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Several numerical methods for boundary value problems use integral and differential operational
matrices, expressed in polynomial bases in a Hilbert space of functions. This work presents
a sequence of matrix operations allowing a direct computation of operational matrices for
polynomial bases, orthogonal or not, starting with any previously known reference matrix.
Furthermore, it shows how to obtain the reference matrix for a chosen polynomial base. The results
presented here can be applied not only for integration and differentiation, but also for any linear
operation.

1. Introduction

One of the main characteristics of the use of polynomial bases is to reduce the solving process
of differential or integral equations to systems of algebraic equations, expressing the solution
f(x) by truncated series approximations, up to order n [1–4], such that

f(x) = fN(x) =
N∑

i=1

ciPi(x), x ∈ [a, b] ⊂ R. (1.1)

The choice of the polynomial basis is normally one of the orthogonal bases belonging
to the Hilbert space of functions, in order to ensure that the expansion of the series to
a higher order does not affect the coefficients previously calculated, being applicable to
classical methods, as the Runge-Kutta, for instance [5]. However, it is also possible to use
nonorthogonal bases, as done in [6, 7], where Pi(x) = xi, i = 1, 2, . . . , n.



2 Mathematical Problems in Engineering

Considering C the line vector that contains the coefficients ci and B the column vector
that contains the base polynomials Pi, expression (1.1) can be written as considering: fN(x) =
[c0c1, . . . , cn][P0P1, . . . , Pn]

T = CB [8].
The central idea when working with operational matrices is to write the integral or

differential of the elements of the basis as a linear combination of the same base elements,
transforming the integral and differential operations of fN(x) into matrix operations in a
Hilbert space [8].

So, defining MI as the operational integration matrix and MD as the operational
differential matrix, it is possible to obtain the line vector V containing the coefficients of the
series that represent the integrated function or the differentiated function by V T

I = MIC
T and

V T
D = MDC

T .
Consequently,

∫x

a

fN(x)dx = VIB,

d
[
fN(x)

]

dx
= f

(1)
N (x) = VDB.

(1.2)

Recently, Doha and Bhrawy [1] presented a method to obtain the operational matrices
of integration considering the Jacobi polynomials.

Here, a simpler and more direct way to get the operational matrix, by using
Theorem 2.1 from the next section is presented. Additionally, a way to extend it to any
polynomial basis, by using Theorem 3.1, presented in Section 3, is also developed.

In spite of the fact that those theorems are applied to integration and differentiation
operations, the result is valid to any linear operation, as shown ahead.

2. Obtaining the Operational Matrix

Theorem 2.1. Considering Z = Zn+1,n+1 a square matrix describing the resulting coefficients of a
linear operation α in the generic basis BG = [b0b1, . . . , bn]

T as a function of the same basis and fN(x)
a series the coefficients vector of which is C = [c0c1, . . . , cn], and V = [v0v1, . . . , vn] the line vector of
the resulting coefficients of the linear operation α applied to the series, then:

V T = ZTCT . (2.1)

Proof. Considering fN(x) =
∑n

i=0 ciBGi(x), since α is a linear operation: α[fN(x)] =∑n
i=0 ciαBGi(x).

On the other hand, considering the finite matrix space Mij , i ∈ {0, 1, . . . , n} and j ∈
{0, 1, . . . , n}, α is a scalar, depending on x.

Considering that αBG = ZBG and VBG = C(ZBG), observing the matrix and vector
dimensions, this last result is a scalar and, consequently BT

GV
T = (ZBG)

TCT , implying that:

BT
G

(
V T − ZTCT

)
= 0. (2.2)

As BT
G is a generic basis, (2.2) implies (2.1) directly.
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So, in order to build matrices representing actions of linear operations, as derivative
and integration, the main task is to determine matrix Z and transpose it.

2.1. Example: Integration Matrix of the Legendre Polynomials

Considering that the polynomial basis is used to describe a function to be composed of
Legendre polynomials, in the interval [a, b] = [−1, 1], one can observe that, for Legendre
polynomials [9]

∫x

−1
Pi(x)dx =

Pi+1(x) − Pi−1(x)
2i + 1

, i = 1, 2, . . . , n,

∫x

−1
P0(x)dx = P1(x) + P0.

(2.3)

Defining

P =

⎡
⎢⎢⎢⎢⎢⎣

P0

P1

· · ·
0 · Pn+1

⎤
⎥⎥⎥⎥⎥⎦
,

P ∗ =

⎡
⎢⎢⎢⎢⎢⎣

P0

P1

· · ·
Pn+1

⎤
⎥⎥⎥⎥⎥⎦
,

(2.4)

one can write
∫x
−1 Pdx = ZIP

∗, with the integral acting over to the elements of the vector.
The null coefficient on the (n + 1)-order term assures equal dimensions for the vector to be
integrated and the vector that results from the process.

Following (2.3), ZI is a square matrix Zn + 2, n + 2 and:

(i) Z1,1 = Z1,2 = 1;

(ii) Zk,k+1 = −1/(2k − 1), Zk,k−1 = 1/(2k − 1), k = 2, 3, . . . , n + 1;

(iii) Zn+2,n+1 = −1/(2(n + 2) − 1) = −1/(2n + 3);

(iv) there is no Zn+2,n+3 term, because Pn+1 is not integrated.

Since the operational matrix MI is the transpose of ZI , when writing a code
to implement a computational algorithm, it is required to exchange the indices in the
expressions above, obtaining MI . directly.
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3. Obtaining the Operational Matrix for Any Polynomial Basis:
The Sandwich Matrix

From an operational matrix expressed in a generic reference basis X, it is possible to obtain
the corresponding operational matrix in another basis G, also generic, by using a sequence of
simple matrix operations, as Theorem 3.1 states.

Theorem 3.1 (“SandwichMatrix” (Ω)). Given a generic polynomial basis BG in the interval [a, b],
the matrix ZG of the operational matrix theorem is obtained by GΩG−1, where the “sandwich matrix”
is Ω = X−1ZXX, with Gn+1,n=1 and Xn+1,n+1 being the matrices that describe the generic polynomials
(G) and the reference ones (X) in the canonic basis, respectively.

Proof. Considering that α is a linear operation: αBG = α[GBC] = Gα[BC], where BC is the
canonic base BC = [1xx2, . . . , xn]T , since the canonic base can be written as a function of the
reference base as BC = X−1BX , it can be concluded that αBG = α[GBC] = G(X−1α[BX]).

As α[BX] = ZXBX , it implies that α[BX] = G(X−1)ZXBX . Now, it is necessary to
transform BX into the generic basis BG, in order to express the result as a function of the
generic input base.

From the defined matrices BX = XBC and BC = G−1BG, the expression given above is
written as: αBG = G(X−1ZXX)G−1BG = GΩG−1BG and G must be nonsingular.

Finally, since αBG = ZGBG, the generic matrix ZG is obtained by: ZG = GΩG−1, where
Ω = (X−1)ZXX.

3.1. Comments

(i) No orthogonality condition has been imposed during the proof, thus, the result is valid
for all polynomial bases, orthogonal or not.

(ii) The operational matrix of a generic polynomial basis is given by: MG =
(G−1)TΩTGT . Indeed, for any linear operation: ZG = G(X−1ZXX)G−1 and, since MG = ZT

G,
it can be concluded that:MG = (G−1)TΩTGT .

(iii) Since X is arbitrary, the canonic basis can be used, and thus, the matrix describing
the elements of X as a function of the canonic base is the identity. So, Ω = I−1ZCI = ZC.

(iv) Taking the previous comment into account, the matrix ZG of the generic basis can
be obtained by: ZG = GZCG

−1, that is, considering the resemblance definition [9], the matrix
of the generic basis ZG is similar to or resembling matrix ZC. To summarizing, the generating
matrices of the operational matrices are similarity classes related to each linear operation in
the interval [a, b].

(v) Considering the uniqueness of the result of the linear operation of differentiation
on continuous functions, the differentiation matrix Ω is invariant for all polynomial bases.

(vi) The elements of the last column of the integration matrix are arbitrary, since they
multiply a null element. Therefore, if instead of the Legendre basis another one is used
to build the “sandwich matrix” Ω, these elements may be different, but the result of the
integration remains the same. So, the uniqueness of the “sandwich matrix” for the integration
is ensured but for the last line, the impact of whichwill be on the last column of the integration
matrix.

3.2. Example: “Sandwich Matrix” for Integration

According to the last comment about Theorem 3.1, any polynomial basis can be used to build
the “sandwich matrix” Ω, because they are all similar. For the sake of simplicity, the canonic
base will be chosen.
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Considering the interval [−1, 1], the matrixZ is built, in order to represent the integrals
of the basis as a function of the basis itself. By defining

X =

⎡
⎢⎢⎢⎢⎢⎣

x0

x1

· · ·
0 · xn+1

⎤
⎥⎥⎥⎥⎥⎦
,

X∗ =

⎡
⎢⎢⎢⎢⎢⎣

x0

x1

· · ·
xn+1

⎤
⎥⎥⎥⎥⎥⎦
,

(3.1)

one can write
∫x
−1 Xdx = ZCIX

∗, with the integral acting over to the elements of the vector,
that is,

∫x
−1 ξ

idξ = (1/(i + 1))xi+1 − (−1)i+1/(i + 1), i = 0, 1, . . . , n.
Consequently,

∫x
−1 ξ

idξ = (1/(i+1))Pi+1−(−P0)
i+1/(i+1) = (1/(i+1))Pi+1−(−1)iP0/(i+1) =

(1/(i + 1))Pi+1 − (−1)i/(i + 1), i = 0, 1, . . . , n.
The nonnull elements ZCI = Zn+2,n+2 are, therefore: Zk,k+1 = 1/k and Zk,1 = (−1)k−1/k,

with k = 1, 2, . . . , n+ 1. As apparent in comments presented in the former subsection, for each
linear operation, in the canonic basis, ZC = Ω.

Considering, for instance, n = 4, the “sandwich matrix” for integration (ΩI) is:

ΩI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

−1/2 0
1
2

0 0 0

1
3

0 0
1
3

0 0

−1
4

0 0 0
1
4

0

1
5

1 0 0 0
1
5

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.2)

For the interval [0, b], the elements Zk,1, with k = 1, 2, . . . , n + 1 will be equal to zero,
that is,

ΩI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

0 0
1
2

0 0 0

0 0 0
1
3

0 0

0 0 0 0
1
4

0

0 1 0 0 0
1
5

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.3)
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Considering the process using the shifted Legendre base up to order 4, known as
shifted-Legendre,Ω is:ΩLI = L−1ZLIL, where ZT

LI = MLI is the integration operational matrix
in the Legendre basis. For polynomials up to order 5, the matrix describing the Legendre
polynomials as a function of the canonic basis is:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

−1
2

0
3
2

0 0 0

0 −3
2

0
5
2

0 0

3
8

0 −15
4

0
35
8

0

0
15
8

0 −35
4

0
63
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

Calculating ΩLI = L−1ZLIL

ΩLI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

−1
2

0
1
2

0 0 0

1
3

0 0
1
3

0 0

−1
4

0 0 0
1
4

0

1
5

1 0 0 0
1
5

−113
693

0 − 5
66

0
5
22

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.5)

As mentioned, this matrix differs from the one previously obtained with the canonic
basis just by the last line elements. It does not modify the integration operation, since these
elements are being multiplied by a null coefficient.

The wavelets, orthogonal Jacobi polynomials shifted to the interval (u ∈ R : 0 ≤ u ≤
1), were used in the Galerkin processes [10], with the appropriate domain transformation.
MatrixΩ can also be applied in these cases, either transforming the equation or obtaining the
matrix that describes the base polynomials in the chosen interval related to the canonic base.

3.3. Example: “Sandwich Matrix” for Differentiation

Starting with the canonic base, matrix ZD can be built, describing the derivative elements of
the basis as a function of the basis itself. Therefore, rewriting the vector X∗ defined in the
former subsection: dX∗/dt = ZX∗, with the derivative acting over the components of vector
X∗, d[x0]/dx = 0, . . . , d[xn]/dx = nxn+1, for any possible considered domain.
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Thus, the nonnull terms of the matrix ZD = Zn+1,n+1 are Zi,i−1 = i − 1, i = 2, . . . , n and,
according to the last comment from Section 3.1, ZCD = ΩD.

Considering n = 4, the differentiation matrix is given by

ΩD =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎤
⎥⎥⎥⎥⎥⎦
. (3.6)

In order to obtain this matrix from the Legendre basis, the process is analogous to
the previous one. Applying ΩD = L−1ZLDL, where ZT

LD is the described differentiation
operational matrix. As highlighted in the third from Theorem 3.1, presented in Section 3.1,
the obtained matrix Ω is identical.

3.4. Example: Chebyshev Operational Matrices for
Integration and Differentiation

Some works present the Galerkin method supported by Chebyshev I expansions [11–
13], when solving differential equations. In order to help in this task, integration and
differentiation Chebyshev I matrices will be obtained from the operational matrices on the
Legendre basis, even though it would be easier to conduct this process using the canonic
base.

Matrix T describing the Chebyshev I polynomials, as a function of the canonic basis,
up to order 4 is:

T =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
−1 0 2 0 0
0 −3 0 4 0
1 0 −8 0 8

⎤
⎥⎥⎥⎥⎥⎦
. (3.7)

By using Theorem 3.1, the Legendre integration matrix (MLI) is known, and
Chebyshev integration matrix can be obtained, by using the second comment from
Section 3.1.

Consider, for instance, f(x) = −2 − 10x + 6x2 + 16x3, x ∈ [−1, 1] to be integrated in the
interval [−1, x]. Written as a Chebyshev I series: f(x) = [1 2 3 4][T0 T1 T2 T3]

T and MTI =
(T−1)TΩT

I T
T , observing that Ω is basis independent.
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Calculating the several matrices is the case of the example

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

−1 0 2 0 0

0 −3 0 4 0

1 0 −8 0 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ΩT
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
2

1
3

−1
4

1
5

1 0 0 0 − 1
21

0
1
2

0 0 0

0 0
1
3

0
2
9

0 0 0 1/4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

MTI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1
4

−1
3

1
8

−1
5

1 0 −1
2

0 − 1
21

0
1
4

0 −1
4

0

0 0
1
6

0 −2
9

0 0 0 1/8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.8)

Performing V = MTI[1 2 3 4]T , with the coefficients of the series representing the integral of
this function, that is, F(x) =

∫ −1xf(x)dx = VBT , where V = [0 − 1/2 − 1/2 1/2 1/2] and,
consequently, in the canonic form: F(x) = 1 − 2x − 5x2 + 2x3 + 4x4.

To obtain the Chebyshev differential matrix, the procedure is analogous, giving:

ΩT
D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

MTD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 3 0

0 0 4 0 8

0 0 0 6 0

0 0 0 0 8

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.9)
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Figure 1: Solution of convection-diffusion equation with Legendre approximation (b = 1, n = 5).

As expected,MTDV
T = [1 2 3 4 0]T , with the nonnull terms of the invariantΩT

D(n+1,n+1)

given by ΩT
D(i,i+1) = i, i = 1, . . . , n.

4. Solving a Boundary Value Problem

In this section, an application of themethod presented to build operational matrices is shown,
considering the boundary value problem related to convection-diffusion equation [14], given
by:

−u′′(v) + bu′(v) = 0, u : [0, 1] −→ [0, 1], (4.1)

with u(0) = 0 and u(1) = 1.
Firstly, in order to have a Jacobi interval domain, we change variables, v = (x + 1)/2,

with x ∈ [−1, 1] obtaining the transformed equation:

−4u′′(x) + b2u′(x) = 0; u : [−1, 1] −→ [0, 1], (4.2)

with u(−1) = 0 and u(1) = 1.
If u∗(x) =

∑n
i=0 ciPi is the series that approximates u(x) and MD the operational

differentiation matrix, one can write: (−4M2
DC

T + 2bMDC
T )T · P(xk) = 0, defining:

P(xk) =

⎡
⎢⎢⎣

P0(xk)
P1xk

· · ·
Pn(xk)

⎤
⎥⎥⎦, (4.3)

with C = [c0 c1 · · · cn] and k = 1, 2, . . . , n − 1.
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Figure 2: Error in the solution of convection-diffusion equation with Legendre approximation (b = 1, n =
5).
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Figure 3: Solution of convection-diffusion equation with Chebyshev approximation (b = 20; n = 25).

This matrix equation is applied to n − 2 domain points generating a linear algebraic
equations system with n − 2 equations and n unknown variables. The two missing equations
are obtained from the boundary conditions: x0 = −1 and xn = 1. To avoid the Runge
phenomenon [15], xk are chosen as nodes of the polynomial basis.

Figure 1 shows the exact solution and the obtained by using Legendre approximation
and considering b = 1 and n = 5. The two solutions are too closed that, in Figure 2, the
error is shown for comparison. Figure 3 shows the exact solution and the obtained by using
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Figure 4: Error in the solution of convection-diffusion equation with Chebyshev approximation (b =
20, n = 25).

Chebyshev approximation and considering b = 20 and n = 25 The two solutions are too
closed that, in Figure 4, the error is shown for comparison.

5. Conclusion

All operational matrices applied to polynomial bases in linear operations may be obtained
directly from a central matrix (Ω) placed between the matrix product involving the matrix
describing the chosen base from the canonical base and its inverse.

Considering the available computational facilities, this method may turn the
calculation of these matrices easier and quicker, on different bases, and various applications,
as the Galerkin process, for instance. Furthermore, “sandwich matrix” allows for directly
obtaining the recurrence relations for the derivative and integral of an element of any
polynomial basis as a function of other basis elements.
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