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Let H" be the Heisenberg group. The fundamental manifold of the radial function space for H" can
be denoted by [0, +o0) xR, which is just the Laguerre hypergroup. In this paper the multiresolution
analysis on the Laguerre hypergroup K = [0, +o0) x R is defined. Moreover the properties of Haar
wavelet bases for L2(K) are investigated.
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1. Introduction

In the past decade research on the multiresolution analysis has made considerable progress
due to its wide applications. For the basic theory of multiresolution we refer readers to the
work in [1, 2]. Recently, we find that a lot of authors try to extend the theory of wavelets on

the Euclidean space to nilpotent Lie groups (see [3-6]).

In this paper we will give the definition of acceptable dilations on the Laguerre
hypergroup. The multiresolution analysis on the Laguerre hypergroup K = [0,+o0) x R is
also defined. Moreover the properties of Haar wavelet bases for L2(K) are investigated. We
will prove the results analogous to those on R" in [2], on H" in [6], and on H! x H! x - -- x H*

in [7].
Let dm,(x, t) be the positive measure defined on K, for a > 0, by

1

2a+1 .
al@+1) " dxdt;

dmg,(x,t) =
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and L%(K) denotes the space of all measurable functions on K such that
715 = [ 17 Pdma(x,) <o 12)
K

The generalized translation operator T, ,, on K is defined by

T(ax,t)f(y’ s)

1 27T

— x% + Y%+ 2x1y cos 9 1/2, t+s+xysinB)do, ifa=0,
y y Yy
2r ),

1 p2r
%I f f((x2 +y? +2xyp cos 9)1/2,t+ s + xypsin 6>p(1 —p»)ldedp, ifa>0,
0o
(1.3)

for all (x,t) € K, f € L2(K). It is said to be the Fourier transform of a function f € L?(K)
defined as follows:

f\,m) = fK(p_A,m(x, t) f (x, )dmg(x, t), (1.4)

where ¢, (x,t) = .22 (|\|x?), and the Laguerre function £%, is defined on R* by .£2 (x) =
e™/2(L% (x)/L%(0)), and L is the Laguerre polynomial of degree m and order a. We know
that for a pair of functions f and g, the generalized convolution product on the Laguerre
hypergroup is defined by

frglxt) = JKT(“x,t)f(y, s)g(y,—s)dma(y,s), V (x,t) €K (1.5)

Further if f and g are in L!(K), then we have

— ~

frs=fg (1.6)

The functional analysis and Fourier analysis on K and its dual have been extensively studied
in [8,9].

LetT = {(m,n) : m € N,n € Z} be a discrete subspace of K. An automorphism D is
said to be an acceptable dilation for I if it satisfies the following properties:

(1) D leaves I invariant, thatis, DI' C T,

(2) all the eigenvalues, A;, of D satisfy |\ > 1.

The acceptable dilation D on L2(K) is defined by Df (x,t) = f(D(x,y)), forall f €
L2(K). Let 6, (r > 0) be the dilation on the Laguerre hypergroup. Hence for all (x,y) € K,

6,(x,y) = (rx,r?y). Clearly, for every r € Nand r > 2, , is just an acceptable dilation on the
Laguerre hypergroup. Now we give the definition of multiresolution analysis on the Laguerre

hypergroup.
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Definition 1.1 (MRA(K), I', D)). A multiresolution analysis on K is an increasing sequence
{V;} jez of closed subspaces of L2(K) satisfying the following conditions:

(1 n/'eZVj = {0}/ U,‘ezvj = L%(K);
(2) feVie Df eV
(3) feVy @T;‘fe Vo, forally € T;

(4) there exists a scaling function ¢ € Vj such that {T¢ }, o forms an orthonormal basis
of V().

)
)
)
)

From the above definition it is clear that { DT}, is an orthonormal basis of V. It
follows from V C V5 and ¢ € V, C V; that there exists a sequence {h(y) }yer such that

¢= Zh(y)DT;qb. (1.7)

yer

The solution of (1.7) is often called a refinable function or a scaling function and {h(y) }yer is
called a refinement sequence.

2. Acceptable Dilations on the Laguerre Hypergroup

In this section we will investigate the acceptable dilations on the Laguerre hypergroup. From
the previous argument, we know that the acceptable dilations on the Laguerre hypergroup
must satisfy three conditions:

(1) they must be a automorphism of Laguerre hypergroup;
(2) they must leave I' invariant;

(3) the modulus of their eigenvalues must be more than 1.

Theorem 2.1. The acceptable dilations on K must be the form
ki 0
D= , (2.1)
ky ks

Proof. Let (‘Cl Z) be the acceptable dilations on K, where a, b, ¢, d € R. From the condition (1),
we can obtain

where ky, ky, ks € Z and k1 > 1, |ks| > 1.

D<;) =(ax+by cx+dy) €K, V(xt) ek, (2.2)

which implies that ax + by > 0 for all x > 0 and y € R. This yields b = 0 and a > 0. From
DI' C T, we get a,c,d € Z. By using the condition (3) we can obtain that a > 1 and |d| > 1.
This concludes the proof of the theorem. O
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3. Multiresolution Analysis on the Laguerre Hypergroup

In this section, we only consider the dilation 6,, where r € N and r > 1. For simplicity we
denote it by 6, = a. In order to obtain the main theorem, we need to give some lemmas to
characterize the properties of the multiresolution analysis on K.

Lemma 3.1. SupposeV; C Vj,1 (j € Z) where V; C L2(K) and {Vj}jez satisfies (2) and (4) of the
definition of multiresolution analysis on the Laguerre hypergroup. The characteristic function xg of
the set Q is a scaling function of multiresolution analysis. Then (\;e; V; = {0}.

Proof. Let y1, 12 € I and y1 # y». By using the property (4) of the Definition 1.1 we can obtain
(Tyxe, Tpxe) =0, (3.1)

which implies that [, T} XoTy, xodmga = 0. From (1.3), we know that T} yo > 0 and there exists
a constant C > 0 such that [T x| < C for all a > 0 and y € K. This yields Ty x0Ty, xo = 0,
which implies that T} xo and Ty, yo cannot be nonzero at the same time.

Let f € NjezVj Then f € V_; for any j € Z which implies that a/ f € Vj. Thus there
exists a sequence {b;(y)},er such that &/ f = 3, .rb;(y)T} xo- This yields

T'xal, (3.2)

< sup|b; ()| 3 |Trxe| < I11B;0)11. Y
yer rel yer

|aif| = ‘debj(Y)T?XQ
which implies that |a/ f| < C||{b;(y)}|.- Then we can see that

FP)] = | (a7 fP)| = [alf («P) | < By = Cldf ;- @)
Notice that

|/

= ([ Js(er)fam) "
(1

= p(@2)||

(3.4)
1/2
. . 2 x2a+l
Ix 12 -
f(r X, r y>| AT+ 1)dxdy>

13

If we let j tend to infinity, then we can obtain f = 0. This implies that (;;V; = {0}. The
desired result is thus obtained. O

Lemma 3.2. Suppose V; C Vj,1 (j € Z), where V; C L2(K) and {Vj} ez satisfies (2), (3), and (4) of
the definition of multiresolution analysis on the Laguerre hypergroup. If the scaling function ¢ in (4)

is in Ly (K) and [ ¢pdm, #0, then Uz V; = L3 (K).
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Proof. Let P = (x,t) € Kand a > 0. Then we have

Tepf(y.s)
Tg'x,rzt)f(y’ S)

2 A1
- %J‘ f f<(r2x2 +y? + 2rxyr’ cos 0)"%5+ 17t + rxyr'sin 9>r,(1 - )" ar'de
0 Jo

27 1/2
- _f f < (x += +2xyr cosG) ,r2<%+t+x%r’sin9>>r’(l—r’z)a1dr’d9
a y s
=Tip rf(;/r—2>

= a‘lT(“x,t) af,
(3.5)

which implies T%, = a 'Tpa. For a = 0, we can get the same result. It is easy to see that

T4, = a'Tia! foralllel"anda>0

Let ¢ € UjezVj- Then there exists a jo € Z such that ¢ € Vj. Forany Il € Z, let j > -1
and j > jo. Using V; C Vj,;, we immediately obtain ¢ € V;. Then there exists a sequence
{aj(y)}yer € P(T) such that ¢ = 3, cra;(y)@/ T} $, which implies

a’(P Y= Zal (Y) a’(P)a ITf 4) Za] (Y)D( a+i (P) y(i) (3.6)

yer yer

Notice that P € T, I+j > 0,and I+j € Z. Thus we can see that a/*/(P) € T and &/ T*
which implies T4 AP € Vi C U].eZVj, forallle Zand P €T.

al*i (P) Ya('b €V

Let ¢ € Uje;Vj. Then for any € > 0, there exists a ¢ € U,V such that [l¢ - ¢[| 2 < e.
It follows from ”T 1(p)()0 1(p)(p”L2 ” “I(p)(()o - ()U)”lel < ||‘P - (P”L% < eand T;Zl(p)()o € UjeZ‘/j
that T“I(p RS U]-€ZV]~, forallleZand P €T.

For any g € K, there must exist an element P € I' and [ € Z such that lal(P) - glis
arbitrarily small, which implies that ||T?, »¥ T§4’||2 < ¢ for any arbitrarily small &€ > 0. This

yields Tgy € U]eZ ,forall ¢ € U]EzV and g € K.
Note (A, m) = [xP-1m(x, )P (x, t)dm, and @y m(x,t) = €M L2 (|A]x?), ¢ € LL(K). This
shows that $(z\,m) — fK(i)dma, when A — 0. Since IK‘i’dma #0, there exists some € > 0

such that $(A,m) #0forall [A| <e.LetW = U]-eZVj and ¢ € Wt. Then (¢, ¢) =0forallp e W,
which implies that for all g € K,

= (T, ¢) = f e (%, )y (x, y)dma(x,y) = f s (0, y)F(x,—y)dma(x,y) = ¢ *§(g),
(3.7)
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where ¢(x,y) = ¢(x,—y). Then m()t,m) =, m)q:;()u,m) = (. Notice that
&_\f()L, m) = f ¢_A,m(x,t)f<rx, r2t> dm,
K
1 x o
= mew—A,m<7, r_2>f(x A)dmyg,

x t it/ pa x\? 3.8
‘Pf\,m<;rr_2> = piMt/ ),ﬁm<|)t|<;> > (3.8)

_ ei(A/rZ)t£z1<‘l2/\ x2>
r

=Qr/r2m (xr t) .

Thus we can see that af(\,m) = (1/r2%)f(\/r%,m), which implies ;J?(/\,m) =
(1/71@a+9) £ (A /7%, m). Let ¢ = r1?=*qid. Then ¢ € W and ¢ = ¢(1/r%,m). This yields

¢ (%/m)q:f(i,m) = 0. (3.9)

Taking into account the fact that $(A/ r?,m) #£0 when || < r¥¢, we see (?f()t, m) = 0 when
|A| < r’/e. Let j tend to infinity, then ¢ = 0 for all A € R which implies ¢ = 0. Then UV} =
L2(K). We complete the proof of this theorem. O

Theorem 3.3. Suppose ¢ = yo is a scaling function for a multiresolution analysis associated with
(T, &), where yxq is the characteristic function of a measurable set Q . Then Q satisfies the following
properties:

(1) TﬁXQszXQ =0, forae.xeK y1#nandy,n €l;
(2) xo = ZyerP()aTy xo;

@) Rl=1

4 T;T

12X can be represented by the sequence {T} xg},er where 1,7, € T.
Conwversely, the characteristic function of a bounded measurable set Q that satisfies properties (1), (2),

(3), and (4) is the scaling function of a multiresolution analysis associated with (T, ).

Proof. Suppose ¢ = yq is a scaling function for a multiresolution analysis associated with
(T, a). Then (T?1 Xo- T)fz Xo) =0forall y1 #y, and y1,y» € I', which implies

J‘KT}?IXQT}ZXQdm” =0. (3.10)

Notice that Ty, o > 0 and T}, yo > 0. Thus we can obtain that T} yoTy, o = 0, almost every
x € K. By (1.7), we know that the second property is satisfied. Because of || yol| =1 we
can see that |Q| = 1. Let Vj € (MRA(K), T, a). Then Ty xo € Vo. This implies T T xo € Vo.

Therefore, T\ T}, xo can be represented by {T} yo}.
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To see the converse, let

= {f €ELAK): f = Zc(y)T;XQ}, Vi = aV,. (3.11)

yel'
Then {V;} e is a family of closed subspace of L%(K). Let f € V;. Then

f=2e(NTxe

yell
= >c(NTy X B(n)aTy xo

yel ner (3 12)
= >, c(y)B(n)TfaT} xo

yer
= >, c()p(n)aTy )Ty x

y i€l

Since a(y) € I', we can see that Ty Tixe € Vo, which implies f € Vq. This yields Vp C V;.
Then we can also get V; C Vj.1. Notice that f = 3 rc(y)Ty xo. Thus we can see that Ty, f =
2yerc(NT T xo, for all y1 € I'. Because T[Ty o can be represented by the sequence {T} yq},
thus T} f € VO

In order to show that {V;} jljez is @ is a multiresolution analysis associated with (I, ), it

suffices to show that ﬂ]-GZVj =0and U,.,V; AL L2(K). Further, it follows easily from Lemmas
3.1 and 3.2 that

Avi=o, UV =LAK). (3.13)

JEZ jEZ

Our result is proved. O

In this paper orthonormal Haar wavelet bases for L2(K) are not constructed. But we
believe that orthonormal Haar wavelet bases for L2(K) can be constructed just as that in
[2, 6,7]. The details will appear elsewhere.
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