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Mathematical model in oil extraction by gas-lift method for the case when the reciprocal value of
well’s depth represents a small parameter is considered. Problem of optimal mode construction
(i.e., construction of optimal program trajectories and controls) is reduced to the linear-quadratic
optimal control problem with a small parameter. Analytic formulae for determining the solutions
at the first-order approximation with respect to the small parameter are obtained. Comparison
of the obtained results with known ones on a specific example is provided, which makes it, in
particular, possible to use obtained results in realizations of oil extraction problems by gas-lift
method.

1. Introduction

It is known [1–3] that the gas-lift technique of exploitation of oil wells is widely used when
the gushing method does not work for the reason of insufficiency in pressure. The essence of
the gas-lift method consists of the fact that by the mean of energy of injected underground
gas it is possible to lift fluid to the surface.

While the gas-lift method is widely used in oil extraction for a sufficiently long
period of time, construction of an adequate mathematical model is rather an actual problem.
Mathematical model describing the oil lifting process in pump-compressor tubes is described
in [4].

In [4, 5], using this model, an optimal control problem for gas-lift process is
formulated, where the pressure and volume of the injected gas is used as a control parameter.
In the same papers, the method of straight lines is used to reduce the optimal control problem
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to the linear-quadratic optimal control problem (LQOCP). It should be noted that, when the
depth of a well is large, in order to obtain sufficiently accurate results it is necessary to divide
this distance into large number of relatively small segments. The latter, in its turn increases
the dimensions of the system and, consequently, results in higher volume of computations
to solve such problems. Thus, generally speaking, solution of these problems yields higher
approximation and calculation errors.

Therefore, it seems quite rational to develop other solution methods with lower
computational complicatedness [6–8]. One of the methods applicable to the considered
problem for the case when the reciprocal value of well’s depth represents a small parameter
is the asymptotic method described in [9].

In the present paper, using the method of straight lines, the mathematical model of
the gas-lift process is represented as a system of partial differential equations of hyperbolic
type. In a particular case, we arrive to LQOCP for a system of ordinary differential equations
containing a small parameter. Applying the algorithm introduced in [10, 11], the solution
to LQOCP is obtained as a function of the small parameter. Consequently, as in [6, 9],
at the first approximation, analytic formulas for the volume of injected gas (control) and
production level (trajectories) are obtained. As it supposed, the presented approach will
reduce substantially the amount of required computations.

2. Mathematical Formulation of the Problem

As in [4], mathematical model of gas-fluid mixture flow in pipes is described by the system
of hyperbolic-type partial differential equations:

∂P

∂t
= −c

2

F

∂Q

∂x

∂Q

∂t
= −F ∂P

∂x
− 2aQ

t ≥ 0, x ∈ [0, 2L], (2.1)

which for x = z/2L and ε = 1/2L can be written as

∂P

∂t
= −c

2

F

∂Q

∂z
ε

∂Q

∂t
= −F ∂P

∂z
ε − 2aQ

, z ∈ (0, 1), (2.2)

with appropriate boundary and initial conditions

P(z, 0) = P 0(z), Q(z, 0) = Q0(z), P(0, t) = P0(t), Q(0, t) = Q0(t),

P(L + 0, t) = P(L − 0, t) + Ppl(t), Q(L + 0, t) = Q(L − 0, t) +Qpl(t).
(2.3)
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It is required to determine a control

U(t) = [P0(t), Q0(t)]′ (2.4)

minimizing the functional

J =
1
2
α(Q(2L, T) −Qdeb)2 +

1
2

∫T

0
U′(t)RU(t)dt, (2.5)

where P is pressure, Q is gas-fluid mixture volume and Qdebis the desired yield.
Applying the so-called method of straight lines to (2.2) and taking l = 1/N, we obtain

dPk
dt

= − c
2ε

F · l (Qk −Qk−1),

dQk

dt
= −Fε

l
(Pk − Pk−1) − 2aQk.

(2.6)

Note that for k =N + 1 (2.6) can be written as

ṖN+1 = −
c2

2ε

F2l
QN+1 +

c2
2ε

F2l
QN +

c2ε

F2l
Qpl,

Q̇N+1 = −F2ε

l
PN+1 +

F2ε

l
PN − 2a2QN+1 +

F2ε

l
Ppl,

(2.7)

where Qpl , Ppl denote gas-fluid outlay (yield) and pressure at the bottom of a well,
respectively. As in [10], a linear-quadratic optimal control problem is formulated for this
system. It is required to find x, u satisfying the equation

ẋ = (A0 +A1ε)x + Bεu + Cε (2.8)

with initial condition

x(0) = x0 (2.9)

such that the value of the functional

J =
1
2
(x(T) − x)′K(x(T) − x) + 1

2

∫T

0
u′Rudt (2.10)

is minimized.
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Here,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0

A12 A11 0 0 · · · 0 0 0 0 · · · 0 0 0 0

0 A12 A11 0 · · · 0 0 0 0 · · · 0 0 0 0

0 0 A12 A11 · · · 0 0 0 0 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · A11 0 0 0 · · · 0 0 0 0

0 0 0 0 · · · A12 A11 0 0 · · · 0 0 0 0

0 0 0 0 · · · 0 A21 A22 0 · · · 0 0 0 0

0 0 0 0 · · · 0 0 A21 A22 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 0 0 0 · · · A22 0 0 0

0 0 0 0 · · · 0 0 0 0 · · · A21 A22 0 0

0 0 0 0 · · · 0 0 0 0 · · · 0 A21 A22 0

0 0 0 0 · · · 0 0 0 0 · · · 0 0 A21 A22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0

0 −2a1 0 0 · · · 0 0 0 0 · · · 0 0 0 0

0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0

0 0 0 0 · · · 0 −2a1 0 0 · · · 0 0 0 0

0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0

0 0 0 0 · · · 0 0 0 −2a2 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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⎤
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l
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l
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x = [P1, Q1, P2, Q2, . . . , PN,QN, . . . , P2N,Q2N]′,
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[
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1 , Q
0
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0
2 , Q

0
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0
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0
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0
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0
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u =
[
P0

Q0

]
,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
c2

1

F1l
F1

l
0

0 0
· · · · · ·
· · · · · ·
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
· · · · · ·
0 0

0
c2

2

F2l
F2

l
0

0 0
· · · · · ·
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Ppl
Qpl

]
. (2.11)

Let R = Rε. Then the corresponding Euler-Lagrange control problem can be written as

[
ẋ

λ̇

]
=

⎡
⎣A0 +A1ε −εBR

−1
B′

0 −A1
0 −A

1
1ε

⎤
⎦
[
x

λ

]
+

[
Cε

0

]
, (2.12)

x(0) = x0,

λ(T) =N(x(T) − x).
(2.13)

Thus, initial problem (2.2)–(2.5) is reduced to finding the solution of problem (2.12), where
ε is a small parameter. Therefore, the asymptotic method (see [9]) allowing to expand the
solution of system (2.12) with respect to small parameter ε can be applied.

3. Application of Asymptotic Method

Let us apply the asymptotic method to the Euler-Lagrange equation (2.12) with boundary
conditions for x(0) and λ(T). According to [12],

[
x(T)
λ(T)

]
= e

[
A0+εA1 −εBR

−1
B′

0 −A′0−εA
′
1

]
T
[
x0

λ(0)

]

+

⎡
⎣e

[
A0+εA1 −εBR

−1
B′

0 −A′0−εA
′
1

]
T
−
[
E 0
0 E

]⎤
⎦
[
A0 + εA1 −εBR

−1
B′

0 −A′0 − εA′1

]−1[
Cε
0

]
.

(3.1)

Further, let us expand the expression

e

[
A0+εA1 −εBR

−1
B′

0 −A′0−εA
′
1

]
T
= e

[
A0 0
0 −A′0

]
T+ε

[
A1 −BR

−1
B′

0 −A′1

]
T

(3.2)
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from (3.1) with respect to ε. If we denote

H1
i.e=
[
A0 0
0 −A′0

]
, H2

i.e=

[
A1 −BR

−1
B′

0 −A′1

]
, (3.3)

then according to [12], the expansion of expression (3.2) with respect to ε can be represented
as:

eH1T+εH2T ≈ eH1T + ε
∫1

0
eH1T(1−s)H2Te

H1Tsds (3.4)

Denote the integral in (3.4) by L0. Then it is not difficult to show that matrix L0 is a solution
of the following Sylvester’s equation:

H1L0 − L0H1 = eH1TH2 −H2e
H1T . (3.5)

Therefore, for expression (3.2) we obtain the expansion

eH1T+εH2T ≈ eH1T + εL0. (3.6)

Introducing notations

L0 =
[
L1 L2

L3 L4

]
,

[
A0 + εA1 −εBR

−1
B′

0 −A′0 − εA′1

]−1

=
[
S1 S2

0 S4

]
, (3.7)

expression (3.1) can be simplified to

[
x(T)
λ(T)

]
=
[
eA0Tx(0)
e−A

′
0Tλ(0)

]
+ ε

[
L1x(0) + L2λ(0) + eA0TS1C − S1C

L3x(0) + L4λ(0)

]
. (3.8)

Hence, adding boundary conditions from (2.12), we arrive to the following system of
algebraic equations:

x(T) − εL2λ(0) = eA0Tx(0) + ε
(
eA0TS1C − S1C + L1x(0)

)
,

λ(T) −
(
e−A

′
0T + εL4

)
λ(0) = εL3x(0),

λ(T) −Nx(T) = −Nx

(3.9)

which in the matrix form can be written as

⎡
⎣E −εL2 0

0 −e−A′0T − εL4 E
N 0 −E

⎤
⎦
⎡
⎣x(T)λ(0)
λ(T)

⎤
⎦ =

⎡
⎣e

A0Tx0 + ε
(
eA0TS1C − S1C + L1x0

)
εL3x0

Nx

⎤
⎦. (3.10)
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Multiplying (3.10) by
[
E 0 0
0 E E
0 0 E

]
on the left, we obtain

⎡
⎣E −εL2 0
N −e−A′0T − εL4 0
N 0 −E

⎤
⎦
⎡
⎣x(T)λ(0)
λ(T)

⎤
⎦ =

⎡
⎣e

A0Tx0 + ε
(
eA0TS1C − S1C + L1x0

)
Nx + εL3x0

Nx

⎤
⎦. (3.11)

Hence, if we denote the coefficient matrix in (3.11) by M, then it can be written as

M =

⎡
⎣E −εL2 0
N −e−A′0T − εL4 0
N 0 −E

⎤
⎦ =

[
K(ε) 0
K1 −E

]
, (3.12)

where

K(ε) =
[
E −εL2

N −e−A′0T − εL4

]
, K1 =

[
N 0

]
. (3.13)

It is not difficult to show that

[
K(ε) 0
K1 −E

]−1

=
[
K−1(ε) 0
K1K

−1(ε) −E

]
. (3.14)

Hence, using the fact that

K−1(ε) ≈ K−1(0) −K−1(0)K̇(0)K−1(0)ε (3.15)

we obtain the inverse matrix

M−1 ≈

⎡
⎢⎣

E + L2e
A′0TNε −L2e

A′0Tε 0
eA

′
0TN − eA′0TL4e

A′0TNε + eA
′
0TNL2e

A′0TNε eA
′
0T − eA′0TNL2e

A′0Tε + eA
′
0TL4ε 0

N +NL2e
A′0TNε −NL2e

A′0Tε −E

⎤
⎥⎦

(3.16)

and, consequently, multiplying the both sides of (3.11) by M−1 on the left, we obtain the
following analytic formulae to determine values of x(T) , λ(0) , λ(T):

⎡
⎣x(T)λ(0)
λ(T)

⎤
⎦ =

⎡
⎣ eA0Tx0

eA
′
0TNeA0Tx0 + eA

′
0TNx

NeA0Tx0 −Nx

⎤
⎦

+ ε

⎡
⎢⎢⎢⎢⎢⎣

eA0TS1C − S1C + L1x0 + L2e
A′0TNeA0Tx0 − L2e

A′0TNx⎧⎨
⎩
e−A

′
0TNeA0TS1C − eA

′
0TNS1C + eA

′
0TNL1x0 + eA

′
0TL3x0

−eA′0TL4e
A′0TNeA0Tx0 + eA

′
0TNL2e

A′0TNeA0Tx0

−eA′0TNL2e
A′0TNx + eA

′
0TL4e

A′0TNx

⎫⎬
⎭

NL2e
A′0TNeA0Tx0 −NL2e

A′0TNx +NL1x0 +NeA0TS1C −NS1C

⎤
⎥⎥⎥⎥⎥⎦
.

(3.17)
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Figure 1: Dependence of P1 on t.
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Figure 2: Dependence of P2 on t.

Further, as in (3.1), using determined in (3.17) value λ(0), it is possible to find x(ti), λ(ti) in
the form

[
x(ti)
λ(ti)

]
= e

[
A0+εA1 −εBR

−1
B′

0 −A′0−εA
′
1

]
ti
[
x0

λ(0)

]

+

⎡
⎣e

[
A0+εA1 −εBR

−1
B′

0 −A′0−εA
′
1

]
−
[
E 0
0 E

]⎤
⎦
[
A0 + εA1 −εBR

−1
B′

0 −A0 − εA1

]−1[
Cε
0

] (3.18)

for every ti ∈ [0 T].



Mathematical Problems in Engineering 9

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Q
1m

0 0.005 0.01 0.015 0.02 0.025

t

(a)

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Q
1i

0 0.005 0.01 0.015 0.02 0.025

t

(b)

Figure 3: Dependence of Q1 on t.
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Figure 4: Dependence of Q2 on t.

Therefore, expansions for x(ti) and u(ti) with respect to ε can be obtained in the form

x(ti) = eA0ti + ε
(
eA0tiS1C − S1C + L11x0 − L22e

A′0tiNeA0tix0 + L22e
A′0tiNx

)
,

λ(ti) = −NeA0Tx0 +Nx

+ ε
(
NL22e

A′0tiNeA0tix0 −NL22e
A′0tiNx −NL11x0 −NeA0tiS1C −NS1C

)
,

u(ti) = −R−1B′λ(ti).

(3.19)

Here L11, L22 are block matrices of matrix-solutions Li of Sylvester’s equation [12, 13]

H1Li − LiH1 = eH1tiH2 −H2e
H1ti (3.20)

for every ti.
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4. Computational Experiments

On the basis of the obtained formulae, we have developed an algorithm and computer
program using MATLAB system. In [5] an algorithm for solving problem (2.8)–(2.10) for the
case when C = 0, N = 2 is developed. It is clear that for N > 2 the algorithm will yield more
accurate solutions. However, for computational comparison of the asymptotic method with
the method described in [5], authors have considered only the case when C = 0, N = 2. It is
possible to prove that in this case Sylvester’s equation has infinitely many solutions. While
using a special program in MATLAB one particular solution is determined.

In Figures 1, 2, 3, and 4 the graphs of the functions P1, Q1, P2 and Q2 for both
algorithms are given. Namely, the graphs for the functions obtained using the algorithm
introduced in [5, 14, 15] are shown in solid lines and by the algorithm elaborated using the
asymptotic method are given in dashed lines. A comparative analysis shows that the results
for the functions P1, Q1, P2, and Q2 for both algorithms coincide with a sufficiently high
accuracy.
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