a j0 ∈ Z such that ϕ ∈ Vj0 . For any l ∈ Z, let j > −l

and j ≥ j0. Using Vj ⊆ Vj+1, we immediately obtain ϕ ∈ Vj . Then there exists a sequence
{aj(γ)}γ∈Γ ∈ l2(Γ) such that ϕ =

∑

γ∈Γaj(γ)α
jTaγ φ, which implies

Ta
αl(P)ϕ =

∑

γ∈Γ
aj
(

γ
)

Ta
αl(P)α

jTaγ φ =
∑

γ∈Γ
aj
(

γ
)

αjTa
αl+j (P)T

a
γ φ. (3.6)

Notice that P ∈ Γ, l+j > 0, and l+j ∈ Z. Thus we can see that αl+j(P) ∈ Γ and αjTa
αl+j (P)

Taγ φ ∈ Vj ,
which implies Ta

αl(P)ϕ ∈ Vj ⊆
⋃

j∈Z
Vj, for all l ∈ Z and P ∈ Γ.

Let ψ ∈ ⋃j∈Z
Vj . Then for any ε > 0, there exists a ϕ ∈ ⋃j∈Z

Vj such that ‖ϕ − ψ‖L2
a
< ε.

It follows from ‖Ta
αl(P)ϕ − Ta

αl(P)ψ‖L2
a

= ‖Ta
αl(P)(ϕ − ψ)‖

L2
a

≤ ‖ϕ − ψ‖L2
a
< ε and Ta

αl(P)ϕ ∈ ⋃j∈Z
Vj

that Ta
αl(P)ψ ∈ ⋃j∈Z

Vj, for all l ∈ Z and P ∈ Γ.

For any g ∈ K, there must exist an element P ∈ Γ and l ∈ Z such that |αl(P) − g| is
arbitrarily small, which implies that ‖Ta

αl(P)ψ − Tag ψ‖2 < ε for any arbitrarily small ε > 0. This

yields Tag ψ ∈ ⋃j∈Z
Vj, for all ψ ∈ ⋃j∈Z

Vj and g ∈ K.

Note φ̂(λ,m) =
∫

K
ϕ−λ,m(x, t)φ(x, t)dma and ϕλ,m(x, t) = eiλtLa

m(|λ|x2), φ ∈ L1
a(K). This

shows that φ̂(λ,m) → ∫

K
φdma, when λ → 0. Since

∫

K
φdma /= 0, there exists some ε > 0

such that φ̂(λ,m)/= 0 for all |λ| < ε. LetW =
⋃

j∈Z
Vj and ψ ∈W⊥. Then 〈ϕ, ψ〉 = 0 for all ϕ ∈W ,

which implies that for all g ∈ K,

0 = 〈Tag ϕ, ψ〉 =
∫

K

Tag ϕ
(

x, y
)

ψ
(

x, y
)

dma

(

x, y
)

=
∫

K

Tag ϕ
(

x, y
)

ψ̃
(

x,−y)dma

(

x, y
)

= ϕ ∗ ψ̃(g),
(3.7)
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where ψ̃(x, y) = ψ(x,−y). Then ϕ̂ ∗ ψ̃(λ,m) = ϕ̂(λ,m) ̂̃ψ(λ,m) = 0. Notice that

α̂f(λ,m) =
∫

K

ϕ−λ,m(x, t)f
(

rx, r2t
)

dma

=
1

r2a+4

∫

K

ϕ−λ,m

(
x′

r
,
t′

r2

)

f
(

x′, t′
)

dma,

ϕλ,m

(
x

r
,
t

r2

)

= eiλ(t/r
2)La

m

(

|λ|
(
x

r

)2
)

= ei(λ/r
2)tLa

m

(∣
∣
∣
∣

1
r2
λ

∣
∣
∣
∣
x2
)

= ϕλ/r2,m(x, t).

(3.8)

Thus we can see that α̂f(λ,m) = (1/r2a+4)f̂(λ/r2, m), which implies ̂αjf(λ,m) =
(1/rj(2a+4))f̂(λ/r2j , m). Let ϕ = rj(2a+4)αjφ. Then ϕ ∈W and ϕ̂ = φ̂(λ/r2j , m). This yields

φ̂

(
λ

r2j
, m

)

̂̃ψ(λ,m) = 0. (3.9)

Taking into account the fact that φ̂(λ/r2j , m)/= 0 when |λ| < r2jε, we see ̂̃ψ(λ,m) = 0 when
|λ| < r2jε. Let j tend to infinity, then ̂̃ψ = 0 for all λ ∈ R which implies ψ = 0. Then

⋃

j∈Z
Vj =

L2
a(K).We complete the proof of this theorem.

Theorem 3.3. Suppose φ = χQ is a scaling function for a multiresolution analysis associated with
(Γ, α), where χQ is the characteristic function of a measurable set Q . Then Q satisfies the following
properties:

(1) Taγ1χQT
a
γ2χQ = 0, for a.e. x ∈ K, γ1 /= γ2 and γ1, γ2 ∈ Γ;

(2) χQ =
∑

γ∈Γβ(γ)αT
a
γ χQ;

(3) |Q| = 1;

(4) Taγ1T
a
γ2χQ can be represented by the sequence {Taγ χQ}γ∈Γ where γ1, γ2 ∈ Γ.

Conversely, the characteristic function of a bounded measurable set Q that satisfies properties (1), (2),
(3), and (4) is the scaling function of a multiresolution analysis associated with (Γ, α).

Proof. Suppose φ = χQ is a scaling function for a multiresolution analysis associated with
(Γ, α). Then 〈Taγ1χQ, Taγ2χQ〉 = 0 for all γ1 /= γ2 and γ1, γ2 ∈ Γ, which implies

∫

K

Taγ1χQT
a
γ2χQdma = 0. (3.10)

Notice that Taγ1χQ ≥ 0 and Taγ2χQ ≥ 0. Thus we can obtain that Taγ1χQT
a
γ2χQ = 0, almost every

x ∈ K. By (1.7), we know that the second property is satisfied. Because of ‖χQ‖L2
a
= 1, we

can see that |Q| = 1. Let V0 ∈ (MRA(K),Γ, α). Then Taγ2χQ ∈ V0. This implies Taγ1T
a
γ2χQ ∈ V0.

Therefore, Taγ1T
a
γ2χQ can be represented by {Taγ χQ}.
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To see the converse, let

V0 =

⎧

⎨

⎩
f ∈ L2

a(K) : f =
∑

γ∈Γ
c
(

γ
)

Taγ χQ

⎫

⎬

⎭
, Vj = αjV0. (3.11)

Then {Vj}j∈Z
is a family of closed subspace of L2

a(K). Let f ∈ V0. Then

f =
∑

γ∈Γ
c
(

γ
)

Taγ χQ

=
∑

γ∈Γ
c
(

γ
)

Taγ
∑

γ1∈Γ
β
(

γ1
)

αTaγ1χQ

=
∑

γ,γ1∈Γ
c
(

γ
)

β
(

γ1
)

Taγ αT
a
γ1χQ

=
∑

γ,γ1∈Γ
c
(

γ
)

β
(

γ1
)

αTaα(γ)T
a
γ1χQ.

(3.12)

Since α(γ) ∈ Γ, we can see that Ta
α(γ)T

a
γ1χQ ∈ V0, which implies f ∈ V1. This yields V0 ⊆ V1.

Then we can also get Vj ⊆ Vj+1. Notice that f =
∑

γ∈Γc(γ)T
a
γ χQ. Thus we can see that Taγ1f =

∑

γ∈Γc(γ)T
a
γ1T

a
γ χQ, for all γ1 ∈ Γ. Because Taγ1T

a
γ2χQ can be represented by the sequence {Taγ χQ},

thus Taγ1f ∈ V0.
In order to show that {Vj}j∈Z

is a multiresolution analysis associated with (Γ, α), it

suffices to show that
⋂

j∈Z
Vj = 0 and

⋃

j∈Z
Vj = L2

a(K). Further, it follows easily from Lemmas
3.1 and 3.2 that

⋂

j∈Z

Vj = 0,
⋃

j∈Z

Vj = L2
a(K). (3.13)

Our result is proved.

In this paper orthonormal Haar wavelet bases for L2
a(K) are not constructed. But we

believe that orthonormal Haar wavelet bases for L2
a(K) can be constructed just as that in

[2, 6, 7]. The details will appear elsewhere.
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