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We present a simple proof of the interior approximate controllability for the following broad class
of second-order equations in the Hilbert space L2(Ω): ÿ + Ay = 1ωu(t), t ∈ (0, τ], y(0) = y0,
ẏ(0) = y1, where Ω is a domain in �N (N ≥ 1), y0, y1 ∈ L2(Ω), ω is an open nonempty subset
of Ω, 1ω denotes the characteristic function of the set ω, the distributed control u belongs to
L2(0, τ ;L2(Ω)), and A : D(A) ⊂ L2(Ω) → L2(Ω) is an unbounded linear operator with the
following spectral decomposition:Az =

∑∞
j=1 λj

∑γj
k=1〈z, φj,k〉φj,k , with the eigenvalues λj given by

the following formula: λj = j2mπ2m, j = 1, 2, 3, . . . and m ≥ 1 is a fixed integer number, multiplicity
γj is equal to the dimension of the corresponding eigenspace, and {φj,k} is a complete orthonormal
set of eigenvectors (eigenfunctions) of A. Specifically, we prove the following statement: if for
an open nonempty set ω ⊂ Ω the restrictions φω

j,k
= φj,k |ω of φj,k to ω are linearly independent

functions on ω, then for all τ ≥ 2/πm−1 the system is approximately controllable on [0, τ]. As an
application, we prove the controllability of the 1D wave equation.

1. Introduction

This paper has been motivated by the work in [1] and the articles [2, 3], where a new
technique is used to prove the interior approximate controllability of some diffusion process.
Particularly in [3], where the authors prove the interior approximate controllability of the
following broad class of reaction diffusion equations in the Hilbert space Z = L2(Ω) given by

z′ = −Az + 1ωu(t), t ∈ [0, τ], (1.1)

where Ω is a domain in �n , ω is an open nonempty subset of Ω, 1ω denotes the characteristic
function of the set ω, the distributed control u ∈ L2(0, τ ;L2(Ω)) and A : D(A) ⊂ Z → Z is an
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unbounded linear operator with the spectral decomposition

Az =
∞∑

j=1

λj

γj∑

k=1

〈
z, φj,k

〉
φj,k. (1.2)

The eigenvalues 0 < λ1 < λ2 < · · · < · · ·λn → ∞ of A have finite multiplicity γj equal to
the dimension of the corresponding eigenspace, and {φj,k} is a complete orthonormal set of
eigenvectors of A. The operator −A generates a strongly continuous semigroup {TA(t)}t≥0
given by

TA(t)z =
∞∑

j=1

e−λj t
γj∑

k=1

〈
z, φj,k

〉
φj,k. (1.3)

As a consequence of this result, the controllability of the following heat equation follows
trivially by putting A = −Δ

zt = Δz + 1ωu(t, x), in (0, τ) ×Ω,

z = 0, on (0, τ) × ∂Ω,
z(0, x) = z0(x), in Ω.

(1.4)

Following [1–3], in this paper, we study the interior approximate controllability of the
following broad class of second-order equations in the Hilbert space L2(Ω):

ÿ +Ay = 1ωu(t), t ∈ (0, τ],

y(0) = y0, ẏ(0) = y1,
(1.5)

where the eigenvalues λj of the operator of A are given by the following formula:

λj = j2mπ2m, j = 1, 2, 3, . . . , m ≥ 1 is a fixed integer number. (1.6)

Specifically, we prove the following statement: if for an open nonempty set ω ⊂ Ω the
restrictions φω

j,k
= φj,k|ω of φj,k to ω are linearly independent functions on ω, then for all

τ ≥ 2/πm−1 the system (1.5) is approximately controllable on [0, τ]. Moreover, we can exhibit
a sequence of controls steering the system from an initial state to a final state in a prefixed
time (see Theorem 2.8).

This result implies the interior controllability of the following well-known examples
of partial differential equations.
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Example 1.1. The 1D Wave Equation

ytt −Δy = 1ωu(t, x), in (0, τ] ×Ω,

y = 0, on (0, τ) × ∂Ω,
y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ Ω,

(1.7)

where ω is an open nonempty subset of Ω = [0, 1], 1ω denotes the characteristic function of
the set ω, and the distributed control u ∈ L2(0, τ ;L2(Ω)).

Example 1.2. The Model of Vibrating String Equation

wtt + Δ2w = 1ωu(t, x), in (0, τ] ×Ω,

w = Δw = 0, on (0, τ) × ∂Ω,
w(0, x) = φ0(x), wt(0, x) = ψ0(x), x ∈ Ω,

(1.8)

where Ω = [0, 1], ω is an open nonempty subset of Ω, u ∈ L2([0, τ];L2(Ω)), φ0, ψ0 ∈ L2(Ω).

2. Main Results

In this section, we will prove the main result of this work; to this end, we consider by X =
U = L2(Ω) and the linear unbounded operatorA : D(A) ⊂ X → X can be written as follows.

(a) For all x ∈ D(A), we have

Ax =
∞∑

j=1

λjEjξ, (2.1)

where

Ejx =
γj∑

k=1

〈
ξ, φj,k

〉
φj,k. (2.2)

So, {Ej} is a family of complete orthogonal projections in X and x =
∑∞

j=1 Ejx, x ∈
X.

(b) The semigroup {TA(t)} generated by −A can be written as follows:

TA(t)x =
∞∑

j=1

e−λj tEjx. (2.3)
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(c) The fractional powered spaces Xr are given by

Xr = D(Ar) =

{

x ∈ X :
∞∑

n=1

λ2rn ‖Enx‖2 < ∞
}

, r ≥ 0, (2.4)

with the norm

‖x‖r = ‖Arx‖ =

{ ∞∑

n=1

λ2rn ‖Enx‖2
}1/2

, x ∈ Xr,

Arx =
∞∑

n=1

λrnEnx.

(2.5)

Also, for r ≥ 0, we define Zr = Xr × X, which is a Hilbert space endowed with the
norm given by

∥
∥
∥
∥
∥

[
y

v

]∥
∥
∥
∥
∥

2

Zr

=
∥
∥y

∥
∥2
r
+ ‖v‖2. (2.6)

Proposition 2.1. The operator Pj : Zr → Zr, j ≥ 0, defined by

pj =

[
Ej 0

0 Ej

]

, j ≥ 1, (2.7)

is a continuous (bounded) orthogonal projections in the Hilbert space Zr .

Proof. First we will show that Pj(Zr) ⊂ Zr , which is equivalent to show that Ej(Xr) ⊂ Xr . In
fact, let x be in Xr and consider Ejx. Then,

∞∑

n=1

λ2rn
∥
∥EnEjx

∥
∥2 = λ2rj

∥
∥Ejx

∥
∥2

<∞. (2.8)

Therefore, Ejx ∈ Xr, for all x ∈ Xr .
Now, we will prove that this projection is bounded. In fact, from the continuous

inclusion Xr ⊂ X, there exists a constant k > 0 such that

‖x‖ ≤ k‖x‖r , ∀x ∈ Xr. (2.9)

Then, for all x ∈ Xr , we have the following estimate

∥
∥Ejx

∥
∥2
r
=

∞∑

n=1

λ2rn
∥
∥EnEjx

∥
∥2 = λ2rj

∥
∥Ejx

∥
∥2 ≤ λ2rj ‖x‖2 ≤ λ2rj k2‖x‖2r . (2.10)
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Hence, ‖Ejx‖ ≤ λrj k‖x‖r , which implies the continuity of Ej : Xr → Xr . So, Pj is a continuous
projection on Zr .

Hence, with the change of variable y′ = v, the system (1.5) can be written as a first-
order system of ordinary differential equations in the Hilbert spaceZ1/2 = X1/2×X as follows:

z′ = Az + Bωu, z(0) = z0, z ∈ Z1/2, t ∈ (0, τ], (2.11)

where

z =

[
y

v

]

, Bω =

[
0

1ω

]

, A =

[
0 IX

−A 0

]

(2.12)

is an unbounded linear operator with domain D(A) = D(A) ×D(A1/2).
The proof of the following theorem follows in the same way as [4, Theorem 3.1], by

putting c = 0 and d = 1 or directly from [5, lemma 2.1] or [6, Lemma 3.1].

Theorem 2.2. The operatorA given by (2.12) is the infinitesimal generator of a strongly continuous
semigroup {T(t)}t∈� given by

T(t)z =
∞∑

j=1

eAjtPjz, z ∈ Z, t ≥ 0, (2.13)

where {Pj}j≥1 is a complete family of orthogonal projections in the Hilbert space Z1/2 given by

Pj = diag
[
Ej, Ej

]
, j ≥ 1,

Aj = RjPj , Rj =

[
0 1

−λj 0

]

.
(2.14)

Also,

A∗
j = R

∗
j Pj , R∗

j =

[
0 −1
λj 0

]

. (2.15)

Moreover, eAjs = eRjsPj and the eigenvalues of Rj are
√
λji and −

√
λji.

Now, before proving the main theorem, we will give the definition of approximate
controllability for this system. To this end, for all z0 ∈ Z1/2 and u ∈ L2(0, τ ;U), the initial
value problem

z′ = Az + Bωu(t), z ∈ Z, t ∈ (0, τ],

z(0) = z0,
(2.16)
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where the control function u belongs to L2(0, τ ;U), admits only one mild solution given by

z(t) = T(t)z0 +
∫ t

0
T(t − s)Bωu(s)ds, t ∈ [0, τ]. (2.17)

Definition 2.3 (Approximate Controllability). The system (2.16) is said to be approximately
controllable on [0, τ] if for every z0, z1 ∈ Z1/2, ε > 0 there exists u ∈ L2(0, τ ;U) such that the
solution z(t) of (2.17) corresponding to u verifies

z(0) = z0, ‖z(τ) − z1‖ < ε. (2.18)

Consider the following bounded linear operator:

G : L2(0, τ ;Z) −→ Z, Gu =
∫ τ

0
T(τ − s)Bωu(s)ds, (2.19)

whose adjoint operator G∗ : Z → L2(0, τ ;Z) is given by

(G∗z)(s) = B∗
ωT

∗(τ − s)z, ∀s ∈ [0, τ], ∀z ∈ Z. (2.20)

The following lemma is trivial

Lemma 2.4. The equation (2.16) is approximately controllable on [0, τ] if, and only if, Rang(G) = Z.

The following result is well known from linear operator theory.

Lemma 2.5. Let W and Z be Hilbert spaces and G∗ ∈ L(Z,W) the adjoint operator of the linear
operator G ∈ L(W,Z). Then,

Rang(G) = Z ⇐⇒ Ker(G∗) = {0}. (2.21)

As a consequence of the foregoing Lemma, one can prove the following result.

Lemma 2.6. Let W and Z be Hilbert spaces and G∗ ∈ L(Z,W) the adjoint operator of the linear
operator G ∈ L(W,Z). Then, Rang(G) = Z if, and only if, one of the following statements holds:

(a) Ker(G∗) = {0},
(b) 〈GG∗z, z〉 > 0, z/= 0 in Z,

(c) lim∝→ 0+α(αI+GG∗)−1z = 0,

(d) supα>0‖α(αI +GG∗)−1‖ ≤ 1.

The following theorem follows directly from (2.20) and Lemmas 2.4 and 2.6.

Theorem 2.7. The equation (2.16) is approximately controllable on [0, τ] iff

B∗
ωT

∗(t)z = 0, ∀t ∈ [0, τ], =⇒ z = 0. (2.22)
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Now, we are ready to formulate and prove the main theorem of this work.

Theorem 2.8 (Main Theorem). If for an open nonempty set ω ⊂ Ω the restrictions φω
j,k

= φj,k|ω
of φj,k to ω are linearly independent functions on ω, then for all τ ≥ 2/πm−1 the system (2.16) is
approximately controllable on [0, τ]. Moreover, a sequence of controls steering the system (2.16) from
initial state z0 to an ε neighborhood of the final state z1 at time τ > 0 is given by

uα(t) = B∗
ωT

∗(τ − t)(αI +GG∗)−1(z1 − T(τ)z0), (2.23)

and the error of this approximation Eα is given by

Eα = α(αI +GG∗)−1(z1 − T(τ)z0). (2.24)

Proof. Wewill apply Theorem 2.7 to prove the controllability of system (2.16). To this end, we
observe that the adjoint of operator Bω is by

B∗
ω =

[
0 1ω

]
,

T∗(t)z =
∞∑

j=1

eA
∗
j tPjz, z ∈ Z, t ≥ 0.

(2.25)

Therefore,

B∗
ωT

∗(t)z =
∞∑

j=1

B∗
ωe

R∗
j tPjz. (2.26)

On the other hand, we have that

eR
∗
j t =

⎡

⎢
⎢
⎣

cos
√
λjt − 1

√
λj

sin
√
λjt

√
λj sin

√
λjt cos

√
λjt

⎤

⎥
⎥
⎦ =

⎡

⎣
cos jmπmt − 1

jmπm
sin jmπmt

jmπm sin jmπmt cos jmπmt

⎤

⎦. (2.27)

Suppose for all z ∈ Z1/2 that

B∗
ωT

∗(t)z =
∞∑

j=1

{
jmπm sin

(
jmπmt

)(
1ωEjz1

)
+ cos

(
jmπmt

)(
1ωEjz2

)}
= 0, ∀t ∈ [0, τ]. (2.28)

Then, if we make the change of variable s = πmt, we obtain that

∞∑

j=1

{
jmπm sin

(
jms

)(
1ωEjz1

)
+ cos

(
jms

)(
1ωEjz2

)}
= 0, ∀s ∈

[
0, πkτ

]
. (2.29)
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Since τ ≥ 2/πm−1 we get that

∞∑

j=1

{
jmπm sin

(
jms

)(
1ωEjz1

)
+ cos

(
jms

)(
1ωEjz2

)}
= 0, ∀s ∈ [0, 2π]. (2.30)

On the order hand, it is well known that {1, cos(ns), sin(ns) : n = 1, 2, 3, . . .} is an orthogonal
base of L2[0, 2π], which implies that {cos(jms), sin(jms) : j = 1, 2, 3, . . .} is an orthogonal set
in L2[0, 2π], and therefore

(
1ωEjz1

)
(x) = 0,

(
1ωEjz2

)
(x) = 0, ∀x ∈ Ω, j = 1, 2, 3, . . . , (2.31)

that is,

(
Ejz1

)
(x) = 0,

(
Ejz2

)
(x) = 0, ∀x ∈ ω, j = 1, 2, 3, . . . , (2.32)

that is,

γj∑

k=1

〈
z1, φj,k

〉
φj,k(x) = 0,

γj∑

k=1

〈
z2, φj,k

〉
φj,k(x) = 0, ∀x ∈ ω, j = 1, 2, 3, . . . . (2.33)

Since the restrictions φωj,k = φj,k|ω of φj,k to ω are linearly independent functions on ω, we get
that

〈
z1, φj,k

〉
= 0,

〈
z2, φj,k

〉
= 0, j = 1, 2, 3, . . . ; k = 1, 2, . . . , γj . (2.34)

Therefore,

Pj(z) =

[
Ej(z1)

Ej(z2)

]

=

[
0

0

]

. (2.35)

Hence, z =
∑∞

j=1 Pjz = 0, and the proof of the approximate controllability of the system (2.16)
is completed.

Now, given the initial and the final states z0 and z1, we consider the sequence of
controls

uα(·) = B∗
ωT

∗(τ − ·)(αI +GG∗)−1(z1 − T(τ)z0)

= G∗(αI +GG∗)−1(z1 − T(τ)z0), α > 0.
(2.36)



Mathematical Problems in Engineering 9

Then,

Guα = GG∗(αI +GG∗)−1(z1 − T(τ)z0)

= (αI +GG∗ − αI)(αI +GG∗)−1(z1 − T(τ)z0)

= z1 − T(τ)z0 − α(αI +GG∗)−1(z1 − T(τ)z0).

(2.37)

From part (c) of Lemma 2.6, we know that

lim
α→ 0+

α(αI +GG∗)−1(z1 − T(τ)z0) = 0. (2.38)

Therefore,

lim
α→ 0+

Guα = z1 − T(τ)z0, (2.39)

that is,

lim
α→ 0+

{

T(τ)z0 +
∫ τ

0
T(τ − s)Bωuα(s)ds

}

= z1. (2.40)

This completes the proof of the theorem.

The following basic theorem will be used to prove an important consequence of the
foregoing theorem.

Theorem 2.9 (see [7, Theorem 1.23, page 20]). Suppose Ω ⊂ �
n is open, nonempty, and

connected set, and f is real analytic function in Ω with f = 0 on a nonempty open subset ω of
Ω. Then, f = 0 in Ω.

Corollary 2.10. If φj,k are analytic functions on Ω, then for all open nonempty set ω ⊂ Ω and all
τ ≥ 2/πm−1 the system (2.16) is approximately controllable on [0, τ].

Proof. It is enough to prove that, for all open nonempty set ω ⊂ Ω the restrictions φωj,k = φj,k|ω
of φj,k toω are linearly independent functions onω, which follows directly from Theorem 2.9.

3. Applications

For the applications, we will use Corollary 2.10 and the following fact.

Theorem 3.1 (see [3]). The eigenfunctions of the operator −Δ with Dirichlet boundary conditions
on Ω are real analytic functions in Ω.
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In this section, we will prove the approximate controllability of (1.7) and (1.8).
Specifically, we will prove the following theorem.

Theorem 3.2. For all open nonempty set ω ⊂ Ω = [0, 1], we have the following statements.

(a) For all τ ≥ 2 the system (1.7) is approximately controllable on [0, τ].

(b) For all τ ≥ 2/π the system (1.8) is approximately controllable on [0, τ].

Proof. Let X = L2(Ω) and consider the linear unbounded operator −Δ : D(−Δ) ⊂ X → X
withD(−Δ) = H1

0(Ω)∩H2(Ω). In this case, the eigenvalues and the eigenfunctions ofA = −Δ
are given, respectively, by

λj = j2π2, φj(x) =
√
2 sin

(
jπx

)
, j = 1, 2, 3, . . . ,

Ax = −Δx =
∞∑

j=1

λj
〈
x, φj

〉
φj =

∞∑

j=1

j2π2〈x, φj
〉
φj.

(3.1)

Then,m = 1 and τ ≥ 2. So, (a) follows from Corollary 2.10.
To prove (b), we consider the operator

Ax = (−Δ)2x =
∞∑

j=1

λ2j
〈
x, φj

〉
φj =

∞∑

j=1

j4π4〈x, φj
〉
φj. (3.2)

Then,m = 2 and τ ≥ 2/π . So, (b) follows from Corollary 2.10.

4. Final Remark

The result presented in this paper can be formulated in a more general setting. Indeed, we
can consider the following second-order evolution equation in a general Hilbert space X:

ÿ +Ay = Cu(t), t ∈ (0, τ],

y(0) = y0, ẏ(0) = y1,
(4.1)

where, A : D(A) ⊂ X → X is an unbounded linear operator in X with the spectral
decomposition given by (1.2), the control u ∈ L2(0, τ ;X) and C : X → X is a linear and
bounded operator (linear and continuous). In this case, the characteristic function set is a
particular operator C, and the following theorem is a generalization of Theorem 2.8.

Theorem 4.1. If the vectors C∗φj,k are linearly independent inX, then for all τ ≥ 2/πm−1 the system
(4.1) is approximately controllable on [0, τ]. Moreover, a sequence of controls steering the system
(2.16) from initial state z0 to an ε neighborhood of the final state z1 at time τ > 0 is given by

uα(t) = B∗T∗(τ − t)(αI +GG∗)−1(z1 − T(τ)z0), (4.2)
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and the error of this approximation Eα is given by

Eα = α(αI +GG∗)−1(z1 − T(τ)z0), (4.3)

where the operator B is given by B =
[ 0
C

]
.

The novelty of this result is based on the fact that, it is general, rigorous, applicable,
and easily comprehensible by those young mathematician who are located in places away
from majors research center.
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