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Fractional-order financial system introduced by W.-C. Chen (2008) displays chaotic motions at
order less than 3. In this paper we have extended the nonlinear feedback control in ODE systems
to fractional-order systems, in order to eliminate the chaotic behavior. The results are proved
analytically by applying the Lyapunov linearization method and stability condition for fractional
system. Moreover numerical simulations are shown to verify the effectiveness of the proposed
control scheme.

1. Introduction

Nonlinear chaotic systems have attracted more attention of researchers in various fields
of natural sciences. This is because these systems are rich in dynamics, and possess great
sensitivity to initial conditions. Since the chaotic phenomenon in economics was first found in
1985, great impact has been imposed on the prominent western economics at present, because
the chaotic phenomenon’s occurring in the economic system means that the macroeconomic
operation has in itself the inherent indefiniteness. Although the government can adopt
such macrocontrol measures as the financial policies or the monetary policies to interfere,
the effectiveness of the interference is very limited. The instability and complexity make
the precise economic prediction greatly limited, and the reasonable prediction behavior
has become complicated as well. In the fields of finance, stocks, and social economics,
because of the interaction between nonlinear factors, with all kinds of economic problems
being more and more complicated and with the evolution process from low dimensions to
high dimensions, the diversity and complexity have manifested themselves in the internal
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structure of the system and there exists extremely complicated phenomenon and external
characteristics in such a kind of system. So it has become more and more important to
study the control of the complicated continuous economic system, and stabilize the instable
periodic or stationary solutions, in order to make the precise economic prediction possible
[1, 2].

Great interest has been paid to the application of fractional calculus in physics,
engineering systems, and even financial analysis [3, 4]. The fact that financial variables
possess long memories makes fractional modelling appropriate for dynamic behaviors in
financial systems. Moreover, the control and synchronization of fractional-order dynamic
systems is also performed by various researchers [5–10]. Fractional-order financial system
proposed by Chen in [11] displays many interesting dynamic behaviors, such as fixed points,
periodic motions, and chaotic motions. It has been found that chaos exists in this system with
orders less than 3, period doubling, and intermittency routes to chaos were found. In this
paper, we propose to eliminate the chaotic behaviors from this system, by extending the non-
linear feedback control in ODE systems to fractional-order systems. This paper is organized
as follows. In Section 2, we present the financial system and its fractional version. In Section 3
general approach to feedback control scheme is given, and then we have extended this control
scheme to fractional-order financial system, numerical results are shown. Finally, in Section 4
concluding comments are given.

2. Financial System

2.1. Integer-Order Financial System

Recently, the studies in [1, 2] have reported a dynamic model of finance, composed of
three first-order differential equations. The model describes the time-variation of three state
variables: the interest rate x, the investment demand y, and the price index z. The factors
that influence the changes of x mainly come from two aspects: firstly, it is the contradiction
from the investment market, (the surplus between investment and savings); secondly, it is the
structure adjustment from goods prices. The changing rate of y is in proportion with the rate
of investment, and in proportion by inversion with the cost of investment and the interest
rate. The changes of z, on one hand, are controlled by the contradiction between supply and
demand of the commercial market, and on the other hand, are influenced by the inflation
rate. Here we suppose that the amount of supplies and demands of commercials is constant
in a certain period of time, and that the amount of supplies and demands of commercials is
in proportion by inversion with the prices. However, the changes of the inflation rate can in
fact be represented by the changes of the real interest rate and the inflation rate equals the
nominal interest rate subtracts the real interest rate. The original model has nine independent
parameters to be adjusted, so it needs to be further simplified. Therefore, by choosing the
appropriate coordinate system and setting an appropriate dimension to every state variable,
we can get the following more simplified model with only three most important parameters:

ẋ = z +
(
y − a

)
x,

ẏ = 1 − by − x2,

ż = −x − cz,

(2.1)
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where a ≥ 0 is the saving amount, b ≥ 0 is the cost per investment, and c ≥ 0 is the elasticity
of demand of commercial markets. It is obvious that all three constants, a, b, and c, are
nonnegative, For more detail about the study of the local topological structure and bifurcation
of this system; see [1, 2]. We assume that a is control parameter and b = 0.1, c = 1.

2.1.1. Analysing the System

(i) If a ≥ 9, system (2.1) has one fixed point:

p1 = (0, 10, 0). (2.2)

(ii) If a < 9, system (2.1) has three fixed points:

p1 = (0, 10, 0), p2,3 =

⎛

⎝∓

√
9 − a

10
, a + 1,±

√
9 − a

10

⎞

⎠. (2.3)

To study the stability of equilibrium points we apply the Lyapunov’s first (indirect)
method [12] so we have the following theorem.

Theorem 2.1. Let x = x∗ be an equilibrium point of a nonlinear system:

ẋ = f(x), (2.4)

where f : D → R
n is continuously differentiable and D ⊂ R

n is the neighborhood of the equilibrium
point x∗. Let λi denote the eigenvalues of the Jacobian matrix A = ∂f/∂x|x∗ then the following are
considered.

(i) If Reλi < 0 for all i, then x = x∗ is asymptotically stable.

(ii) If Reλi > 0 for one or more i, then x = x∗ is unstable.

(iii) If Reλi ≤ 0 for all i and at least one Reλj = 0, then x = x∗ may be either stable,
asymptotically stable, or unstable.

Since A is only defined at x∗, stability determined by the indirect method is restricted
to infinitesimal neighborhoods of x∗.

To study the signs of the real parts of eigenvalues, we have the following famous
criterion [13].
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Criterion 1 (Routh-Hurwitz). Given the polynomial P(λ) = λn+a1λ
n−1+ · · ·+an−1λ+an, where

the coefficients ai, i = 1, 2, . . . , n, are real constants, define the n Hurwitz matrices

H1 = (a1),

H2 =
(
a1 1
a3 a2

)

...

Hn =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

,

(2.5)

where ai = 0 if i > n.
All of roots of the polynomial have negative real part if and only if the determinants

of all Hurwitz matrices are positive: detHi > 0, i = 1, 2, . . . , n.

Routh-Hurwitz criteria for n = 3 are a1 > 0, a3 > 0 and a1a2 − a3 > 0.

Stability of p1

The Jacobian matrix of system (2.1) at the equilibrium point p1 is

Jp1 =

⎛

⎜⎜⎜⎜⎜
⎝

10 − a 0 1

0 − 1
10

0

−1 0 −1

⎞

⎟⎟⎟⎟⎟
⎠
, (2.6)

its characteristic polynomial is

P(λ) = λ3 +
(
a − 89

10

)
λ2 +

(
11a − 99

10

)
λ +

(
a − 9

10

)
. (2.7)

By applying the Routh-Hurwitz criterion we find that the real parts of these
eigenvalues are all negative if and only if

a − 89
10

> 0,

a − 9 > 0,
(
a − 89

10

)(
11a − 99

10

)
−
(
a − 9

10

)
> 0.

(2.8)
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Figure 1: (a) Largest Lyapunov exponent according to a. (b) Chaotic attractor for a = 3.

Then it follows that a > 9, and thus p1 is locally asymptotically stable if and only if a > 9.

Stability of p2,3

The Jacobian matrix of system (2.1) at the equilibrium points p2,3 is

Jp2,3 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 ±
√

9 − a
10

1

∓2
√

9 − a
10

−0.1 0

−1 0 −1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.9)

and its characteristic polynomial is

p̃(λ) = λ3 +
1

10
λ2 +

(
−1

5
a +

18
10

)
λ +

(
−1

5
a +

18
10

)
. (2.10)

The real parts of these eigenvalues are all negative if and only if

−1
5
a +

18
10

> 0,

1
10

(
−1

5
a +

18
10

)
−
(
−1

5
a +

18
10

)
> 0.

(2.11)
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Then it follows that

a < 9,

a > 9.
(2.12)

So p2,3 are unstable for every value of a.
In order to detect the chaos we calculate the largest Lyapunov exponent λmax using the

scheme proposed by Wolf et al. [14]. The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2,
Figure 1(a) displays the evolution of λmax according to a and Figure 1(b) displays chaotic
attractor for a = 3. System (2.1) displays chaotic behavior in the windows 0 < a < 7 (λmax > 0),
periodic behavior in 7 ≤ a ≤ 9 (λmax ≈ 0) and stationary behavior for a > 9 (λmax < 0).

2.2. Fractional-Order Financial System

Chen has introduced in [11] the generalization of system (2.1) for fractional incommensurate-
order model which takes the form

Dq1x = z +
(
y − a

)
x,

Dq2y = 1 − by − x2,

Dq3z = −x − cz.

(2.13)

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
order but there are several definitions of fractional derivatives.

In this paper, we use the Caputo-type fractional derivative defined in [15] by:

Dqf(t) =
1

Γ
(
n − q

)
∫ t

0
(t − τ)n−q−1f (n)(τ)dτ

= jn−q
(
dn

dtn
f(t)

)
,

(2.14)

where n = [q] is the value of q rounded up to the nearest integer, Γ is the gamma function
and jα is the Riemann-Liouville integral operator defined by

jαf(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1f(τ)dτ. (2.15)

For the numerical solutions of system (2.13) we use the Adams-Bashforth-Moulton predictor-
corrector scheme [16].

We assume that q (q1 = q2 = q3 = q) is the control parameter, and c = 1, b = 0.1, a = 3.
Fractional system (2.13) has the same fixed points p1,2,3 as integer system (2.1), but for the
stability analysis we have this theorem introduced in [17, 18].
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Theorem 2.2. The fractional linear autonomous system

DαX = AX

X(0) = X0

X ∈ Rn, 0 < α < 2, A ∈ Rn × Rn, (2.16)

is locally asymptotically stable if and only if

min
i

∣
∣arg(λi)

∣
∣ > α

π

2
, i = 1, 2, . . . , n. (2.17)

Proposition 2.3. Let x = x∗ be an equilibrium point of a fractional nonlinear system

Dαx = f(x), 0 < α < 2. (2.18)

If the eigenvalues of the Jacobian matrix A = ∂f/∂x|x∗ satisfy

min
i

∣∣arg(λi)
∣∣ > α

π

2
, i = 1, 2, . . . , n, (2.19)

then the system is locally asymptotically stable at the equilibrium point x∗.

Proof. Let x = x∗ + δx. Substituting in (2.18), we find

Dα(x∗ + δx) = f(x∗ + δx). (2.20)

so

Dα(δx) = f(x∗) +Aδx +©
(
‖δx‖2

)
. (2.21)

Since f(x∗) = 0 (x∗ is the equilibrium point of system (2.18)) and
lim‖δx‖→ 0(©(‖δx‖2)/‖δx‖) = 0, then

Dαδx ≈ Aδx. (2.22)

Taking into account Theorem 2.2, we deduce that If the eigenvalues of the matrix A satisfy

min
i

∣∣arg(λi)
∣∣ > α

π

2
, i = 1, 2, . . . , n, (2.23)

then x∗ is locally asymptotically stable.
This completes the proof.



8 Mathematical Problems in Engineering

Stability of p1

The Jacobian matrix of system (2.13) at the equilibrium point p1 is

Jp1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

7 0 1

0 − 1
10

0

−1 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (2.24)

and its characteristic polynomial is

P(λ) = λ3 − 59
10
λ2 − 66

10
λ − 6

10
. (2.25)

its eigenvalues are λ1 ≈ −0.87298, λ2 = −1/10, λ3 ≈ 6.8730, we note that λ3 is real positive
then | arg(λ3)| = 0 < q(π/2), for all q ∈]0, 2[, so p1 is unstable for all q ∈]0, 2[.

Stability of p2,3

The Jacobian matrix of system (2.13) at the equilibrium point p2,3 is

Jp2,3 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 ±
√

3
5

1

∓2
√

3
5
− 1

10
0

−1 0 −1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.26)

its characteristic polynomial is

p̃(λ) = λ3 +
1
10
λ2 +

6
5
λ +

6
5
, (2.27)

and its eigenvalues are λ1 ≈ 0.31278 + 1.2474i, λ2 ≈ 0.31278 − 1.2474i, and λ3 ≈ −0.72556, we
have

∣∣arg(λ1,2)
∣∣ ≈ 1.3251,

∣∣arg(λ3)
∣∣ = π, (2.28)

so mini| arg(λi)| ≈ 1.3251, then the critical value of q is

qc =
2 mini

∣∣arg(λi)
∣∣

π
≈ 0.8436, (2.29)

(i) If q < 0.8436, then p2,3 are locally asymptotically stable.
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Figure 2: (a) Largest Lyapunov exponent according to q. (b) Phase diagram for some values of q.

(ii) If q > 0.8436, then p2,3 are unstable.

In order to detect the chaos, we calculate the largest Lyapunov exponent λmax.
The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2, Figure 2(a) shows the

evolution of λmax according to q. System (2.13) exhibits chaotic behaviors for q ≥ 0.86.

3. Feedback Control

3.1. Integer Case

A general approach to control a nonlinear dynamical system via feedback control can be
formulated as follows:

ẋ(t) = f(x, u, t), (3.1)

where x(t) is the system state vector, and u(t) the control input vector. Given a reference
signal x̃(t), the problem is to design a controller in the state feedback form:

u(t) = g(x, t), (3.2)
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where g is vector-valued function, so that the controlled system

ẋ(t) = f
(
x, g(x, t), t

)
(3.3)

can be driven by the feedback control g(x, t) to achieve the goal of target tracking so we must
have

lim
t→ tf
‖x(t) − x̃(t)‖ = 0. (3.4)

Proposition 3.1. Let us consider the nonlinear system

ė = F(e, t), (3.5)

where e = x − x̃, x̃(t) is a periodic orbit (or fixed point) of the given system (3.1) with u = 0, and
F(e, t) = f(x, g(x, t), t) − f(x̃, 0, t).

If 0 is a fixed point of system (3.5) and all eigenvalues of the jacobian matrix A = ∂F/∂x|0
have negative real parts then the trajectory x(t) of system (3.3) converge to x̃(t)

Proof. Since x̃(t) is a periodic orbit (or fixed point) of the given system (3.1) with u = 0, so it
satisfies

˙̃x(t) = f(x̃, 0, t), (3.6)

a subtraction of (3.6) from (3.1) gives

ẋ(t) − ˙̃x(t) = f
(
x, g(x, t), t

)
− f(x̃, 0, t), (3.7)

so

ė = F(e, t). (3.8)

Since all eigenvalues of the jacobian matrix A have negative real parts, it follows from
Theorem 2.1 that 0 is asymptotically stable, so we have limt→+∞‖e(t)‖ = 0 then limt→+∞‖x(t)−
x̃(t)‖ = 0, finally x(t) →

t→ tf
x̃(t).

3.2. Fractional Case

Let us consider the fractional system

Dαx(t) = f(x, u, t). (3.9)

We proceed as in the integer case. the controlled system can be written as

Dαx(t) = f
(
x, g(x, t), t

)
. (3.10)
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Figure 3: (a) Stabilizing the equilibrium point p1 for q = 0.9. (b) Evolution of the perturbation u(t).

Let x̃(t) be a periodic orbit (or fixed point) of the given system (3.9) with u = 0, then we
obtain the system error

Dαe(t) = F(e, t) (3.11)

Proposition 3.2. If 0 is a fixed point of system (3.11) and the eigenvalues of the jacobian matrix
A = ∂F/∂x|0 satisfies the condition

min
i

∣∣arg(λi)
∣∣ > α

π

2
, i = 1, 2, . . . , n (3.12)

then the trajectory x(t) of system (3.10) converge to x̃(t).

Proof. It follows directly from Proposition 2.3.
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Figure 4: (a) Stabilizing the equilibrium point p2 for q = 0.95. (b) Stabilizing the equilibrium point p3 for
q = 1.4.

3.3. Application to the Fractional Financial System

Let us consider the fractional financial system (2.13), we propose to stabilize unstable periodic
orbit (or fixed point) (x̃, ỹ, z̃), the controlled system is as follows:

Dq1x = z +
(
y − a

)
x + u1(t),

Dq2y = 1 − by − x2 + u2(t),

Dq3z = −x − cz + u3(t).

(3.13)

Since (x̃, ỹ, z̃) is solution of (2.13), then we have:

Dq1 x̃ = z̃ +
(
ỹ − a

)
x̃,

Dq2 ỹ = 1 − bỹ − x̃2,

Dq3 z̃ = −x̃ − cz̃.

(3.14)
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Figure 5: Selecting an unstable periodic orbit in the chaotic attractor of period T = 9 for q = 0.97.

Subtracting (3.14) from (3.13) with notation, e1 = x − x̃, e2 = y − ỹ, e3 = z − z̃, we obtain the
system error:

Dq1e1 = e3 − ae1 + xy − x̃ỹ + u1(t),

Dq2e2 = −be2 − e1(x + x̃) + u2(t),

Dq3e3 = −e1 − ce3 + u3(t).

(3.15)

We define the control functions as follow:

u1(t) = −
(
xy − x̃ỹ

)
,

u2(t) = e1(x + x̃),

u3(t) = e1.

(3.16)

So the system error (3.15) becomes

Dq1e1 = e3 − ae1,

Dq2e2 = −be2,

Dq3e3 = −ce3.

(3.17)
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Figure 6: Stabilizing unstable periodic orbit of period T = 9 for q = 0.97.

The Jacobian matrix is
[ −a 0 1

0 −b 0
0 0 −c

]
and its characteristic polynomial is:

p(x) = x3 + (a + b + c)x2 + (ab + c(a + b))x + abc (3.18)

so we have the eigenvalues λ1 = −a, λ2 = −b, λ3 = −c. Since all eigenvalues are real negatives
one has arg(λi) = π , therefore | arg(λi)| > q(π/2), for all q satisfies 0 < q < 2, it follows from
Proposition 3.2 that the trajectory x(t) of system (3.13) converges to x̃(t) and the control is
completed.

3.4. Simulation Results

In this section we give numerical results which prove the performance of the proposed
scheme. As mentioned in Section 2.3 we have implemented the improved Adams-Bashforth-
Moulton algorithm for numerical simulation.
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Figure 7: Selecting an unstable periodic orbit in the chaotic attractor of period T = 16.05 for q = 1.1.

The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2.

3.4.1. Stabilizing the Unstable Fixed Points

The control can be started at any time according to our needs, so we choose to activate the
control when t ≥ 20, in order to make a comparison between the behavior before activation
of control and after it.

For q = 0.9 unstable point p1 has been stabilized, as shown in Figure 3(a), note that
u1(t) = −(x(t)y(t) − 0 × 10) = −x(t)y(t), so the control is activated when t ≥ 20 and
|x(t)y(t)| ≤ 0.2 (more precisely t = 22.5) in order to make the perturbation u1(t) smaller.
firstly the evolution of x(t), y(t), z(t) is chaotic, then when the control is started at t = 22.5 we
see that p1 is rapidly stabilized.

In Figure 3(b) we observe the evolution of the perturbation u(t), when the control
is started we see that u2(t) and u3(t) are very small but u1(t) is a bit larger, after that the
perturbation u(t) becomes close to zero rapidly.

For q = 0.95, the unstable point p2 has been stabilized, as shown in Figure 4(a).
For q = 1.4 the fixed point p3 was stabilized, Figure 4(b) shows the results of control.
When t is less than 20, there is a chaotic behavior, but when the control is activated at

t = 20, the two points p2 and p3 are rapidly stabilized.
In the real world of finance if we want to have a good investment demand we can

choose to stabilize p1, and in this case the interest rate and price index will be near zero.
During the recent financial crisis in 2009 many banks decided to reduce interest rates to nearly
zero in order to control this situation.
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Figure 8: Stabilization an unstable periodic orbit of period T = 16.05 for q = 1.1.

3.4.2. Stabilizing Unstable Periodic Orbit

Although the unstable periodic orbits are dense in the chaotic attractor, we can choose one of
them (which represent the performance of the system), by analyzing data experimental, after
that we stabilize it. In this paper the close-return (CR) method [19] is used for the detection
of UPO embedded in the attractor.

For q = 0.97 we choose an unstable periodic orbit with period T = 9, localized in
the interval [78.2, 87.2] as shown in Figure 5, then the control is started at t = 87.2, when
the trajectory x(t) begins to emerge from the unstable orbit, Figure 6 displays the results of
control, if t is less then 78.2 there is chaotic behavior (the error e(t) is large), after the activation
of control, this chaotic behavior is replaced by a periodic behavior and we note that the error
e(t) becomes very close to zero.

For q = 1.1 we choose an unstable periodic orbit with period T = 16.05, localized in the
interval [71.45, 87.5] as shown in Figure 7, the control is started at t = 20, Figure 8 displays the
results of control. Although the control is executing at t = 20, it does not give effect rapidly,
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and the orbit is stabilized at t = 63, when the control is activated the error begins to diminish,
and becomes close to zero after t = 63.

The stabilization of the periodic orbits is very important, because it permits, on the one
hand to make some predictions, and secondly, it is more realistic than the stabilization of the
stationary points in the financial circle, where one cannot generally fix the interest rate and
the investment demand as well as the price index, for a long period.

4. Conclusions

Chaotic phenomenon makes prediction impossible in the financial world; then the deletion
of this phenomenon from fractional financial system is very useful, the main contribution of
this paper is to this end.

Nonlinear feedback control scheme has been extended to control fractional financial
system. The results are proved analytically by applying the Lyapunov linearization method
and stability condition for fractional system. Numerically the unstable fixed points p1,2,3 have
been successively stabilized for different values of q; moreover unstable periodic orbit has
stabilized. This proves the performance of the proposed scheme.
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