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The automatic depth control electrohydraulic system of a certain minesweeping tank is complex
nonlinear system, and it is difficult for the linear model obtained by first principle method to
represent the intrinsic nonlinear characteristics of such complex system. This paper proposes an
approach to construct accurate model of the electrohydraulic system with RBF neural network
trained by genetic algorithm-based technique. In order to improve accuracy of the designed model,
a genetic algorithm is used to optimize centers of RBF neural network. The maximum distance
measure is adopted to determine widths of radial basis functions, and the least square method is
utilized to calculate weights of RBF neural network; thus, computational burden of the proposed
technique is relieved. The proposed technique is applied to the modelling of the electrohydraulic
system, and the results clearly indicate that the obtained RBF neural network can emulate the
complex dynamic characteristics of the electrohydraulic system satisfactorily. The comparison
results also show that the proposed algorithm performs better than the traditional clustering-based
method.

1. Introduction

The Automatic Depth Control Electrohydraulic System (ADCES) of a certain minesweeping
tank (see Figure 1) is a complex nonlinear electrohydraulic system. The first step in designing
a high-performance ADCES controller is to model the ADCES accurately. The traditionally
and widely used approaches for modelling of such electrohydraulic system are based on the
first principle method; that is, a linear model of the ADCES can be derived according to
some physical laws such as the dynamic equation of valve and the force balance equation
[1, 2]. However, the ADCES exhibits high nonlinear behaviors which make the linear
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Figure 1: Graphical diagram of a certain minesweeping tank.

model obtained by the first principle method inefficient because the linear model cannot
accurately describes such nonlinearities of the ADCES as flow /pressure characteristics, fluid
compressibility and friction, and so forth [3]. It is highly desirable to develop a precise model
of the ADCES which can be used for the following high-performance controller design.

In recent years, neural networks have been shown efficient alternatives to first
principle models due to their abilities to describe highly complex and nonlinear problems
in many fields of engineering [4]. Numerous applications of neural networks in electro-
hydraulic systems have been reported. He and Sepehri [5] demonstrated experimental
modelling of dynamic behaviors of an industrial hydraulic actuator with neural network
for the first time, and the results showed that neural network is capable of modelling and
predicting characteristics of the highly nonlinear hydraulic actuator. Kang et al. [6] proposed
a model-following adaptive algorithm using multiple neural networks to control the angle of
variable displacement pump. The neural networks were used for numerical simulation and
parameters adjustment. However, Most of these researches focused on the usage of multilayer
perceptron (MLP) neural networks trained by back-propagation learning algorithm, which
have some disadvantages such as slow training speed, local minimal convergence behavior,
sensitivity to the randomly selected initial weight values, difficulty in explicit optimum
network configuration. To solve these problems, Radial Basis Function (RBF) neural network
can be used. Compared with MLP neural networks, RBF neural networks have only one
hidden units, while MLP neural networks have one or more hidden layers; the output layer
of RBF neural network is linear, while the output layer of MLP neural network is nonlinear.
These characteristics make RBF neural networks having more advantages such as simple
architecture and fast training speed, near-optimal solution, easy optimization of topology,
and so forth. Hence, RBF neural networks have been used extensively in systems modelling
[7-9].

In this paper, RBF neural network is employed to develop an accurate model for
the ADCES, and an approach based on genetic algorithm is proposed to train RBF neural
network. In order to improve precision of RBF neural network, a genetic algorithm is used to
optimize center parameters of RBF neural network instead of traditionally used clustering-
based methods. The width and the weight parameters are calculated using some fast linear
techniques in order to relieve computational burden and accelerate the convergence of the
proposed training technique. To our best knowledge, this is the first application of RBF neural
network with genetic algorithm to model an electrohydraulic system intently and intensively.



Mathematical Problems in Engineering 3

Figure 2: Schematic drawing of the ADCES.
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Figure 3: Block diagram of the ADCES.
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The paper is organized as follows. Section 2 describes the ADCES. Section 3 devotes
to explain how to construct RBF neural network using the proposed genetic algorithm-based
technique. In Section 4, the proposed method is applied to modelling of the ADCES, and
results of experiments and comparisons with other algorithms are also illustrated. Finally,
some conclusions are presented in Section 5.

2. Automatic Depth Control Electrohydraulic System

The automatic depth control electrohydraulic system (ADCES) is composed of five main
parts: proportional valves, hydraulic cylinders, copying shoes, shaft position encoders and
blades, as illustrated in Figure 2. The working principle of ADCES can be briefly described
as follows. During mines ploughing operation, vertical terrain changes can be detected
by the copying shoes; and the angles between the plough arms and level plane can be
measured by the encoders linked with copying shoes, then the ploughing depth of the
plough can be calculated according to the measured angles. The automatic depth control
is accomplished by oscillation movement of the hydraulic cylinders which are operated by
the proportional valves according to error between the measured depth and the target value.
Figure 3 shows the block diagram of the ADCES which indicates that the ADCES is a typical
valve-controlled-cylinder electrohydraulic system.

In order to motivate the ADCES sufficiently and collect complete data containing
all dynamic characteristics of the ADCES, it is important to select an appropriate input
signal for the ADCES. In the field of linear system identification, the Pseudorandom
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binary signal (PRBS) that only contains two amplitude levels is widely used. However, the
identifiability will be lost for the nonlinear ADCES if the PRBS is also adopted. So an input
signal that contains all interesting amplitudes and frequencies and all their combinations
should be employed, such as Pseudorandom MultiLevel Signals (PRMS), chirp signals, and
independent sequences with a Gaussian or uniform distribution. Experience shows that the
PRMS is the most suitable choice of input signal for identification of a hydraulic system [10].
So in this paper the PRMS is selected as the input signal for the ADCES.

Let v(k) be a white noise. A PRMS is obtained by keeping the same amplitude value
for N; steps:

u(k)=v[int<kl\_]1)+1] k=1,2,..., (2.1)

S

where int(x) is the integer part of x.
A generalization of this signal is generated by introducing an additional random
variable for deciding when to change the amplitude level

u(k) with probability a,
u(k) = (2.2)

u(k —1) with probability 1 - a.

In the ADCES, there are fixed single-input single-output mapping functions among
the displacement of the cylinder piston, the angle measured by the encoder and the actual
ploughing depth. So, without loss of generality, the control voltage of the proportional valve
is adopted as the input of the ADCES, and the displacement of piston is adopted as the output
of the ADCES. Although the ADCES is a high-order nonlinear system, it will not be vibrated
within the normal input allowed. So the experiment to gather data is conducted without any
closed loop controller. With 100 ms sampling time, 1000 data are collected, as illustrated in
Figure 4(a) presents the input data, and Figure 4(b) shows the output data.

3. RBF Neural Network and the Proposed Training Technique
3.1. RBF Neural Network

The RBF neural network (RBFNN) is a three-layer feedforward neural network which
consists of input layer, signal hidden layer and output layer, as depicted in Figure 5. The input
layer consists of neurons which correspond to the elements of input vector. These neurons do
not process the input information; they only distribute the input vector to the hidden layer.
The hidden layer does all the important mathematical process. Each neuron of the hidden
layer employs a radial basis function as nonlinear transfer function to operate the received
input vector and emits output value to the output layer. The output layer implements a linear
weighted sum of the hidden neurons and yields the output value.

A typical radial basis function that is used in this paper is the Gaussian function which
assumes the form

P (x) = eWenl /e, (31)
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Figure 4: Collected input-output data of the ADCES.
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Figure 5: Radial basis function neural network.

where x is input vector, ¢, is the center of RBENN, ||x — ¢,,,|| denotes the distance between x
and ¢,,,, and o is the width.

The output of the RBFNN has the following form:
M
yi(x) = Z Wi Pm (x) + by, (3.2)
m=1

where M is the number of independent basis functions, wy,, is the weight associated with the

mth neuron in the hidden layer and the tth neuron in the output layer, and by is the bias of
the tth neuron.
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In general, there are three types of adjustable parameters which should be determined
for the RBF neural network: basis function center, basis function width and output weight.
Many methods [11-17] have been proposed for learning these parameters, which can be
divided into two stages. The first stage includes the selection of appreciate centers and
widths for the radial basis functions, which is a nonlinear problem. The second stage involves
the adjustment of the output weights, which is a linear problem. Unsupervised learning
algorithm, such as clustering-based method [14] or the orthogonal least square method [15],
can be applied to the first stage, whereas linear algebra solutions, such as the least square
method [11] or gradient descent algorithm [17], can be applied to the second stage.

In the process of choosing centers for the RBF neural network, the randomly selected
input vectors from training set can be chosen as centers [16]. This approach may lead to
acceptable results by trial-and-error if the training data are distributed in a representative
manner. Nevertheless, this approach is more likely to generate large scale networks, and
lead to over fitting and numerical problems. Another method is the gradient descent
algorithm [17] which has applied to multiperceptron successfully; however, this method is
computationally expensive and more prone to get trapped in local optima. Thirdly, the most
commonly used approach employs clustering techniques, such as K-Means method [14] or
the orthogonal least square method [15] to determine centers of neural network. This type of
learning algorithm considers only the information of input data vectors, ignoring the output
space and weights of output layer, and the performance of this approach is also sensitive to
the randomly selected initial values. Therefore, the centers obtained by this clustering-based
method may not be optimal with respect to the accuracy performance of the final results [18].

The training of RBF neural network can be seen as an optimization problem, where
the modelling accuracy can be maximized by adjusting the parameters of neural network.
Genetic algorithm (GA) is a parallel and robust optimization technique inspired by the
mechanism of evolution and genetics, and it has been successfully applied to innumerable
search and optimization problems [19]. Many researches have devoted to the study of
training RBF neural network by GA, and the results indicate that the adoption of GA
for determining the parameters of RBF neural network can avoid local minimum and
improve precision performance [20-26]. However, most reported publications mentioned
above estimate two types of parameters [21, 22], that is, centers and widths, or three types
of parameters [23], that is, centers, widths and weights, of the RBF neural network using
genetic algorithm. And these approaches suffer from problems of difficulty on structure
determination and heavy computational burden due to large search space of the optimization
problem [27].

Therefore, this paper proposes an approach to design RBF neural network for
modelling of the ADCES based on genetic algorithm. Different from the researches mentioned
above, genetic algorithm is employed only to evolve center parameters of RBF neural
network, while width and weight parameters are calculated using some fast linear techniques
in order to relieve computational burden and accelerate the convergence of the proposed
training technique.

The width parameters of RBENN control the domain of influence of corresponding
radial basis functions. In order to obtain more accurate RBFNN, different width value is used
for each radial basis function. The width of the ith center is set to the maximum Euclidean
distance between ith center c; and its candidate center c;

o; = max(||¢; — ¢

), i=1,2,...,M, j#i (3.3)
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After the centers and widths have been fixed, the weights of output layer can be
calculated by an algorithm suitable to solve the linear algebraic equations. In this paper, the
output weights are computed by the least square algorithm.

Let

Pr(x1)  Pa(x1) -+ Ppm(x1) 1

P1(x2) Pa(x2) -+ Pm(x) 1

O = ) (3.4)

P1(xn) Pa(xn) -+ Ppm(xn) 1

then the weights can be calculated using the least square algorithm

oy = (0') ToTy, (3.5)

where @ is the pseudoinverse of ® and v is the target output data.

3.2. Design of RBF Neural Network Based on Genetic Algorithm

Genetic algorithm has been successfully employed in search and optimization problems by
simulating natural evolution. Genetic algorithm has a population of individuals competing
against each other in relation to a fitness function, with some individuals breeding, others
dying off, and new individuals arising through crossover and mutation. In this paper, genetic
algorithm is used to optimize the centers of RBF neural network. The following segments
present the main areas where genetic algorithm applies to design of RBF neural network.

Genetic encoding, the choice of appropriate encoding for individuals is the first step
for optimization of RBF neural network by genetic algorithm. Traditionally, encoding scheme
uses binary strings. However, the bit strings of binary-coded genetic algorithm become very
long and the search space blows up, while in real-coded genetic algorithm, the variables
appear directly in chromosome simply, and computation burden is relieved, so real-coded
scheme is adopted in this paper.

Genetic operators: There are three types of operators in genetic algorithm, that
is, selection, crossover and mutation. The selection operator employs a fitness function
to evaluate the individuals from the population, and selects parts of individuals for the
following crossover and mutation. In this paper, the roulette wheel selection is used to choose
individuals from population to operate. In order to prevent optimal chromosomes from
being ignored, elitist selection is also employed, that is, the best chromosomes are always
preserved in population. Crossover operator produces offspring individuals by combining
genes of parent individuals. The two crossover operators used here are the simple arithmetic
crossover and the whole arithmetic crossover, which are selected randomly during the
process of evolution. Mutation operator is a stochastic variation of the genes of individuals.
The uniform mutation and the Gaussian mutation are employed randomly during the process
of evolution.

Fitness function: The fitness function is used to evaluate performance of individuals
for selection. As to the modelling of the ADCES, a high precise RBF neural network is desired,



8 Mathematical Problems in Engineering

so the root mean square error (RMS) which is most widely used for modelling problem is
employed as the fitness function of genetic algorithm,

N
RMS(y, yi) = J % > () - vi(@)?, (3.6)
i=1

where y is the measure outputs and y; represents outputs of the neural network, and N is
the number of data.

Stop Criteria

The evolution process will repeat for a fixed number of generations or being ended when the
value of objective function satisfies a given accuracy performance. In the proposed approach,
individuals evolve for a predefined generations, and the neural network with minimum
testing error is selected for each generation. At the end of evolution, the neural network with
minimum testing error will be selected as the optimal neural network.

The proposed genetic algorithm-based approach for training RBF neural network can
be summarized in the following steps.

(1) Randomly choose an initial population with a number of individuals. Each
individual associates the centers of an RBF neural network.

(2) Compute the widths and weights of RBF neural networks. The outputs of RBF
neural networks can be obtained, and the fitness functions of initial population can
also be calculated.

(3) Apply three genetic operators to the parent individuals, and the offspring
individuals are generated.

(4) Calculate the widths and weights of RBF neural network, and compute the fitness
function of each offspring individual.

(5) If the number of generation is equal to the given threshold, then stop and return the
best solution, otherwise go to step (3).

4. Experiments and Results

This section presents the application of the proposed genetic algorithm-based approach to
evolve RBF neural network for modelling of the ADCES of a certain minesweeping plough.

To determine the nonlinearity of the ADCES, the second-order Nonlinear Auto-
Regressive with eXtra inputs (NARX) is employed to model the ADCES [28]. The data are
divided into two parts: the first 600 data are used to train the NARX model, while the other
400 data are employed to test the obtained NARX model. The comparison of outputs is
illustrated in Figure 6, and the regression analysis of testing data is also shown in Figure 7
to assess the accuracy of the NARX model. The training RMS error and test RMS error of
the NARX model are 0.0392 and 0.0427, respectively. The obtained results indicate that the
ADCES is a typical nonlinear system.
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Figure 6: Comparison of measured outputs and NARX outputs.

In order to accelerate the speed of convergence and improve the effectiveness of the
proposed algorithm, the collected data are scaled between zero and one

scal _ Xi — Xmin

X

, (4.1)

Xmax — Xmin

where x;, Xmax, and Xmin are the original, the maximum and the minimum values, respectively,
x5l is the value which has been preprocessed.

The lag space, that is, the number of delayed inputs and outputs, of RBF neural
network is chosen as two [29], so the constructed RBF neural network is a model with four
inputs and one output, thus the training set includes 598 samples and the test set includes
398 samples.

In order to compare the performance of different models of the ADCES, the Root Mean
Square error (RMS) defined in Section 3.2 (see (3.6)) is applied to measure the accuracy of the
obtained model.

With small value of displacement, the RMS of the model is so small that it is difficult to
indicate the fitting performance between the obtained model and the ADCES distinctly. So the
Variance Accounted For (VAF) is also used to assess the quality of the model by comparing
target outputs and outputs of the model:

var(y - i)

VAF(]//yt) = [1_ Var(y)

] x 100%, (4.2)
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Figure 7: Regression analysis of the NARX for test data.

where var() is the variance operation, y is the measure outputs and y; represents outputs
of the neural network. A higher VAF means that the obtained model is more similar to the
ADCES.

In order to stand out advantages of the proposed technique, the traditionally and
widely used K-Means clustering algorithm [14] is also used to build RBF neural network
for comparison. For the sake of simplicity, the proposed approach is abbreviated as GA-RBF,
and the clustering-based approach for comparison is abbreviated as KM-RBF.

In the proposed GA-RBF algorithm, the population size is chosen as 40, and the
selection rate is 0.8, the crossover rate is 0.8 and the mutation probability is 0.05, the maximum
generation is 300.

The number of hidden units greatly influences performance of RBF neural network.
If the number is too low, the precision of RBF neural network will be deteriorated. On the
other hand, if the network employs too many hidden units, it will trend to overfit the data
and increase the computational burden. In this paper, the method to determine the number
of hidden units is described as follows: firstly, a number range of hidden units is determined
empirically; secondly, a set of RBF neural networks are construed with different number of
hidden units; then the number of hidden units of the RBF network with minimum test error
is selected as optimum number.

In this paper, both the proposed GA-RBF technique and the traditionally used KM-RBF
algorithm are employed to determine the number of hidden units for RBF neural network.
For the problem of modelling the ADCES, the minimum number of hidden units is chosen
as 6 empirically, and the maximum number of hidden units is 50. The number of hidden unit
increases incrementally from 6 to 50 with an increment of 2, thus total 23 RBF neural networks
is obtained. The performance of the neural networks with different initial conditions may be
varied, so the training algorithms run 10 times and the average precision values of the 10 runs
are used to measure the performance of the RBF neural networks.
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Figure 8: Determination of number of hidden units of RBF neural network.

Figure 8 shows the RMS errors for RBF neural networks with different number of
hidden units trained by KM-RBF algorithm and the proposed GA-RBF algorithm. For KM-
RBF algorithm, the neural network with 34 hidden units yields the minimum test error
(0.0466), and overtraining will be caused for test data if the number of hidden units is
more than 34. For the proposed GA-RBF algorithm, the test errors continually reduce with
increased number of hidden units, however, the test errors of RBF neural networks only
improve 3.72% (from 0.0430 to 0.0414) when the number of hidden units increases from 34 to
50. So taken into account of both KM-RBF algorithm and GA-RBF algorithm, the best number
of hidden units of RBF neural network is chosen as 34 eventually.

In order to eliminate the influence of randomly generated initial condition, the
proposed genetic algorithm-based approach runs 10 times, and the best result is select as
the final RBF neural network.

Figure 9 shows the evolution of the RMS error on both training data and test data for
the proposed GA-RBF algorithm with 34 hidden units. The figure illustrates that the training
error of RBF neural network decreases steadily during the whole process of evolution. The
RMS error of test data decreases and waves a little with increasing generation number and it
trend to convergent by the end of evolution. In 288 epoch, the minimum RMS error on test
data is obtained (0.0430) corresponding to the error of 0.0400 on training data.

Figure 10(a) shows the outputs of the obtained RBF neural network with 34 hidden
units trained by the proposed GA-RBF algorithm as compared to the target outputs for the
training data, and Figure 10(b) shows the target outputs and the outputs of the obtained RBF
neural network for test data.
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Figure 10: Comparison of measured outputs and GA-RBF network outputs.

Figure 11 illustrates the regression analysis of the obtained RBF neural network for
test data. It can be seen from Figures 10 and 11 that the predicted outputs of the obtained
RBF neural network follow close to the target outputs for both training data and test data.
The maximum errors between the target outputs and the predicted outputs of the network
are 0.1149 and 0.1231 for training data and test data, respectively. The predicted outputs
of RBF neural network match quiet well with the target outputs, which illustrates that the
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Figure 12: Comparison of measured outputs and KM-RBF network outputs.

dynamic characteristics of ADCES can be emulated reasonably well by the obtained RBF
neural network, and that the obtained RBF neural network an be used to model the ADCES
successfully.

For standing out advantages of the proposed GA-RBF technique, the widely used KM-
RBF algorithm is also employed to train RBF neural network. Figure 12 shows the outputs of
the obtained RBF neural network trained by the KM-RBF algorithm as compared to the target
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Figure 13: Regression analysis of the KM-RBF neural network for test data.

Table 1: Performance results of different modelling methods.

Training data Test data
RMS VAF RMS VAF
NARX 0.0897 90.46% 0.2058 86.70%
KM-RBF 0.0431 97.88% 0.0466 97.93%
GA-RBF 0.0395 98.11% 0.0430 98.14%

outputs. Figure 13 illustrates the regression analysis of the obtained RBF neural network for
test data with KM-RBF method.

The modelling results of different techniques are summarized in Table 1. It should be
pointed out that the performance results of NARX model do not equal to those in Figures 6
and 7, because the data have been normalized for methods in Table 1. For modelling of the
ADCES, the obtained RBF neural networks are much more accurate than the nonlinear NARX
model. The test error of RBF neural network trained by the proposed GA-RBF approach
is smaller than that of neural network constructed by the traditional KM-RBF method.
According to the experiment results, the GA-RBF has the best performance in terms of RMS
error and VAF performance, and the proposed technique is superior to the traditionally used
methods.

5. Conclusions

In this paper, we present a hybrid learning algorithm to construct accurate radial basis
function neural network for the ADCES of a certain minesweeping weapon which is a
complex nonlinear electrohydraulic system. In order to improve accuracy of the designed
neural network, a genetic algorithm is used to optimize centers of neural network. The
maximum distance measure is adopted to determine widths of radial basis functions and the
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least square method is utilized to calculate weights of neural network, thus computational
burden of the proposed technique is relieved. The simulation results and comparisons with
other algorithm demonstrate effectiveness and validity of the proposed technique.

The next step of our work will be to design high-performance controller of the ADCES
based on the obtained neural network [30] and to optimize the structure and parameters of
neural network simultaneously based on more advanced genetic algorithm [31, 32].
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