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An algorithm for orthogonal 4-tap integer multiwavelet transforms is proposed. We compute the
singular value decomposition (SVD) of block recursive matrices of transform matrix, and then
transform matrix can be rewritten in a product of two block diagonal matrices and a permutation
matrix. Furthermore, we factorize the block matrix of block diagonal matrices into triangular
elementary reversible matrices (TERMs), which map integers to integers by rounding arithmetic.
The cost of factorizing block matrix into TERMs does not increase with the increase of the
dimension of transform matrix, and the proposed algorithm is in-place calculation and without
allocating auxiliary memory. Examples of integer multiwavelet transform using DGHM and CL
are given, which verify that the proposed algorithm is an executable algorithm and outperforms
the existing algorithm for orthogonal 4-tap integer multiwavelet transform.

1. Introduction

In many applications of image processing, the given data are integer valued. To compress
digital image losslessly by means of transformation, the transform must map integers to
integers and be perfectly invertible. Calderbank et al. [1] presented two wavelet transforms
approaches that map integers to integers, and the proposed lifting scheme has been a popular
method for mapping integers to integers. Using lifting scheme, Deever and Hemami [2]
presented a projection-based technique for decreasing the first-order entropy of transform
coefficients. However, Multiwavelets have several advantages in comparison to scalar
wavelets. Such features as short support, orthogonality, symmetry, and vanishing moments
are known to be important in signal processing. A scalar wavelet cannot possess all these
properties at the time.
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Unlike scalar wavelet, little literature is available on integer multiwavelet transform.
Cheung et al. [3] presented an integer multiwavelet transform and its associated integer
prefilter based on box-and–slope multiscaling system. Van Fleet [4] developed a factorization
of 4-tap multiwavelets with multiplicity 2. In particular, the author in [4] derived a
factorization of the DGHM multiwavelet and applied DGHM multiwavelet processing to
data compression. In order to implement the DGHM integer transform, the author computed
scaling value α under certain conditions [4].The scaling value α is not convenient to compute
and larger than 1, which turns out to be bad for lossless compression [1].

This paper is to present an algorithm of 4-tap orthogonal multiwavelets that map
integers to integers and be perfectly invertible using SVD and TERMs. Unlike [4], the
proposed algorithm does not compute scaling value α and calculates in-place and without
allocating auxiliary memory.

2. Integer Transform and Multiwavelet

2.1. Integer Transform

Hao and Shi [5] proved that there exists an implementation of integer mapping when a linear
transform is invertible and in finite-dimensional space, as follows.

Theorem 2.1. MatrixA has a TERM factorization ofA = PV1V2 · · ·VMDR if and only if |det(A)| =
1, where M is finite, Vk (k = 1, 2 . . .M) are unit TERMs, P is a permutation matrix, and DR is a
rotator for only one complex number. If all the diagonal elements of a TERM are equal to 1, the TERM
will be a unit triangular matrix. If A is a real matrix, then DR is an identity matrix.

Unless otherwise stated, we will concentrate on the nonsingular real matrix A, thus
reversible integer implementation for general linear transforms Y = AX can be derived as
follows [5], where Y = [y1, y2, . . . , yn]

T, X = [x1, x2, . . . , xn]
T.

Let L = (li,j)n×n, U = (ui,j)n×n, and Pn×n be a lower TERM, an upper TERM, and a
permutation matrix, respectively. If A = L is a lower TERM, the computational ordering of
linear transform Y = AX can be arranged to be top-down:

yi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

li,ixi, i = 1,

li,ixi +

[
i−1∑

k=1

li,kxk

]

, 2 ≤ i ≤ n.
(2.1)

Its inverse ordering is reversed:

xi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi
li,i
, i = 1,

(
1
li,i

)(

yi −
[
i−1∑

k=1

li,kxk

])

, 2 ≤ i ≤ n.
(2.2)
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Likewise, if A = U is an upper TERM, the computational ordering of linear transform
Y = AX can be arranged to be top-down:

yi =

⎧
⎪⎪⎨

⎪⎪⎩

ui,ixi, i = n,

ui,ixi +

[
n∑

k=i+1

ui,kxk

]

, 1 ≤ i ≤ n − 1.
(2.3)

Its inverse ordering is reversed:

xi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi
ui,i

, i = n,

(
1
ui,i

)(

yi −
[

n∑

k=i+1

ui,kxk

])

, 1 ≤ i ≤ n − 1,

(2.4)

where [ ] denotes rounding arithmetic. Since permutation matrix Pn×n is an orthogonal
matrix, transform and the inverse transform can be denoted by Y = Pn×nX and X = PT

n×nY ,
respectively.

2.2. Properties of Transform Matrix

While many researchers have investigated multiwavelet of multiplicity r [6–9], little work
has been published on integer multiwavelet transforms. We will discuss integer transform on
4-tap multiwavelet of multiplicity r. Let Φ(t) = [φ1, . . . φr]

T, Ψ(t) = [ψ1, . . . ψr]
T ∈ L2(R)r be a

multiscaling function and a multiwavelet function, respectively, and then both Φ(t) and Ψ(t)
satisfy the following two-scale relation:

Φ(t) =
3∑

k=0

PkΦ(2t − k), Ψ(t) =
3∑

k=0

QkΦ(2t − k), (2.5)

where Pk and Qk are r × r matrices, respectively. For more details about multiwavelets, see,
for example, [7–9]. As is the case in [4], the matrix representation Hn×n of multiwavelet
transformation is

Hn×n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H0 H1

H0 H1
. . . . . .

H0 H1

H1 H0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.6)

whereHi =
[
P2i P2i+1
Q2i Q2i+1

]
, i = 0, 1,Pj ,Qj , j = 0, 1, 2, 3, are r × r matrices, respectively.

In order to find integer multiwavelet transform schemes, inspired by [1], wewill prove
some remarkable properties of orthogonal matrixH and then present the approach that maps
integers to integers.
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Property 1. Suppose that rank(H0) = m, rank(H1) = s, thusm + s = 2r.

Proof. From the condition of orthogonality,HTH = HHT = In×n. It follows that

H0H
T
0 +H1H

T
1 = I2r×2r , H1H

T
0 = H0H

T
1 = 0,

2r = rank(I) = rank
(
H0H

T
0 +H1H

T
1

)
≤ rank(H0) + rank(H1),

0 = rank
(
H0H

T
1

)
≥ rank(H0) + rank(H1) − 2r.

(2.7)

Thus, rank(H1) + rank(H0) = 2r. The proof is completed.

Let U0Σ0V
T
0 and U1Σ1V

T
1 be the singular value decomposition ofH0,H1, respectively.

By Property 1, since rank(H1) = rank(Σ1), rank(H0) = rank(Σ0), we see that rank(Σ0) +
rank(Σ1) = 2r.

Property 2. If the λi are the singular values of H0 and the vectors ui0 and vi0 are the ith
left singular vector and ith right singular vector, respectively, and the μi are the singular
values of H1 and the vectors uj1 and v

j

1 are the jth left singular vector and ith right singular
vector, respectively, then ui0 and vi0 are orthogonal to the vectors uj1 and v

j

1, respectively,
i = 1, 2, . . . m, m = rank(H0), j = 1, 2 . . . s, s = rank(H1).

Proof. From (2.7), we have

H1H
T
0 = U1Σ1V

T
1 V0Σ0U

T
0 = 0. (2.8)

SinceU0, U1 are two orthogonal matrices, we have Σ1V
T
1 V0Σ0 = 0,

Σ1V
T
1 V0Σ0 = Σ1

[
v1
1, . . . , v

2r
1

]T[
v1
0 , . . . , v

2r
0

]
Σ0

=

⎡

⎢
⎢
⎢
⎣

λ1
. . .

λm
0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
v1
1

)T

(
v2
1

)T

...
(
v2r
1

)T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
v1
0 v

2
0 , . . . , v

2r
0

]

⎡

⎢
⎢
⎢
⎣

μ1
. . .

μs
0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

λ1
(
v1
1

)T

...
λm

(
vm1

)T

0

⎤

⎥
⎥
⎥
⎥
⎦

[
μ1v

1
0, . . . , μsv

s
0 0

]
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=

⎡

⎢
⎢
⎢
⎣

λ1μ1
〈
v1
1, v

1
0

〉 · · · λ1μs
〈
v1
1 , v

s
0

〉
0

...
...

...
λmμ1

〈
vm1 , v

1
0

〉 · · · λmμs
〈
vm1 , v

s
0

〉
0

0 · · · 0 0

⎤

⎥
⎥
⎥
⎦

= 0.

(2.9)

From (2.9), we have 〈vi0, v
j

1〉 = 0. Likewise, 〈ui0, u
j

1〉 = 0. The proof is completed.

By Property 2, we can rewrite the matricesH0 andH1 in this case as

H0 = U0Σ0V
T
0

=
[
u10, u

2
0, . . . , u

m
0 , u

1
1, u

2
1, . . . , u

s
1

]

× diag

⎛

⎝λ1, . . . , λm, 0 · · · 0︸︷︷︸
s

⎞

⎠
[
v1
0 , v

2
0, . . . , v

m
0 , v

1
1 , v

2
1 , . . . , v

s
1

]T

= UΣ0V
T
,

(2.10)

H1 = U1Σ1V
T
1

=
[
u10, u

2
0, . . . , u

m
0 , u

1
1, u

2
1, . . . , u

s
1

]
diag

⎛

⎝0, . . . , 0
︸ ︷︷ ︸

m

, μ1, . . . , μs

⎞

⎠

×
[
v1
0 , v

2
0, . . . , v

m
0 , v

1
1 , v

2
1 , . . . , v

s
1

]T

= UΣ1V
T
,

(2.11)

where U = [u10, u
2
0, . . . , u

m
0 , u

1
1, u

2
1, . . . , u

s
1], V = [v1

0, v
2
0 , . . . , v

m
0 , v

1
1 , v

2
1 , . . . , v

s
1]

∑
0 =

diag(λ1, . . . , λm, 0 · · · 0︸︷︷︸
s

)
∑

1 = diag(0 · · · 0
︸︷︷︸

m

, μ1, . . . , μs). From Property 2, we see that U and V

are two orthogonal matrices.

Property 3. If the λi and μj are the nonzero singular values of H0 and H1, respectively, then
the nonzero singular values ofH0 andH1 are 1.

Proof. From (2.7), we can derive

I = H0H
T
0 +H1H

T
1

= UΣ0V
T
VΣ0U

T
+UΣ1V

T
V Σ1U

T

= U
(
Σ2
0 + Σ

2
1

)
U

T
.

(2.12)
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Left multiplying (2.12) with U
−1
and right multiplying (2.11) with(U

T
)−1, we have I = Σ2

0 +

Σ
2
1 = diag(λ21, . . . , λ

2
m, μ

2
1, . . . , μ

2
s). The proof is completed.

By Properties 1 and 2, we can rewrite the matrixHn×n in this case as

Hn×n =

⎡

⎢
⎢
⎢
⎣

H0 H1

H0 H1
. . .

H1 H0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

U

U
. . .

U

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Σ0 Σ1

Σ0 Σ1

Σ1 Σ0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

V
T

V
T

. . .

V
T

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= UPV T,

(2.13)

where Un×n and V T
n×n are block diagonal with the same 2r × 2r orthogonal matrices U, V

T

comprising the diagonal, respectively, and Pn×n is a permutation matrix. The advantages of
the re-representation of transformHn×n are as follows:

(1) the TERMs factorization of Hn×n directly requires more calculation than U and V ,
because the TERMs factorization ofHn×n directly involves o(n2) operations [5], and
the TERMs factorization of U(V ) involves o((2r)2) operations; in general, U(V ) is
4 by 4 matrices with the case r = 2;

(2) integer multiwavelet transform can map integers to integers in-place and without
allocating auxiliary memory (see Section 2.1).

3. Multiwavelet Integer Transform

Since U, V are two 2r × 2r orthogonal matrices, we suppose that the input data
{x1, x2, . . . , xn} is denoted by {[x1,j

1 , x
1,j
2 , . . . x

1,j
2r ]

T, [x2,j
1 , x

2,j
2 , . . . x

2,j
2r ]

T, . . . , [xL,j1 , x
L,j

2 , . . . x
L,j

2r ]
T},

that is, {X1,j , X2,j , . . . XL,j}, where L is a positive integer, the superscript j denotes the jth
stages of the transform of Xk,j , k = 1, 2, . . . L, and k is the kth sequence of input data. When
{Xk,j}Lk=1 is an initial input data, j equals 0. We can state an algorithm for 4-tap orthogonal
integer multiwavelet transform as follows.

(1) Compute the singular value decomposition of H0, H1, and find U, P =

[Σ0|Σ1]2r×4r , V
T
.

(2) Find the factorization of U, V
T
, such as U = P0V1V2,. . .,VM, V T = P1W1W2,. . .,WM,

respectively.

(3) Combine the data sequence {Xk,j}Lk=1with the matricesWM,. . .W1,P1,P ,VM,. . . V1,P0
by corresponding equations in Section 2.1, sequentially, according to transform
matrix form (upper, lower, and permutation matrix).
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Specially speaking, when j equals M + 1, P is a 2r × 4r matrix, so the ordering of
transform can be carried through

Xk,j+1 =

⎧
⎨

⎩

Σ0X
k,j + Σ1X

k+1,j , k = 1, 2 . . . (L − 1),

Σ0X
k,j + Σ1X

1,j , k = L,
(3.1)

where Xk,j is a 2r × 1 matrix.
The jth stage of the transform is a product of Xk,j and the jth matrix of the matrices

WM, . . .W1, P1, P , VM, . . . V1, P0 from left to right by rounding arithmetic (see Section 2.1).
Since Xk,j is integer valued, Xk,j+1 is also integer valued. After j = M +M + 3 stage of the
transform, each stage of this process can map integers to integers, therefore transform results
of the initial data sequence {Xk,j}Lk=1 are integer valued.

The inverse transform must be the backward running of the forward transformation.

4. Experimental Results

In order to demonstrate the availability of the proposed scheme, DGHM [6] and CL
[7] multiwavelets are used as examples. The preprocessing is given by balancing the
nonbalanced multiwavelet. The way to achieve this is to find the orthogonal matrix R, such
that RTPiR = Pi and RTQiR = Qi [10]. Since R is an orthogonal matrix, the new matrices
H0 = DTH0D and H1 = DTH1D inherit all of the properties of H0 and H1 in Section 2.2,
where D = diag(R,R). We can compute the SVD of matrices H0 and H1, respectively, thus

we will have two matricesU and V
T
.

For the DGHM case, the corresponding matrices in (2.5) are

P0 =

⎡

⎢
⎢
⎢
⎣

3
√
2

10
4
5

−1
20

−3√2
20

⎤

⎥
⎥
⎥
⎦
, P1 =

⎡

⎢
⎢
⎣

0 0

9
20

−3√2
20

⎤

⎥
⎥
⎦,

P2 =

⎡

⎢
⎢
⎢
⎣

3
√
2

10
0

9
20

√
2
2

⎤

⎥
⎥
⎥
⎦
, P3 =

⎡

⎢
⎣

0 0

−1
20

0

⎤

⎥
⎦,

Q0 =

⎡

⎢
⎣

√
3

20
3
√
6

20

0 0

⎤

⎥
⎦, Q1 =

⎡

⎢
⎢
⎢
⎣

−9√3
20

√
6
6

0 −
√
3
3

⎤

⎥
⎥
⎥
⎦
,

Q2 =

⎡

⎢
⎢
⎢
⎣

3
√
3

20
−√6
20

3
√
6

10
−
√
3
5

⎤

⎥
⎥
⎥
⎦
, Q3 =

⎡

⎢
⎢
⎢
⎣

−√3
60

0

−√6
30

0

⎤

⎥
⎥
⎥
⎦
.

(4.1)
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By orthogonal matrix R [11],

R =
1√
6

⎡

⎣
1 − √

2 1 +
√
2

1 +
√
2 −1 +√

2

⎤

⎦, (4.2)

we can find the matricesU, V
T
, and P as follows:

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.0157912 0.1188553 −0.989179 −0.084551
−0.6383476 −0.5786332 −0.121839 0.4927993

0.7295663 −0.6631722 −0.0805546 0.1464466

0.2449407 0.4596299 −0.013821 0.8535535

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

V
T
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0.3445041 −0.8684815 −0.3564502
0 −0.0719555 0.3541483 −0.932417

−0.2841407 −0.8974428 −0.3325729 −0.0570605
0.9587826 −0.2659623 −0.0985599 −0.0169102

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(4.3)

P = [Σ0|Σ1], where Σ0 = diag(1, 1, 1, 0), Σ1 = diag(0, 0, 0, 1), and then compute the TERMs

factorization ofU, V
T
as follows:

U = P0V1V2, . . . , V8

=

⎡

⎢
⎢
⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

−0.5042912 1 0 0

−0.0209632 −0.1149459 1 0

0.1175034 −0.5887366 0.2706307 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0

−0.2704337 1 0 0
0 0 1 0

0 0 −0.1464467 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 −1.3706774 0 0
0 1 0 0

0 0 1 −1.1715728
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
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×

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 −2.1827521 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 −1.8454857 1 0
0 0 0 1

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

1 −0.9089951 −0.1104144 0.2007310
0 1 1.3487059 −0.5166513
0 0 1 0.0161923
0 0 0 1

⎤

⎥
⎥
⎦,

V
T
= P1W1W2, . . . ,W8

=

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
−0.2533664 1 0 0
−0.0209632 −0.3528807 1 0
0.0031685 0.0737051 −0.3098048 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

1 0 0 0
−0.0412174 1 0 0

0 0 1 0
0 0 −0.067583 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 −1.0429893 0 0
0 1 0 0
0 0 1 −1.0724815
0 0 0 1

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 −2.0683494 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 −1.9360232 1 0
0 0 0 1

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

1 −0.2773958 −0.1027969 −0.0176372
0 1 1.4389279 0.4693591
0 0 1 0.3798175
0 0 0 1

⎤

⎥
⎥
⎦.

(4.4)

Likewise, for the CL case, the corresponding matrices in (2.5) are

P0 =

⎡

⎢
⎢
⎢
⎣

10 − 3
√
10

40
5
√
6 − 2

√
15

40
5
√
6 − 3

√
15

40
5 − 3

√
10

40

⎤

⎥
⎥
⎥
⎦
, P1 =

⎡

⎢
⎢
⎢
⎣

30 + 3
√
10

40
5
√
6 − 2

√
15

40

−5
√
6 + 7

√
15

40
15 − 3

√
10

40

⎤

⎥
⎥
⎥
⎦
,
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P2 =

⎡

⎢
⎢
⎢
⎣

30 + 3
√
10

40
−5

√
6 − 2

√
15

40
5
√
6 + 7

√
15

40
15 − 3

√
10

40

⎤

⎥
⎥
⎥
⎦
, P3 =

⎡

⎢
⎢
⎢
⎣

10 − 3
√
10

40
−5

√
6 − 2

√
15

40

−5
√
6 − 3

√
15

40
5 − 3

√
10

40

⎤

⎥
⎥
⎥
⎦
,

Q0 =

⎡

⎢
⎢
⎢
⎣

5
√
6 − 2

√
15

40
−10 − 3

√
10

40

−5 − 3
√
10

40
5
√
6 − 3

√
15

40

⎤

⎥
⎥
⎥
⎦
, Q1 =

⎡

⎢
⎢
⎢
⎣

−5
√
6 − 2

√
15

40
30 + 3

√
10

40
15 − 3

√
10

40
5
√
6 + 7

√
15

40

⎤

⎥
⎥
⎥
⎦
,

Q2 =

⎡

⎢
⎢
⎢
⎣

−5
√
6 − 2

√
15

40
−30 + 3

√
10

40

−15 − 3
√
10

40
5
√
6 + 7

√
15

40

⎤

⎥
⎥
⎥
⎦
, Q3 =

⎡

⎢
⎢
⎢
⎣

5
√
6 − 2

√
15

40
10 − 3

√
10

40
5 − 3

√
10

40
5
√
6 − 3

√
15

40

⎤

⎥
⎥
⎥
⎦
.

(4.5)

By matrix R [11],

R =

√
2
2

[
1 −1
1 1

]

, (4.6)

matricesU, V
T
, and P can be represented as

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−0.7104132 −0.6924131 −0.0902343 0.087948

0.087948 −0.0902343 −0.6924132 −0.7104133
0.0902343 0.087948 −0.7104132 0.6924132

0.6924132 −0.7104133 0.087948 0.0902343

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

V
T
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.1132659 0 −0.9935647 0

0 −0.1132659 0 −0.9935648
−0.9935647 −0.0000001 −0.1132659 0.0000001

0.0000001 −0.9935647 0 0.1132659

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(4.7)

P = [Σ0|Σ1], where Σ0 = diag(1, 1, 0, 0), Σ1 = diag(0, 0, 1, 1), and then compute the TERMs

factorization ofU, V
T
as follows:

U = P0V1V2 · · ·V8

=

⎡

⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
−3.3822942 1 0 0
−0.1270166 0 1 0
−0.4296076 0.1270166 −1.4329687 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤

⎥
⎥
⎦
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×

⎡

⎢
⎢
⎣

1 0 0 0
−1.7104132 1 0 0

0 0 1 0
0 0 −1.7104132 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1.4076315 0 0
0 1 0 0
0 0 1 1.4076314
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0.0161332 1 0
0 0 0 1

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 −0.015877 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0.9746625 0.1270166 −0.1237984
0 1 −1.0161332 0.8633704
0 0 1 −0.9746627
0 0 0 1

⎤

⎥
⎥
⎦,

V
T
= P1W1W2, . . . ,W8

=

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
−2.0064769 1 0 0
−0.1139995 0 1 0
−0.2287374 0.1139995 −2.0064769 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

1 0 0 0
−1.9935647 1 0 0

0 0 1 0
0 0 −1.9935648 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1.006477 0 0
0 1 0 0
0 0 1 1.0064769
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

×

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 −0.0128291 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0.1139995 0
0 1 −1.012996 −0.1139994
0 0 1 −0.0000001
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0.0129958 1 0
0 0 0 1

⎤

⎥
⎥
⎦.

(4.8)

In order to test the effectiveness of the proposed scheme, the effectiveness for lossless
compression is measured using the weighted entropy given by [1]. For comparison, we will
focus on 4-tap multiwavelets, such as CL, DGHM, and two scalar wavelets: the Daubechies
four-tap orthogonal wavelet D4 and the Daubechies biorthogonal wavelet 9-7. We use seven
test images, which are 512 × 512 pixels in size, and we decompose each image one level with
each transform. The weighted entropies are tabulated in Table 1.

These results suggest that our method outperforms the method of [4], because the
method of [4] enlarges the dynamic range of the output data by scaling value α. It is also
worth noting that the performance of CL is very close to that of 9-7. Since preprocessing of
the input data is a crucial point in nonbalanced multiwavelet applications [8], we used order-
one balanced multiwavelets by balancing the nonbalanced multiwavelet [10]. The focus of
this paper is to develop an algorithm of integer multiwavelet transform rather than construct
several balanced multiwavelets by orthogonal matrix R, and then a further improvement in
the balanced order is needed.
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Table 1: Weighted entropies of transformed images.

Lena Boat Baboon Man Couple Plane Peppers
DGHM 5.2228 5.3093 6.4926 5.7900 5.6304 4.9220 5.4094
CL 5.1822 5.2550 6.4581 5.7415 5.6082 4.8689 5.3871
DGHM [4] 8.0183 7.8442 8.3686 8.2470 8.0604 7.4840 8.1571
D4 [1] 5.7388 5.7754 6.8012 6.2416 6.0685 5.4416 5.8374
9-7 [1] 5.0731 5.1545 6.3975 5.6822 5.5098 4.7099 5.3542

5. Conclusions

This paper presented a novel algorithm for orthogonal 4-tap integer multiwavelet transforms.
Unlike the existing algorithm, transform matrix can be rewritten in a product of two block
diagonal matrices and a permutation matrix, and then we factorize block matrix of block
diagonal matrices into TERMs, which is lower than the TERMs factorization ofHn×n directly
in computational cost. In addition, the proposed algorithm computes in-place and without
allocating auxiliary memory. Better results could perhaps be achieved with higher balanced
order and also with other multiwavelet bases.
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