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We use a generalized Cole-Hopf transformation to obtain a condition that allows us to find exact
solutions for several forms of the general seventh-order KdV equation (KdV7). A remarkable fact
is that this condition is satisfied by three well-known particular cases of the KdV7. We also show
some solutions in these cases. In the particular case of the seventh-order Kaup-Kupershmidt KdV
equation we obtain other solutions by some ansatzes different from the Cole-Hopf transformation.

1. Introduction

During the last years scientists have seen a great interest in the investigation of nonlinear
processes. The reason for this is that they appear in various branches of natural sciences
and particularly in almost all branches of physics: fluid dynamics, plasma physics, field
theory, nonlinear optics, and condensed matter physics. In this sense, the study of nonlinear
partial differential equations NLPDEs and their solutions has great relevance today. Some
analytical methods such as Hirota method [1] and scattering inverse method [2] have
been used to solve some NLPDEs. However, the use of these analytical methods is not
an easy task. Therefore, several computational methods have been implemented to obtain
exact solutions for these models. It is clear that the knowledge of closed-form solutions of
(NLPDEs) facilitates the testing of numerical solvers, helps physicists to better understand
the mechanism that governs the physic models, provides knowledge of the physic problem,
provides possible applications, and aids mathematicians in the stability analysis of solutions.
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The following are some of the most important computational methods used to obtain exact
solutions to NLPDEs: the tanh method [3], the generalized tanh method [4, 5], the extended
tanh method [6, 7], the improved tanh-coth method [8, 9], and the Exp-function method
[10, 11]. Practically, there is no unified method that could be used to handle all types of
nonlinear problems. All previous computational methods are based on the reduction of the
original equation to equations in fewer dependent or independent variables. The main idea
is to find such variables and, by passing to them, to obtain simpler equations. In particular,
finding exact solutions of some partial differential equations in two independent variables
may be reduced to the problem of finding solutions of an appropriate ordinary differential
equation (or a system of ordinary differential equations). Naturally, the ordinary differential
equation thus obtained does not give all solutions of the original partial differential equation,
but provides a class of solutions with some specific properties.

The simplest classes of exact solutions to a given partial differential equation are those
obtained from a traveling-wave transformation.

The general seventh-order Korteweg de Vries equation (KdV7) [12] reads

3

U + au’u, + buf’c F CUU Uy + AUP Uy + €U U, + Sfuxtyy + guisy, + Uz =0, (1.1)

which has been introduced by Pomeau et al. [13] for discussing the structural stability
of standard Korteweg de Vries equation (KdV) under a singular perturbation. Some well-
known particular cases of (1.1) are the following:

(i) seventh-order Sawada-Kotera-Ito equation [12, 14-16] (a = 252, b = 63, ¢ = 378,
d=126,e=63, f =42, g =21):

Uy + 252051, + 631 + 378Uttty + 126U 1ty + 631Un sy + 42Uy tiyy + 21utis, + Uz, = 0,
(1.2)

(ii) seventh-order Lax equation [12, 17] (a =140,b=70,¢c =280,d =70,e =70, f =42,
g =14):

wy + 140tP 1, + 70U3 + 280Uttty + 70U Uy + 70U Uz, + 42Uy 1ty + 14Utz + 7, = 0,
(1.3)

(iii) seventh-order Kaup-Kupershmidt equation [12, 18] (a = 2016, b = 630, ¢ = 2268,
d=504,e =252, f =147, g = 42):

1y + 20161%u, + 63013 + 2268Utty 1y, + 504U Uy + 25200, Uz, + 147Uy 11y + 42utts, + 117, = 0.
(1.4)

Exact solutions for several forms of (1.1) have been obtained by other authors using
the Hirota method [19], the tanh-coth method [19], and He's variational iteration method
[20]. However, the principal objective of this work consists on presenting a condition over
the coefficients of (1.1) to obtain new exact traveling-wave solutions different from those in
[19, 20] by using a Cole-Hopf transformation. We show that some of the previous models
(1.2)—(1.4) satisfy this condition, and therefore in these cases we obtain new exact solutions
for them.



Mathematical Problems in Engineering 3

This paper is organized as follow: In Section 2, we make use of a Cole-Hopf
transformation to derive a condition over the coefficients of (1.1) for the existence of
traveling-wave solutions. In Section 3 we present new exact solutions for several forms of
(1.1) which satisfy the condition given in Section 2. In Section 4, new exact solutions to (1.4)
are obtained using other anzatzes. Finally, some conclusions are given.

2. Using the Cole-Hopf Transformation

The main purpose of this section consists on establishing a polynomial equation involving
the coefficients a, b, ¢, d, e, f, and g of (1.1) that allows us to find traveling wave solutions
(soliton and periodic solutions) using a special Cole-Hopf transformation. To this end, we
seek solutions to (1.1) in the form u = u(x, t) = u(¢), where

¢=kx+wt+6,k,w, withk+#0, w#0, 6 = const. (2.1)

From (1.1) and (2.1) we obtain the following seventh-order nonlinear ordinary
differential equation:

b3 (i (8))° +dkPu? ()u" (§) +ek®u (§)u" (&) +u' () (w + aku’ (§) + ckPu(@)u’ () + FKu'® ()

+gku(@)u® (@) + ku” (&) = 0.
(2.2)

With the aim to find exact solutions to (2.2) we use the following Cole-Hopf transformation
[21, 22]:

d?

=A—

u(@) = Ay

In(1+exp(¢)) + B, (2.3)
where A#0 and B are arbitrary real constants.

Substituting (2.3) into (2.2), we obtain a polynomial equation in the variable { =
exp(¢). Equating the coefficients of the different powers of ¢ to zero, the following algebraic
system is obtained:

aB’k + B*dk® + Bgk® + kK’ + w =0, (2.4)
3aAB%*k + 6aB’k + AcBk® + 2ABdK® + Aek’® + Afk® + Agk® — 6B*dk® — 54Bgk®

246K + 6w = 0, (2
3aA’Bk + 12aAB*k + 15aB°k + A%bk® + A%ck® + A%ck® - 2AcBk® — 16 ABdK® 06

—-26Afk> - 56Agk> — 14Aek’ — 33B*dk® + 135Bgk” + 4047k” + 15w = 0,
aA%k + 6aA’Bk + 18aAB%k + 20aB%k — 2A%bk® — 4A%ck® - 10A%dk® — 6 AcBK®

—36ABdk® + 66 Afk® + 246 Agk® + 42 Aek® — 52B*dk> + 380Bgk’ — 11572k’ + 20w = 0.
(2.7)
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From equations (2.4) and (2.5), we obtain
w = —<a133k + B2dk® + Bgk® + k7), (2.8)

—6w + 246k” — 6B%ak + 54Bgk® + 6B%*dk3

= . 29
ke + fk5 + gk® + 3B%ak + Bck3 + 2Bdk3 @9)

Now, we substitute expression for w in (2.8) into (2.6) and (2.7) and solve them for b
and e to obtain

b= b <aA3 +15aA%B + 54aAB? — A%ck? - 7A%dk? — 12ABck?
A%k (2.10)

-84ABdk? - 12Afk* + 78 Agk* - 216B*dk? + 720Bgk* + 5o4k6>,

=- 142k4 (aA®+12aAB + 42a AB? - 24%ck? - 8A%dK* - 10ABck®
(2.11)

~68ABdk* + 14Afk* + 134Agk* — 168B*dk® + 600Bgk* — 3528k6).

Substitution of (2.10) and (2.11) into (2.9) gives

A(A +12B)(aA? - 2Ack? - 8Adk? + 120gk*)

aA® + 12aA2B - 2A2ck? — 8A2dk? — 24ABck? — 96 ABdK? + 120Agk* — 168B2dk” + 600Bgk* — 3528k6 0
(2.12)
From this last equation we obtain, in particular,
A=-12B, (2.13)
or
k2
A= ;<c+4d:|:\/(c+4d)2—120ag>. (2.14)
These last two expressions are valid for
B?d + 5Bgk* + 21k* #0. (2.15)
Suppose that A = —12B. Substituting this expression into (2.10) and (2.11) gives
b o -216aB® - 216B*dk? + 144Bfk* — 216Bgk* + 504k® (2.16)
- 144B2k2 ' '
—504aB® — 168B*ck?* — 504B*dk* - 168B fk* — 1008 Bgk* — 3528k® (2.17)
e= . :

168Bk*
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Eliminating B, k, and w from (2.8), (2.16), and (2.17), we obtain the following polynomial
equation in the variables a, b, ¢, d, e, f and g:

282244 + P(b,c,d,e, f,g)a+Q(b,c,d,e, f,g) =0, (2.18)

where

P(b,c,d,e, f,g) =3(56b(e+19f —21g) —28c(3e —7f +33¢)
He+3(f +2)) (e —5F +158) (e +3(f + 2)) ~336d)),
Q(b,c,d,e, f,g) = (2b + ¢)(252b* - 2b(42c +504d — (e + f + 6g) (e = 5f + 15g)) + 7c?
+¢(168d - (2f -3g)(e - 5f +15g))

+3d(336d - (e -5f +159) (e +3(f + g))))-
(2.19)

We will call (2.18) the first discriminant equation. It is remarkable the fact that (1.2), (1.3),
and (1.4) satisfy this equation. All seventh order equations that satisfy the first discriminant
equation (2.18) may be solved exactly by means of the Cole-Hopf transformation (2.3).

Now, suppose that A # —12B. Since A #0, then (2.14) holds. Reasoning in a similar way,
from (2.14) we obtain the following second polynomial equation in terms of the coefficients
of (1.1), which we shall call the second discriminant equation for (1.1) associated to Cole-Hopf
transformation (2.3):

1764042 + P(b,c,d, e, f,g)a+Q(b,c,d,e, f,g) =0, (2.20)
where

P(b,c,d,e, f,g) = -3(280bg + 14c(3e + 5(f + 6g)) + 56d(3e + 5(f +3g))

~g(3e+5(f +29))°), (2.21)

Qb,c,de, f,g) = (b+c+d) <10g2(b ~3d) - g(c +4d)(3e +5f) + 14(c + 4d)2>.

Direct calculations show that (1.2) and (1.3) satisfy not only the first discriminant
equation (2.18), but also the second one. However, (1.4) does not satisfy the second
discriminant equation (2.20). All seventh-order equations that satisfy (2.20) can be solved
exactly by using the Cole-Hopf transformation (2.3).
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3. Solutions to the KdV7

Suppose that A = —12B. Then (1.1) satisfies (2.18). In this case, we obtain the following

solution to (1.1):
A 5/ 1
up(x, t) = T (1 — 3sech <§§>>,

Poi(nt) =kt w6, we=—— <—aA3 +12A2dKk? - 144Agk* + 1728k6>,

1728 (3.1)
_ 1 3 2 912 4 4 6
b= m(—aA +12A4%dK7 + 96 AfK' ~ 144Agk" — 4032K°),
- 1 3 2 12 2 412 4 4 6
e =~ o (a4’ —4A%K* —12A%dK° + 48 Af k' + 288 Agh* ~12096K°).
So that, from u; we can obtain explicit solutions to (1.2), (1.3), and (1.4). They are
(i) Sawada-Kotera-Ito equation (1.2):
2 1.7
A:zk, w=6k’ (32)
_ L, 1., 21 1.7
u(x,t) = 6k +2k sech <2kx+12kt+6 , (3.3)
(ii) Lax equation (1.3):
A =2k w= K
4 27 4
1, 1 1 1 G4
% R ) 21 Ao
u(x,t) = 6k + 2k sech <2kx+ 54k t+6>,
(iii) Kaup-Kupershmidt equation (1.4):
1. 1.7
= = 3.5
A 2k , w 48k , (35)
_ T, T, o1 1.7
u(x,t) = 24k +8k sech <2kx+96kt+5 . (3.6)

Figure 1 shows the graph of (3.6) fork =19,6=-1,-3<x<3and0<t<3.
It may be verified that condition (2.15) holds when A is given by either (3.2) or (3.5)
since k #0.
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Figure 1: Graph of solution given by (3.6).

Now, let us assume that A # —12B. In this case, A is given by (2.14). Then (1.1) satisfies
(2.20). We obtain the following solution to (1.1):

2

(c +4d + \/(c + 401)2 - 120ag> sech? <%§> + B,

uZ(x/ t) = E

E=e(xt)=kx+wt+6, w= -(aB3k + B2dk® + Bgk® + k7),

— 1 2 2 2 2 4 2 2
b= (6k*(d(A? +124B + 72B?) +2AK* (2f -3g) ~ 168k* ) ~aA( A? + 18AB + 108B?) ),
= <—aAB(A +6B) + 4Bdk*(A + 6B) - 2AK* (f + g) + 504k6>.

(3.7)
So that, from u, we can obtain explicit solutions to (1.2) and (1.3). The first is
(i) Sawada-Kotera-Ito equation (1.2):
A =2k?, w = —252B%k — 126B*k® - 21Bk® - k7,
(3.8)

u(x,t) = %kzsech2 <%(kx + wt + 6)) + B,

where

B# —%, B# - —. (3.9)
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Restriction (1.2) guarantees condition (2.15). However, when B = —k?/2, we obtain
following solution to (1.2):

A =2k?, w = gkﬁ

, . 19 (3.10)

) 21 1.7

u(x,t) = 2k tanh <2<kx+ > k t+6>>,
and when B = —k?/3, another solution is given by
A =2k?, w = Z—;k7,
2o . . (3.11)
e t) = -7+ Ekzsechz<E (kx + 5k7t + 5>>,
(ii) The second solution is Lax equation (1.3)
A=2k*,  w=-140B°k - 70B*k® - 14Bk> - K/,

(3.12)

u(x,t) = %kzsech2 <%(kx + wt + 6)> + B,
for any real number B.

4. Other Exact Solutions to the Seventh-Order
Kaup-Kupershmidt Equation

As we remarked in the previous section, the seventh-order Kaup-Kupershmidt equation (1.4)
does not satisfy the second discriminant equation (2.20). However, we can use other methods
to obtain exact solutions different from those we already obtained, for instance,

(i) an exp rational ansatz:

b

+1+pexp(§)+qexp(—§)' ¢=kx+wt+6, (4.1)

u(g) =a

(ii) the tanh-coth ansatz [23]:

u(&) = p + atanh(&) + beoth(g) + c tanh®(&) + deoth® (&), & = kx + wt + 5, (4.2)

where a, b, ¢, d, k, p, q, k, w, and 6 are constants.
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4.1. Solutions by the exp Ansatz

From (1.4) and (4.1) we obtain a polynomial equation in the variable ¢ = exp(¢). Solving it,
we get the solution

1 gk?
t) = -k . (43
) = = ok ek (1/88)K1 5 0) T afexp(—(kr = (/) t 7o) v g7 )
From (4.3) the following solutions are obtained:
- e le 2(1( Ly >> _1
u(x,t) = 24k +8k sech 5 kx+48kt+6 ;9= 5- (4.4)

Observe that solutions given by (3.6) and (4.4) coincide. Consider

Lt 1 2(1( 17 >> -1
u(x,t) = 24:k 8kcsch 5 kx+48kt+5 , q=-z,
1o 1 V-1
1“1 sin(kx - (1/88)k7t+6) 1772

1. 1 _ V-1
1" Tysin(kx— (1/88)kt+6) 17772

u(x,t)=ik2— k— kvl 6 — 6v1,

, k— k-1, 6 — 6v-1.
(4.5)

u(x,t) = ikz -

4.2, Solutions by the tanh - coth Ansatz

We change the tanh and coth functions to their exponential form and then we substitute
(4.2) into (1.4). We obtain a polynomial equation in the variable { = exp(¢). Equating the
coefficients of the different powers of ¢ to zero results in an algebraic system in the variables
a,b,c d, p, k, and w. Solving it with the aid of a computer, we obtain the following solutions
of (1.4).

(i) a=0,b=0,¢c=0,d=—-(1/2)k? p=(1/3)k? w = (4/3)k”:
_Lo 1o o 4 6>>
u(x,t) = 3k 2k coth <k<x+ 3k t)).

u(x,t) = —%kz - %kzcot2 <k<x - §k6t>>.

(4.6)

(ii)a=0,b=0, c=-(1/2)k%, d=0, p=(1/3)k?, w = (4/3)k:

u(x, t) = %kz - %k2tanh2<k<x + §k6t>>. (4.7)
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Figure 2: Graph of solution (4.7).

Figure 2 shows the graph of uz(x,t) for k = -0.68, =7 < x <10,and 0 <t < 16.
Lo 1, 2( < 4.6 ))
=—zk"- 2 -= . 4.
u(x,t) 3k 2k tan“( k( x 3k t (4.8)

Figure 3 shows the graph of uy(x,t) for k=118, -3<x<2,and 0<t <2
(iii) a=0, b=0, c=—(1/2)k? d=-(1/2)k? p=(1/3)k? w = (256/3)k’:

2 2 2
u(x, t) = % - %cothz <k<x + %k(’t)) - %tanhz (k (x + Zg—()kﬁt)),

2 2 2
u(x, t) = —% - k?cotz <k<x - 2§—6k6t>> - %tanz <k<x - 2§—6k6t>>.

(4.9)

4.3. Other Exact Solutions

We may employ other methods to find exact solutions to the seventh-order Kaup-
Kupershmidt equation. Thus, a solution to (1.4) of the form

d2

- A—

u@) = Ay

log(s+exp(é) +exp(28)) +B, ¢=kx+wt+6 (4.10)
is

_ —k?s%(16s — 1)+ 2k?s(8s — 5)e* + k* (1605 ~62s + 1)e* + 2k*(8s — 5)e* — k*(16s — 1)e*

u( 2452(4s — 1) +48s(4s — 1)t +24(25 + 1)(4s — 1)e2 + 48(4s — 1)e3 + 24(4s — 1)e* ~
409653 + 96052 + 2645 — 1 1 k?(16s - 1)
=¢(x,t) =kx+wt+6, = k', A=-k* B=-——"—2
s ebeh B(as 1) 2 2a(ds 1)

(4.11)
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Figure 3: Graph of solution (4.8).

In particular, taking s = +1, we get

k?(4 cosh(kx + (197/48)k7t + 6) — 10 cosh (2(kx + (197/48)k”t + 6)) + 33)
24(2 cosh(kx + (197/48)k7t + 6) + 1)*

k2 (52 sinh (kx + (3401/6000)k”# + &) 34 cosh (2 (kx + (3401/6000)k’t + 6)) — 223)

u(x,t) =

, (4.12)

u(x,t) = 2
120(2 sinh(kx + (3401/6000)k7t + 6) + 1)
(4.13)
Following solution results from (4.12) by replacing k with kv/—1 and 6 with 6v/-1:
k(10 2kx - (197/24)k7t +26) — 4 kx - (197/48)k’t + 6) — 33
i f) = (10 cos(2kx — (197 /24)k”t +26) — 4 cos (kx — ( 2/ )k7t+6) ) (4.14)
24(2 cos(kx — 197k7t/48 + 6) + 1)
The choice s = 1/16 gives
8k?(15sinh(kx — k7t + 6) + 17 cosh(kx — k7t + 6) + 4)
u(x,t) = > (4.15)
(15sinh(kx — k7t + 6) + 17 cosh(kx — k7t + 6) + 16)
Finally, by using the ansatze
+ g cosh(2¢) 7 + scosh(2
u(@) = PHAONC) -y T scoshi2o) (4.16)
(m + sinh(¢)) (m + cosh(¢))
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we obtain

5k?(11 + 5 cos(2kx — 19kt + 26))

u(x,t) = - , 4.17
8<mi55in(kx— (19/2)k7t+6)>2 *17)
5k?(11 - 5cosh(2kx + 19k7t + 26))

u(x, t) = (4.18)

8(@ +5cosh(kx + (19/2)k7t + 5))2'

The correctness of the solutions given in this work may be checked with the aid of either
Mathematica 7.0 or Maple 12. For example, to see that function defined by (4.12) is a solution
to the seventh-order Kaup-Kupershmidt (1.4), we may use Mathematica 7.0 as follows:

In [1]:= kk7 = O, # + 2016 #30, # + 630 (O, #)3 + 2268 # O, # O,, # + 504
#2000 # + 252 Oxx # Oxyx # + 147 Oy # Opyxx # + 42 # Opyyux # +
ax,x,x,x,x,x,x # &;

(%*This defines the differential operator associated with the
seventh-order Kaup-Kupershmidt equation)

7
+6] —10cosh [2<kx+ 191;{ i +6>])

197k%t 2
2414+ 2cosh|kx+ 15 +6

197k%t
kx+

k2 (33 +4cosh

sol = (4.19)

(#This defines the solutionxk)
In [3]:=Simplify [kk7 [TrigToExp [sol]]]

(*Here we apply the differential operator to the solution and then we
make use of the Simplify commands)

Out [3]:=0

5. Conclusions

In this work we have obtained two conditions associated to Cole-Hopf transformation (2.3)
for the existence of exact solutions to the general KdV7. Two cases have been analyzed. The
first one is given by (2.13) and the other by (2.14). The first case leads to first discriminant
equation (2.18) which is satisfied by Sawada-Kotera-Ito equation (1.2), Lax equation (1.3),
and Kaup-Kupershmidt equation (1.4). The second case gives the second discriminant
equation (2.20), which is fulfilled only by (1.2) and (1.3). However, when both conditions
(2.13) and (2.14) hold, we may obtain solutions different from those that result from the two
cases we mentioned. We did not consider this last case. Other works that related the problem
of finding exact solutions of nonlinear PDE’s may be found in [24, 25].
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