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The fractional Fokker-Planck equation is often used to characterize anomalous diffusion. In this
paper, a fully discrete approximation for the nonlinear spatial fractional Fokker-Planck equation is
given, where the discontinuous Galerkin finite element approach is utilized in time domain and the
Galerkin finite element approach is utilized in spatial domain. The priori error estimate is derived
in detail. Numerical examples are presented which are inline with the theoretical convergence rate.

1. Introduction

Many models in physics, chemistry are successfully described by the Langevin equation,
which has been introduced almost 100 years before. And for some particular cases, say
diffusion, the original Langevin equation can be transformed into the Fokker-Planck
equation. Hänggi and Thomas [1] associated a Gaussian distribution of the increments of the
noise generating process with the classical Fokker-Planck equation. Sun et al. [2] discussed
the fractional model for anomalous diffusion. Metzler et al. [3] and Dubkov and Spagnolo
[4] derived the fractional Fokker-Planck equation from different anomalous diffusion
procedures. Metzler and Klafter [5] discussed fractional kinetic equation and its relation to
the fractional Fokker-Planck equation. Dubkov et al. [6] introduced Fokker-Planck equation
for Lévy flights. Now the Fokker-Planck equation is one of the best tools for characterizing
anomalous diffusion, especially sub-/super-diffusion. Meanwhile the fractional Fokker-
Planck equation has been found to be used in relatively wide field of applied sciences, such
as plasma physics, population dynamics, biophysics, engineering, neuroscience, nonlinear
hydrodynamics, and marking; see [7–13].

The Fokker-Planck equation describes the changes of a random function in space
and in time. So different assumptions on probability density function lead to a variety of
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space-time equations. In this paper, we mainly study the model described by the following
fractional Fokker-Planck equation, which is a special case in [12]:

∂u

∂t
=
(
CD

β

0,xb(x, t, u) + CD
2β
0,xa(x, t, u)

)
u, 0 < β < 1, (x, t) ∈ Ω × (0, T], (1.1)

where CD
β

0,x denotes left fractional derivative with order β in the sense of Caputo.
There are some numerical methods to find the approximate solutions of the fractional

differential equations [14–21]. But the discontinuous Galerkin finite element method is a very
attractive method for partial differential equations because of its flexibility and efficiency in
terms of mesh and shape functions. And the higher order of convergence can be achieved
without over many iterations. Such a method was first proposed and analyzed in the
early 1970s as a technique to seek numerical solutions of partial differential equations. The
discontinuous Galerkin finite element method becomes a very attractive tool for the initial
problems of the ODEs and the initial-boundary problems of PDEs; see [22–27].

The rest of this paper is constructed as follows. The fractional derivative space is
introduced in Section 2. In Section 3, the discontinuous Galerkin finite element scheme is
introduced. The existence and uniqueness of numerical solution are proved in Section 3. And
the error estimate of the discontinuous Galerkin finite element approximation is studied in
Section 4. Finally in Section 5, numerical examples are also taken to show the efficiency of the
theoretical results.

2. Fractional Derivative Space

In this section, we firstly introduce the fractional integral, fractional Caputo derivative, and
their properties.

Definition 2.1. The αth order left and right Riemann-Liouville integrals of function u(x) are
defined as follows:

D−α
a,xu(x) =

1
Γ(α)

∫x
a

u(s)

(x − s)1−α
ds,

D−α
x,bu(x) =

1
Γ(α)

∫b
x

u(s)

(s − x)1−α
ds,

(2.1)

where α > 0 and a < x < b.

Definition 2.2. The αth order left and right Caputo derivatives of function u(x) are defined in

CD
α
a,xu(x) = D

α−n
a,x D

nu(x),

CD
α
x,bu(x) = D

α−n
x,b (−D)nu(x),

(2.2)

where n − 1 < α < n ∈ Z+ and a < x < b.
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Definition 2.3. Let α > 0; define a fractional derivative space Jα,ps (Ω)(Ω = (a, b)) as

J
α,p
s (Ω) =

{
u(x) ∈ Hn(Ω) : CD

α
a,xu(x), CD

α
x,bu(x) ∈ Lp(Ω), n − 1 ≤ α < n

}
, (2.3)

endowed with the seminorm

|u|Jα,ps
=
∣∣∣∣
(
CD

α
a,xu(x), CD

α
x,bu(x)

)1/2∣∣∣∣
Lp(Ω)

(2.4)

and the norm

‖u(x)‖Jα,ps
=

⎛
⎝∑

k≤[α]

∥∥∥Dβu(x)
∥∥∥
p
+ |u(x)|p

J
α,p
s

⎞
⎠

1/p

, β ∈ Z, 0 ≤ β ≤ [α] − 1. (2.5)

With the help of Fourier Transform, we can conclude that the following three
expressions:

∫
Ω | CDα

a,xu(x)·CDα
x,b
u(x)|dΩ,

∫
Ω ( CDα

a,xu(x))
2dΩ, and

∫
Ω ( CDα

x,b
u(x))2dΩ, are

equivalent [20]. So (
∫
Ω ( CDα

a,xu(x))
2dΩ)

1/2
and (

∫
Ω ( CDα

x,bu(x))
2dΩ)

1/2
can also be recog-

nized as the seminorms of the fractional space J
α,p
s , and when we use the seminorm of

fractional space Jα,ps , there is no difference among them. Now we restrict our discussion in
case p = 2, and the following notations are used, Jα,2s (Ω) being rewritten as Jαs (Ω) with norm
‖ · ‖Jαs or ‖ · ‖α and seminorm | · |Jαs or | · |α. We denote Jαs,0(Ω) as the closure of C∞

0 (Ω) under its
norm.

The following lemmas are useful for our discussions later on.

Lemma 2.4 (see [19]). Let n − 1 ≤ α < n; if u ∈ Jαs,0([a, b]), then

(
D−α
a,x CD

α
a,xu

)
(x) = u(x),

(
D−α
x,b CD

α
x,bu

)
(x) = u(x).

(2.6)

Lemma 2.5 (see [20]). For u ∈ Jαs,0([a, b]), 0 < β < α, then

CD
α
a,xu(x) = CD

α−β
a,x CD

β
a,xu(x). (2.7)

Lemma 2.6. For u ∈ C2α
0 ([a, b]), v ∈ Cα

0 ([a, b]), n − 1 ≤ α < n, then
(
CD

2α
a,xu, v

)
= (−1)n

(
CD

α
a,xu, CD

α
x,bv

)
. (2.8)

Lemma 2.7 (see [21]). For u ∈ Jαs,0(Ω), 0 < β < α, then

|u|β ≤ |u|α, ‖u‖β ≤ ‖u‖α. (2.9)
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For u ∈ Hα
0 (Ω), then

‖u‖L2(Ω) ≤ c|u|Hα
0
. (2.10)

For 0 < β < α, then

‖u‖
H

β

0 (Ω) ≤ C|u|Hα
0
. (2.11)

Lemma 2.8. Let μ > 0. The following mapping properties hold:

CD
α
a,x : Jμs (Ω) −→ L2(Ω) is a bounded linear operator,

CD
α
x,b : J

μ
s (Ω) −→ L2(Ω) is a bounded linear operator.

(2.12)

The proof is similar to that in [19].

3. The Space-Time Discontinuous Galerkin Finite
Element Approximation

In this section, we formulate a fully discrete discontinuous Galerkin finite element method
for a type of nonlinear spacial fractional Fokker-Planck equation.

Problem 1 (nonlinear fractional Fokker-Planck equation). For 0 < β < 1,

ut =
[
− CD

β

0,xb(x, t, u) + CD
2β
0,xa(x, t, u)

]
u, (x, t) ∈ Ω × (0, T],

u(x, t) = φ(x, t), x ∈ ∂Ω × (0, T],

u(x, 0) = g(x), x ∈ Ω,

(3.1)

where the Ω is a bounded domain. For positive constants m and M, the coefficients a and b
satisfy

0 < m < a(u) < M, 0 < m < b(u) < M. (3.2)

Throughout the paper, we always assume that the following mild Lipschitz continuity
conditions on a, b are satisfied: there exists a positive constant L such that for x ∈ Ω, t ∈ (0, T],
and s, r ∈ R, there have

|a(x, t, s) − a(x, t, r)| ≤ L|s − r|,
|b(x, t, s) − b(x, t, r)| ≤ L|s − r|.

(3.3)
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Let Kh = {K} be a partition of spatial domain Ω. Define hk as the diameter of the
element K and h = maxK∈KhhK. And let Sh be a finite element space

Sh =
{
v ∈ Hβ

0 (Ω) : v|K ∈ Pr−1(K), K ∈ Kh

}
, (3.4)

where Pr−1(K) is a set of polynomials with degree r − 1 on a given domain K. And the
functions in Sh are continuous on Ω.

Let us consider a partition of time domain I = (0, T], 0 = t0 < t1 < · · · < tN = T , and
In = (tn, tn+1], kn = tn+1 − tn, n = 0, 1, . . .N − 1, k = max kn. On each time slab In, we define a
discrete function space Ik as

Ik =
{
v : In −→ R; v|t∈In ∈ Pq(In)

}
. (3.5)

The functions in the space Ik can be discontinuous at the time node tn, but is at least left
continuous and right continuous. And the functions in the space Ik are polynomials, whose
degree is no more than q − 1.

Define a discrete function space Tkh on Ω × I as

Tkh = {v : Ω × I −→ R | ∀t ∈ I, v(·, t) ∈ Ik, ∀x ∈ Ω, v(x, ·) ∈ Sh}. (3.6)

Moreover, the space Tkh can be verified as follows:

Tkh =

⎧
⎨
⎩v | v(x, t) =

q−1∑
j=0

tjχj(x), χj ∈ Sh

⎫
⎬
⎭, (3.7)

where q is a positive integer. In other words, for each t ∈ In the functions in Tkh are the
elements of Sh, and for each x ∈ Ω piecewise polynomial functions in t of degree q − 1 with
possible discontinuities at the nodes tn, n = 0, 1, . . . ,N − 1. Set Tn

kh
= {v|Ω×In : v ∈ Tkh}.

We introduce some norms on different spaces which will be used later on. And
L2(I, Jβs (Ω)) is equipped with the norms

‖v‖0,β =
(∫

I

‖v‖2βdt
)1/2

, ‖v‖∞,β = max
I

‖v‖β = max
0≤t≤tN

‖v‖β. (3.8)

And L2(In, J
β
s (Ω)) is equipped with the norms

‖v‖0,β,n =

(∫

In

‖v‖2βdt
)1/2

, ‖v‖∞,β,n = max
In

‖v‖β = max
tn<t≤tn+1

‖v‖β. (3.9)
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In order to derive a variational form of Problem 1, we assume that u is a sufficiently
smooth solution of Problem 1, then multiply an arbitrary v ∈ Tkh to obtain the integration
formulation

∫

I

(
∂u

∂t
, v

)
dt =

∫

I

(
CD

2β
0,xa(u)u, v

)
dt −

∫

I

(
CD

β

0,xb(u)u, v
)
dt, (3.10)

where (·, ·) denotes the inner product on L2(Ω). Integrating by parts in the right, noting that
for all t ∈ I, v ∈ Jβ0,s(Ω), and the discontinuous property at the time node tn, n = 0, . . . ,N − 1,
one has

N−1∑
n=0

{∫

In

(
∂u

∂t
+ CD

β

0,xb(u)u, v
)
+
(
CD

β

0,xa(u)u, CD
β

x,bv
)
dt + ([u]n, v

+
n)

}
= 0. (3.11)

The notation [u]n denotes the jump of the function u at the time node tn; that is,

[u]n = lim
ε→ 0

[u(·, tn + |ε|) − u(·, tn − |ε|)]. (3.12)

Using the superscripts “–” and “+” for left and right limits, respectively, the jump is
described by

[u]n = u(·, t+n) − u
(·, t−n

)
. (3.13)

It shows the discontinuity of the scheme. The inner product ([u]n, v
+
n) also denotes the

transport process during different time-space slabs.
Thus, we define

A(u, v) =
∫

In

{(
∂u

∂t
, v

)
+
(
CD

β

0,xa(u)u, CD
β

x,bv
)
+
(
CD

β

0,xb(u)u, v
)}

dt + ([u]n, v
+
n). (3.14)

Definition 3.1. For all v ∈ Tkh, the function u ∈ Tkh is a variational solution of Problem 1
provided that

N−1∑
n=0

A(u, v) = 0, ∀v ∈ Tkh. (3.15)

Now we are ready to describe a fully discrete space-time finite element method to
solve the nonlinear problem 1, where the Galerkin finite element method is used in spacial
domain and discontinuous finite element approximation is used in time domain.

Applying the same notations with Definition 3.1, the space-time discontinuous
Galerkin scheme for Problem 1 can be now formulated as follows. Find U ∈ Tn

kh
, satisfying,

for all v ∈ Tn
kh
, n = 0, 1, . . . ,N − 1,

A(U,v) = 0, ∀v ∈ Tkh. (3.16)
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The value of U on t−0 is replaced by the initial condition g(x). The term including U0

can be moved to the right-hand side of (3.16). Once it is computed, the value of U on t+0 is
different from that on u−0 , and it is the error introduced by the discretization in the numerical
scheme.

Noting the discontinuity at each node tn, n = 0, 1, . . . ,N − 1 in Thk, the computation of
uh can be decoupled in each time slab. Once uh is known on t−n, this value is taken as an initial
condition for the time slab In and the following equation needs to be solved:

(
U−
n+1, v

−
n+1

)
+
∫

In

{
−
(
U,

∂v

∂t

)
+
(
CD

β

0,xa(U)U, CD
β

x,bv
)
+
(
CD

β

0,xb(U)U,v
)}

dt =
(
U−
n, v

+
n

)
.

(3.17)

Next, we investigate the uniqueness and existence about the numerical scheme. First,
we give the scheme in detail. For a fixed integer q ≥ 1, let li(τ)

q

i=1 be the Lagrange polynomials
associated with the abscissa 0 < τ1 < · · · < τq = 1; that is,

li(τ) =
∏

j = 1, . . . , q
i /= j

τ − τj
τi − τj . (3.18)

For the quadrature in time slab (tn, tn+1], we use the Radau quadrature rule. For a given
function g(τ), τ ∈ [0, 1], the following approximation holds:

∫1

0
g(τ)dτ ≈

q∑
j=1

wjg
(
τj
)
, (3.19)

where wj =
∫1
0 lj(τ)dτ . This quadrature rule is exact for all polynomials of degree ≤ 2q − 2.

Using the linear transformation t = tn + τkn, which maps [0, 1] into In, one gets

tn,j = tn + τjkn, j = 1, . . . , q, tn,q = tn+1,

ln,j(t) = lj(τ), t = tn + τkn,

wn,j =
∫ tn+1
tn

ln,jdt = kn

∫1

0
lj(τ)dτ = knwj, j = 1, . . . , q.

(3.20)

Then the Radau rule in In can be got by

∫

In

g(t)dt =
q∑
j=1

∫1

0
lj(τ)dτg

(
tn + τjkn

)
=

q∑
j=1

wn,jg
(
tn,j
)
. (3.21)
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We choose {ln,i(t)}qj=1 as the basis functions for the piecewise polynomial function
space Pq−1(In). Then U|In is uniquely determined by the functions Un,j = Un,j(x), U(x) ∈ Sh,
such that

U(x, t) =
q∑
j=1

ln,j(t)Un,j(x), (x, t) ∈ Ω × In. (3.22)

Taking v = ln,i(t)ψ(x) ∈ V n
hk into (3.17), where ψ ∈ Sn

h
, we have

(
ln,q
(
tn,q
)
Un,q, ln,i

(
tn,q
)
ψ(x)

) −
∫

In

⎛
⎝

q∑
j=1

ln,jUn,j(x), l′n,i(t)ψ(x)

⎞
⎠dt

+
∫

In

⎛
⎝

CD
β

0,xa

(
q∑
k=1

ln,kUn,k(x)

)
q∑
j=1

ln,jUn,j(x), CD
β

x,b

(
ln,i(t)ψ(x)

)
⎞
⎠dt

+
∫

In

⎛
⎝

CD
β

0,xb

(
q∑
k=1

ln,kUn,k(x)

)
q∑
j=1

ln,jUn,j(x), ln,i(t)ψ(x)

⎞
⎠dt

=
(
ln,1(tn,1)Un,1, ln,i(tn,1)ψ(x)

)
.

(3.23)

On time slab In = (tn, tn+1], we define a Lagrange interpolation operator În : C(In) →
Pq−1(In), such that

Îny
(
tn,j
)
= y
(
tn,j
)
, j = 1, 2, . . . , q, (3.24)

where the interpolation points are Radau points. It is easy to see that for given x ∈ Ω,
Înu(x, t) ∈ Pq−1(Tn) and Înu(x, t) = u(x, tn+1) are available. On time slab In = (tn, tn+1],
tn,1 = tn, tn,q = tn+1, with the definition of interpolation operator, the discontinuous Galerkin
scheme can be rewritten in detail as follows:

δqi
(
Un,q, ψ(x)

) −
∫

In

⎛
⎝

q∑
j=1

ln,jUn,j(x), l′n,i(t)ψ(x)

⎞
⎠dt

+
∫

In

⎛
⎝

CD
β

0,xa

(
q∑
k=1

ln,kUn,k(x)

)
q∑
j=1

ln,jUn,j(x),CD
β

x,b

(
ln,i(t)ψ(x)

)
⎞
⎠dt

+
∫

In

⎛
⎝

CD
β

0,xb

(
q∑
k=1

ln,kUn,k(x)

)
q∑
j=1

ln,jUn,j(x), ln,i(t)ψ(x)

⎞
⎠dt

= ln,i(tn)
(
Un, ψ(x)

)
.

(3.25)

Next we introduce a lemma which is useful to prove the existence and estimate the
error.
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Consider a q × q matrixW ,

Wij = wn,j l
′
n,i

(
tn,j
)
= wjl

′
i

(
τj
)
, M = eqeTq −N, (3.26)

where eq = (0, 0, . . . , 1).
It is clear thatW,M are independent of Kn. And if YT = (yn,1, . . . , yn,q) ∈ Rq, then

YTMY =
q∑
j=1

δqiyn,qyn,i −
q∑
j=1

wn,j l
′
n,i

(
tn,j
)
yn,jyn,i. (3.27)

Lemma 3.2 (see [27]). Let M̃,D be the matrixes

M̃ = D−1/2MD1/2, D = diag
{
τ1, . . . , τq

}
. (3.28)

If λ = (α0/2)min{w1/τ1, w2/τ2, . . . , wq−1/τq−1, 1 +wq} > 0, then there holds

XTM̃X ≥ λ|X|2, ∀X ∈ Rq, (3.29)

where |x| =∑q

j=1X
2
i .

In order to prove the existence and uniqueness, we need to define a new exhibition for
U by

U =
q∑
j=1

τ1/2j ln,j(T)Un,j(x), (x, t) ∈ Ω × In, (3.30)

where Ũ = τ−1/2j Un,j ∈ Snh. ThenU|In is uniquely determined by the function Ũ = Ũ(x) ∈ Sn
h
.

We choose ψ = τ−1/2i φ, where φ ∈ Snh, and use the new expression U to obtain the
following results:

δqi
(
Ũ, φ

)
+
∫

In

⎛
⎝−

q∑
j=1

τ1/2j ln,jŨn,j ,
q∑
k=1

τ−1/2i ln,kl
′
n,i(tn,k)φ

⎞
⎠dt

+
∫

In

⎛
⎝

q∑
j=1

τ1/2j CD
β

0,xa

(
q∑

m=1

τ1/2m ln,mŨn,m

)
ln,jŨn,j , CD

β

x,b
τ−1/2i ln,iφ

⎞
⎠dt

+
∫

In

⎛
⎝

q∑
j=1

τ1/2j CD
β

0,xb

(
q∑

m=1

τ1/2m ln,mŨn,m

)
ln,jŨn,j , τ

−1/2
i ln,iφ

⎞
⎠dt

= ln,i(t+n)τ
−1/2

(
Ũn, φ

)
.

(3.31)
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Set that a(Ũ) = a(
∑q

m=1 τ
1/2
m ln,mŨn,m) andWn,j =

∫
In
l2n,j(t)dt, the above equation can be

rewritten as

−
q∑
j=1

Wn,jτ
1/2
j τ−1/2i l′n,i

(
tn,j
)(
Ũn,j , φ

)
+

q∑
j=1

Wn,jτ
1/2
j τ−1/2i

(
CD

β

0,xa
(
Ũ
)
Ũn,j , CD

β

x,b
φ
)

+
q∑
j=1

Wn,jτ
1/2
j τ−1/2i

(
CD

β

0,xb
(
Ũ
)
Ũn,j , φ

)
+ δqi

(
Ũ, φ

)

= ln,i(t+n)τ
−1/2

(
Ũn, φ

)
.

(3.32)

Theorem 3.3. Let Un be given in Sn
h
, then for the sufficiently small kn, there exists {Ũn,j}qj=1 ∈ Sn

h

satisfying (3.32); hence, (3.17) has a unique solutionU ∈ Thk.

Proof of Theorem 3.3. The vector space (Snh)
q is a Hilbert space with finite dimension. For all

x = (x1, x2, . . . , xq)
T , φ = (φ1, φ2, . . . , φq)

T ∈ Snh, equipped with the norm

‖|x|‖ =

⎛
⎝

q∑
j=1

∥∥∥x2
i

∥∥∥
⎞
⎠

1/2

, ‖|x|‖β =
⎛
⎝

q∑
j=1

∥∥∥x2
i

∥∥∥
β

⎞
⎠

1/2

. (3.33)

Define a map F from (Sn
h
)q to itself by

(
F(v)i, φ

)
=
(
vi, φ

)
+ δqi

(
vq, φ

) −
q∑
j=1

Wn,jτ
1/2
j τ−1/2i l′n,i

(
vi, φ

)

+Wn,i

(
CD

β

0,x(a(v)vi), CD
β

x,b
φ
)
+Wn,i

(
CD

β

0,xb(v)vi, φ
)
−
(
Un, τ

−1/2
i ln,i(tn)φ

)
.

(3.34)

Since

(
vi, φ

)
+ δqi

(
vq, φ

) −
q∑
j=1

Wn,jτ
1/2
j τ−1/2i l′n,i

(
vi, φ

) −
(
Un, τ

−1/2
i ln,i(tn)φ

)
(3.35)

is a linear system, a(x, t, u), b(x, t, u) are all continuous maps, and the map F is a continuous
map from (Snh)

q into itself. So according to the Brouwer fixed point theorem, there exists
at least one fixed point vi such that (F(v)i, φ) = (vi, φ). So (3.32) has at least one solution,
denoted by v. Next we investigate the uniqueness of the solution.
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Let v and v∗ be two solutions of (3.32), setting φ = vi − v∗
i and summing i from 1 to q,

then we have

q∑
i=1

(
F(v − v∗)i, vi − v∗

i

)

= δqi
(
vq − v∗

q, vi − v∗
i

)
−

q∑
i=1

q∑
j=1

Wn,j l
′
n,i

(
tn,j
)
τ1/2j τ−1/2i

(
vj − v∗

j , vi − v∗
i

)

+
q∑
i=1

q∑
j=1

Wn,jτ
1/2
j τ−1/2i

(
CD

β

0,xa(v − v∗)
(
vj − v∗

j

)
, CD

β

x,b

(
vi − v∗

i

])

+
q∑
i=1

q∑
j=1

Wn,jτ
1/2
j τ−1/2i

(
CD

β

0,xb(v − v∗)
(
vj − v∗

j

)
,
(
vi − v∗

i

))

+
q∑
i=1

(
vi − v∗

i , vi − v∗
i

)
.

(3.36)

According to Lemma 3.2, we can see that for the first two terms of the right-hand side of
(3.36), there exists a constant α, such that

δqi
(
vq − v∗

q, vi − v∗
i

)
−

q∑
i=1

q∑
i=1

Wn,j l
′
n,i

(
tn,j
)
τ1/2j τ−1/2i

(
vj − v∗

j , vi − v∗
i

)

=
(
M̃(v − v∗), v − v∗

)
≥ α‖|v − v∗|‖2 ≥ Cα‖|v − v∗|‖2β.

(3.37)

With the help of bounded assumption of a and b, we have

q∑
i=1

q∑
j=1

Wn,jτ
1/2
j τ−1/2i

(
CD

β

0,xa(v − v∗)
(
vj − v∗

j

)
, CD

β

x,b

[(
vi − v∗

i

)])

≤
q∑
i=1

∫

In

∣∣∣∣∣∣

⎛
⎝

CD
β

0,xa(v − v∗)
q∑
j=1

τ1/2j τ−1/2i ln,j(t)
(
vj − v∗

j

)
, ln,i(t) CD

β

x,b

(
vi − v∗

i

)
⎞
⎠
∣∣∣∣∣∣
dt

≤
q∑

i,j=1

M

∫

In

∣∣∣τ1/2j τ−1/2i ln,i(t)ln,j(t)
(
CD

β

0,x

(
vj − v∗

j

)
, CD

β

x,b

(
vi − v∗

i

))∣∣∣dt

≤ Ckn
∣∣∥∥vk − v∗

k

∥∥∣∣2
β
,

q∑
i=1

q∑
j=1

Wn,jτ
1/2
j τ−1/2i

(
CD

β

0,xb(v − v∗)
(
vj − v∗

j

)
,
(
vi − v∗

i

))

≤
q∑
i=1

∫

In

∣∣∣∣∣∣

⎛
⎝

q∑
j=1

τ1/2j τ−1/2i ln,j(t) CD
β

0,xb(v − v∗)
(
vj − v∗

j

)
, ln,i(t)

(
vi − v∗

i

)
⎞
⎠
∣∣∣∣∣∣
dt

≤
q∑

i,j=1

M

∫

In

∣∣∣τ1/2j τ−1/2i ln,i(t)ln,j(t) CD
β

0,x

(
vj − v∗

j

)
,
(
vi − v∗

i

)∣∣∣dt.

(3.38)
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According to the boundedness of fractional operator CD
β

0,x, inequality ‖ CDβ

0,x(vi − v∗
i )‖ ≤

C‖vi − v∗
i ‖ holds. Furthermore, we have

q∑
i,j=1

M

∫

In

∣∣∣τ1/2j τ−1/2i ln,i(t)ln,j(t)
(
CD

β

0,x

(
vj − v∗

j

)
,
(
vi − v∗

i

))∣∣∣dt

≤
q∑
j=1

τ1/2j τ−1/2j

∥∥Wn,k

(
vk − v∗

k, vk − v∗
k

)∥∥

=M
q∑
k=1

Wn,k

∥∥vk − v∗
k

∥∥2

≤ Ckn
∣∣∣∣∣∣vk − v∗

k

∣∣∣∣∣∣2
β
.

(3.39)

The fifth term of the right-hand side of (3.36) is estimated in

q∑
j=1

(
vi − v∗

i , vi − v∗
i

)
= |||v − v∗|||2 ≤ |||v − v∗|||2β. (3.40)

And by the Brouwer fixed point theorem, one gets

(
F(v − v∗)i, vi − v∗

i

)
=
(
vi − v∗

i , vi − v∗
i

)
, (3.41)

furthermore,

q∑
i=1

(
F(v − v∗)i, vi − v∗

i

)
=

q∑
i=1

(
vi − v∗

i , vi − v∗
i

)
=
∣∣∣∣∣∣vi − v∗

i

∣∣∣∣∣∣2. (3.42)

By using inequalities (3.37)–(3.40) and (3.42), one has

C(α − kn)
∣∣∣∣∣∣vi − v∗

i

∣∣∣∣∣∣2
β ≤ 0. (3.43)

Choosing α ≥ kn, we have

∣∣∣∣∣∣vi − v∗
i

∣∣∣∣∣∣2
β ≤ 0. (3.44)

That is impossible. So the uniqueness is proved.

4. Error Estimation

Now we turn to analyze the error estimate of the D-G scheme.
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Let unh be the approximate solution on time slab In. Denote Phun as a Ritz-Galerkin
projection operator defined as follows:

(
CD

β

0,xa(u)(u
n − Phun), CDβ

x,b
v
)
= 0,

(
CD

β

0,xa(u0)(u
n − Phun), CDβ

x,b
v
)
= 0.

(4.1)

And ρn = Phun − un, θn = un
h
−Wn, then one has

unh − un = unh −Wn +Wn − un = θn +Wn − un, (4.2)

whereW : I → H
β

0 (Ω) is defined by

W(x, t) = ÎqnPhu(x, t), (x, t) ∈ Ω × In. (4.3)

It can be seen thatW is an element of Tn
hk
.

Lemma 4.1. Let a(u), b(u) be smooth functions on Ω, and 0 < m ≤ a(u), b(u) ≤ M, 0 < β < 1,
and Phun is defined as above, then

‖Phun − un‖ ≤ c2h1+βn ‖u‖1+β. (4.4)

Proof of Lemma 4.1. For all φ ∈ L2(Ω), w is the solution of the following equation:

−a(w) CD
2β
0,xw = φ, w ∈ Ω,

w = 0, w ∈ ∂Ω.
(4.5)

So the next equation holds

‖w‖2β ≤ c2
∥∥φ∥∥. (4.6)

And for all χ ∈ Sh, by the aid of approximation properties of Sh and the weak form,
we can derive

(
Phu

n − un, φ) = −
(
Phu

n − un, a(w) CD
2β
0,xw

)
=
(
CD

β

x,ba(w)(Phun − un), CDβ

0,xw
)

=
(
CD

β

x,ba(w)(Phun − un), CDβ

0,x

(
w − χ)

)
≤M‖Phun − un‖β

∥∥w − χ∥∥β
≤M‖Phun − un‖β inf

χ∈Sh

∥∥w − χ∥∥β

≤ c2hr−β‖u‖rhβ‖w‖β = c2hr‖u‖r
∥∥φ∥∥.

(4.7)
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So

‖Phun − un‖ = sup
0/=φ∈L2(Ω)

(
Phu

n − un, φ)

‖φ‖ ≤ c2hr‖u‖r . (4.8)

Lemma 4.2. Let Phun be defined as (4.1), then ‖D(Phun)‖ and ‖ CDβ

0,xPhu
n‖ are bounded, where

0 ≤ β ≤ 1.

Proof of Lemma 4.2. Using the properties of the norm, then the following inequality is valid:

∥∥∥ CD
β

0,xPhu
n
∥∥∥
L∞

≤
∥∥∥ CD

β

0,x(Phu
n − Ihun)

∥∥∥
L∞

+
∥∥∥ CD

β

0,x(Ihu
n)
∥∥∥
L∞
. (4.9)

According to the estimate of interpolation, we get

∥∥∥ CD
β

0,x(Phu
n − Ihun)

∥∥∥
L∞

≤ c
(∥∥∥ CD

β

0,xρ
n
∥∥∥
L∞

+
∥∥∥ CD

β

0,x(Ihu
n − un)

∥∥∥
L∞

)
. (4.10)

From Lemmas 2.8 and 4.1, and the inverse estimate, we know that ‖ CDβ

0,xρ
n‖

L∞ ≤ c‖un‖.
Therefore, it is easy to see that

∥∥∥ CD
β

0,x(Ihu
n)
∥∥∥
L∞

≤ c
∥∥∥ CD

β

0,xu
n
∥∥∥
L∞
,

∥∥∥ CD
β

0,x(Ihu
n − un)

∥∥∥
L∞

≤ c
∥∥∥ CD

β

0,xu
n
∥∥∥
L∞
.

(4.11)

So

∥∥∥ CD
β

0,x(Phu
n)
∥∥∥
L∞

≤ c
∥∥∥ CD

β

0,xu
n
∥∥∥
L∞

+ c‖un‖. (4.12)

The boundedness ‖ CDβ

0,xPhu
n‖ can be derived from above. The proof of ‖DPhun‖ ≤ c(u) can

be similarly given.

Let Îqn : C(In) → Pq(In) be the usual Lagrange interpolation operator at the Radau
points on In = (tn, tn+1]; that is,

(
Î
q
ny
)(
tn,j
)
= y
(
tn,j
)
, j = 1, 2, . . . , q, (4.13)

where tn,j , j = 1, 2, . . . , q are the Radau points. Therefore, we can see that

(
Î
q
nu
)
(x, ·) ∈ Pq−1(In),

(
Î
q
nu
)
(x, tn+1) = u(x, tn+1), x ∈ Ω.

(4.14)



Mathematical Problems in Engineering 15

Lemma 4.3. The interpolation operation Îqn on Ph(In) has the following property:

∥∥∥Îqnu − u
∥∥∥ ≤ chs‖u‖s, ∀u ∈ Hs ∩Hβ

0 . (4.15)

Lemma 4.4. ForW defined above, we have the following error estimates:

max
In

‖u −W‖β ≤ Ckqnmax
In

∥∥∥u(q)
∥∥∥
β
+ chs−βmax

In
‖u‖s, 2 ≤ s ≤ r + 1,

‖u −W‖0,β,n ≤ Ckqn
∥∥∥u(q)

∥∥∥
0,0,n

+ Chs−βn ‖u‖0,s,n, 2 ≤ s ≤ r.
(4.16)

Proof of Lemma 4.4. Since

‖u −W‖β = ‖u − Phu + Phu −W‖β ≤ ‖u − Phu‖β + ‖Phu −W‖β, (4.17)

according to Lemma 4.1, we have

‖u − Phu‖β + ‖Phu −W‖β ≤ hs−β‖u‖s + ‖Phu −W‖β

≤ hs−β‖u‖s + Ckqn
∥∥∥(Phu)(q)

∥∥∥
β
≤ hs−β‖u‖s + Ckqn

∥∥∥u(q)
∥∥∥
β

≤ hs−β‖u‖s + Ckqn
∥∥∥u(q)

∥∥∥
β
.

(4.18)

The first inequality can be similarly proved.

We are now ready to prove convergence result. Putting W into D-G finite element
formula (3.17), and setting θ = U −W , we can get the basic error equation as follows:

(
θ−n+1, v

−
n+1

) − (θ−n, v+
n

) −
∫

In

(θ, vt)dt +
∫

In

(
CD

β

0,xa(U)θ − b(U)(U −W), CD
β

x,b
v
)
dt

= −(W−
n+1, v

−
n+1

)
+
(
W−

n , v
+
n

)
+
∫

In

(W,vt)dt −
∫

In

(
CD

β

0,xa(U)W + b(U)W, CD
β

x,b
v
)
dt,

(4.19)

whereW0 = Phu0 and θ0 = U0 −W0 = u0 − Phu0.

Theorem 4.5. Let u be the solution of Problem 1. If U is a solution of the discontinuous Galerkin
scheme (3.17), then the following error estimation holds:

‖u −U‖∞,β = C max
0≤n≤N−1

hsmax
In

(
‖ut‖s + ‖u‖s + h−β‖u‖s

)

+ C max
0≤n≤N−1

{
k
q
nmax

In

(∥∥∥u(q+1)
∥∥∥ +

∥∥∥u(q)
∥∥∥ +

∥∥∥D2β
x u

(q)
∥∥∥ +

∥∥∥Dβ
xu

(q)
∥∥∥
)}

,

(4.20)

where 2 ≤ s ≤ r.
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Proof of Theorem 4.5. It is necessary to rewriteW and discrete error θ as follows:

W =
q∑
j=1

ln,j(t)Phun,j ,

θ = U −W =
q∑
j=1

ln,j(t)
(
Un,j − Phun,j

)
,

(4.21)

where un,j = u(x, tn,j). We also denote a(
∑q

j=1 ln,j(t)Un,j), b(
∑q

j=1 ln,j(t)Un,j) as a(U) and b(U).
Noting that tn,q = tn+1, tn,1 = tn, so ln,q(tn,q) = 1 and ln,1(tn,1) = 1. SettingWn,i =

∫
In
l2n,i(t)dt and

v = ln,i(t)φ(x), φ ∈ Sn
h
, then the basic error equation can be rearranged as follows:

− δqi
(
Phun,q, φ

)
+ ln,i(tn)

(
Phun, φ

)
+

⎛
⎝

q∑
j=1

Wn,j l
′
n,i

(
tn,j
)
Phun,j , φ

⎞
⎠ − (u−n, ln,i(tn)φ

)

−
⎛
⎝

q∑
j=1

Wn,j CD
β

0,xa(U)Phun,j , CD
β

x,b
φ

⎞
⎠ +

q∑
j=1

Wn,j

(
b(U)(t)Phun,j , CD

β

x,b
φ
)

−
∫

I−n

(
u, l′n,i(t)φ

)
dt +

∫

In

(
CD

β

0,x(a(u)u) + b(u)u, ln,i(t) CD
β

x,bφ
)
dt

+
(
u−n+1, ln,i(tn+1)φ

)

=
(
R1, φ

)
+
(
R2, φ

)
+
(
R3, CD

β

x,b
φ
)
+
(
R4, CD

β

x,b
φ
)
+
(
R5, φ

)
,

(4.22)

where

R1 =
q∑
j=1

Wn,j l
′
n,i

(
tn,j
)(
Phun,j − un,j

) − δqi
(
Phun,q − un,q

) − ln,i(tn)(u+n − Phu+n),

R2 =
q∑
j=1

Wn,j l
′
n,i

(
tn,j
)
un,j −

∫

I−n
l′n,i(t)udt,

R3 = −
q∑
j=1

Wn,j CD
β

0,xa(U)Phun,j +
∫

In

ln,i(t) CD
β

x,b
a(u)udt,

R4 = −
q∑
j=1

Wn,jb(U)
(
Phun,j

)
+
∫

In

ln,i(t)b(u)udt,

R5 =ln,i[un − Phun] = ln,i(tn)
{
(u+n − Phu+n) −

(
u−n − Phu−n

)}
.

(4.23)
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Let φ = θn,i and sum i from 1 to q, then the error equation can be derived as

(
θ−n+1, θ

−
n+1

) − (θ−n, θ+n
) −
∫

In

(θ, θt)dt +
∫

In

(
CD

β

0,xa(U)θ, CD
β

x,b
θ
)
dt +

∫

In

(
b(U)θ, CD

β

x,b
θ
)
dt

=
q∑
i=1

(R1, θn,i) + (R2, θn,i) +
(
R3, CD

β

x,b
θn,i
)
+
(
R4, CD

β

x,b
θn,i
)
+ (R5, θn,i).

(4.24)

Note that

−
∫

In

(θ, θt)dt = −1
2

∫

In

d

dt
‖θ‖2 = −1

2
∥∥θ−n+1

∥∥2 + 1
2
‖θ+n‖2. (4.25)

Consider the bounded assumption of a(u) and b(u); the following inequality can be
got:

∫

In

(
CD

β

0,xa(U)θ, CD
β

x,b
θ
)
dt ≥ m

∫

In

(
CD

β

0,xθ, CD
β

x,b
θ
)
dt = m

∫

In

∥∥∥ CD
β

0,xθ
∥∥∥
2
dt.

(4.26)

Since b(u) is bounded, and from Lemma 2.8, where CD
β

x,b is a linear bounded map,
the following inequality is established:

∫

In

(
b(U)θ, CD

β

x,bθ
)
dt ≥ m

∫

In

(
θ, CD

β

x,bθ
)
dt

≥ Cm
∫

In

‖θ‖
∥∥∥ CD

β

x,b
θ
∥∥∥dt ≥ Cm

∫

In

‖θ‖2dt.
(4.27)

The first and second terms of the left side of (4.24) can be seen as

(
θ−n+1, θ

−
n+1

)
=
∥∥θ−n+1

∥∥2,

(
θ−n, θ

+
n

) ≤ ∥∥θ−n
∥∥ · ‖θ+n‖ ≤ ∥∥θ−n

∥∥2 + ‖θ+n‖2
4

.

(4.28)

Taking (4.24)–(4.27) into the left side of (4.22) yields

1
2
∥∥θ−n+1

∥∥2 + 1
2
‖θ+n‖2 +m

∫

In

∥∥∥ CD
β

0,xθ
∥∥∥
2
dt + Cm

∫

In

‖θ‖2dt

≤ ∥∥θ−n
∥∥2 + ‖θ+n‖2

4

+
q∑
i=1

{
(R1, θn,i) + (R2, θn,i) +

(
R3, CD

β

x,b
θn,i
)
+
(
R4, CD

β

x,b
θn,i
)
+ (R5, θn,i)

}
.

(4.29)
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As to R1, for i = 1, 2, . . . , q, there exists

δqi −
q∑
j=1

Wn,j l
′
n,i(tn,i) − ln,i(t+n) = δqi −

∫

In

l′n,i(t)dt − ln,i(t+n) = 0. (4.30)

This means that there exists constants Cij and C, which are independent of n, such that

‖R1‖ =

∥∥∥∥∥∥
q∑
j=1

Cij

(
ρn,j − ρn,j−1

)
∥∥∥∥∥∥
≤
∥∥∥∥∥
∫

In

Cρt(τ)dτ

∥∥∥∥∥

≤ C
∫

In

hs‖ut(τ)‖sdτ ≤ Chsk1/2n ‖ut‖0,s,n.

(4.31)

In order to estimate R2, we apply the interpolation operator. Let Înq : C(În) → Pq(În)
be the interpolation operator on the time slab In, whose order is less than q. The interpolation
points involve not only Radau points, but also tn, and these points satisfy that Îqny(tn,j) =
y(tn,j), Î

q
ny(t+n) = y(t+n), j = 1, 2, . . . , q. Then, for every x ∈ Ω, such that l′n,iÎ

q
nu is a polynomial

whose order is 2q − 2,

‖R2‖ =

∥∥∥∥∥∥
q∑
j=1

Wn,j l
′
n,i

(
tn,j
)
un,j −

∫

In

l′n,i(t)udt

∥∥∥∥∥∥

=

∥∥∥∥∥
∫

In

l′n,i(t)
(
Î
q
nu − u

)
dt

∥∥∥∥∥ ≤ Ckq+1/2n

∥∥∥u(q+1)
∥∥∥
0,0,n

.

(4.32)

As to R3, when kn is sufficiently small, with the aid of Hölder inequality, we obtain

(
R3, CD

β

x,b
θn,i
)
= −
(
CD

β

0,xR3, θn,i
)

≤
∥∥∥∥∥∥

q∑
j=1

Wn,j CD
2β
0,x(a(U) − a(u))un,j

∥∥∥∥∥∥
· ‖θn,i‖

+

∥∥∥∥∥∥
q∑
j=1

Wn,j CD
2β
0,xa(u)un,j −

∫

In

ln,i(t) CD
2β
0,xa(u)udt

∥∥∥∥∥∥
· ‖θn,i‖

= (‖R31‖ + ‖R32‖)‖θn,i‖,

(4.33)
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where

‖R31‖ =

∥∥∥∥∥∥
q∑
j=1

Wn,j CD
2β
0,x(a(U) − a(u))un,j

∥∥∥∥∥∥

≤
∫

In

l2n,i(t)
∥∥∥ CD

2β
0,xθ

∥∥∥
2
dt + LC

∫

In

l2n,i(t)
∥∥∥ CD

2β
0,x(W − u)

∥∥∥dt

≤ LC
∫

In

l2n,i(t)
∥∥∥ CD

2β
0,xθ

∥∥∥
2
dt + Ckq+1/2n

∥∥∥ CD
2β
0,xu

(q)
∥∥∥
0,0,n

≤ LC
∫

In

l2n,i(t)‖θ‖2dt + Ck
q+1/2
n

∥∥∥ CD
2β
0,xu

(q)
∥∥∥
0,0,n

,

‖R32‖ =

∥∥∥∥∥∥
q∑
j=1

Wn,j CD
2β
0,xa(u)un,j −

∫

In

ln,i(t) CD
2β
0,xa(u)udt

∥∥∥∥∥∥

≤M
∥∥∥∥∥∥

q∑
j=1

Wn,j CD
2β
0,xÎ

q
nun,j −

∫

In

ln,i(t) CD
2β
0,xu dt

∥∥∥∥∥∥

≤M
∥∥∥∥∥
∫

In

l2n,l(t)
(
Î
q
n − I

)
CD

2β
0,xu dt

∥∥∥∥∥

≤ CMk
q+1/2
n

∥∥∥ CD
2β
0,xu

(q)
∥∥∥
0,0,n

.

(4.34)

Almost similar to the estimation of R3, the analysis of R4 can be got by the help of
boundedness of b(u), u, and Phun
(
R4, CD

β

x,b
θn,i
)

≤
∥∥∥∥∥∥

q∑
j=1

Wn,j CD
β

0,x(b(U) − b(u))Phun,j

∥∥∥∥∥∥
‖θn,i‖

+

∣∣∣∣∣∣
q∑
j=1

Wn,j CD
β

0,xb(u)Phun,j −
∫

In

ln,i(t) CD
β

0,xb(u)udt

∣∣∣∣∣∣
‖θn,i‖

≤C
{∫

In

ln,j
∥∥∥CDβ

0,xθ
∥∥∥dt + kq+1/2n

∥∥∥ CD
β

0,xu
(q)
∥∥∥
0,0,n

+ (M + L)hs−βk1/2n ‖u‖0,s,n
}
‖θn,i‖.

(4.35)

The last term contains R5 which is estimated as follows:

‖(R5, θ
+
n)‖ ≤ C‖(u+n − Phu+n)‖2 + C

∥∥u−n − Phu−n
∥∥2 + 1

4
‖θ+n‖2

≤ Ch2sn ‖u‖2s + Ch2sn−1‖u‖2s +
1
4
‖θ+n‖2,

(4.36)

where hn is the space partition in the time slab In.
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Taking the estimations from R1 to R5 into (4.29), and setting Wn,j = knWj , since

‖θ‖0,0,n = (
∑q

j=1Wn,j‖θn,j‖2)1/2 = k1/2n (
∑q

j=1Wj‖θn,j‖2)1/2, the following inequality holds:

1
2
∥∥θ−n+1

∥∥2 +m
∫

In

∥∥∥ CD
β

0,xθ
∥∥∥
2
dt + Cm

∫

In

‖θ‖2dt‖θ‖0,2,n

≤ ∥∥θ−n
∥∥2 +

q∑
i=1

{
‖R1‖2 + ‖R2‖2 +

∥∥∥ CD
β

0,xR3

∥∥∥
2
+
∥∥∥ CD

β

0,xR4

∥∥∥
2
}

+ C
q∑
i=1

‖θn,i‖2 + Ch2sn ‖u‖2s + Ch2sn−1‖u‖2s.

(4.37)

Taking the interpolation representation of θ on time slab In into the error equation
(4.22), and multiplying τ−1/2i in both side of the error equation, we have

−
q∑
j=1

Wn,j l
′
n,i

(
tn,j
)
τ1/2j τ−1/2i

(
θ̃n,j , φ

)
+Wn,jτ

1/2
j τ−1/2i

(
CD

β

0,xa(U)θ̃n,j , CD
β

x,b
φ
)

+Wn,jτ
1/2
j τ−1/2i

(
b(U)θ̃n,j , CD

β

x,b
φ
)
+ δqi

(
θ̃n,j , φ

)

= τ−1/2i

[(
θ−n, ln,i(tn)φ

)
+
(
R1, φ

)
+
(
R2, φ

)
+
(
R3, CD

β

x,b
φ
)
+
(
R4, CD

β

x,b
φ
)
+
(
R5, φ

)]
.

(4.38)

Let φ = θ̃n,i, and sum from i = 1 to q, with Lemma 3.2, we know that

q∑
i=1

δqi
(
θ̃n,q, θ̃n,i

)
−

q∑
i,j=1

τ−1/2i τ1/2j

(
θ̃n,j , θ̃n,i

)
=
(
M̃θ̃n, θ̃n

)
≥ α

q∑
j=1

∥∥∥θ̃n,j
∥∥∥
2
, (4.39)

where θ̃n = (θ̃n,1, θ̃n,2, . . . , θ̃n,q).
The second term of the left side of (4.42) is estimated as

q∑
i=1

Wn,i

(
CD

β

0,xa(U)θ̃n,i, CD
β

x,b
θ̃n,i
)
≥ m

q∑
i=1

Wn,j

(
CD

β

0,xθ̃n,i, CD
β

x,b
θ̃n,i
)

≥ mC
q∑
i=1

∥∥∥ CD
β

0,xθ̃n,i
∥∥∥
2
,

q∑
i=1

Wn,i

(
b(U)θ̃n,i, CD

β

x,bθ̃n,i
)
≥ m

q∑
i=1

Wn,i

(
θ̃n,i, CD

β

x,bθ̃n,i
)

≥ mC
q∑
i=1

Wn,i

∥∥∥θ̃n,i
∥∥∥ ·
∥∥∥ CD

β

x,b
θ̃n,i
∥∥∥

≥ mCk1/2n

q∑
i=1

∥∥∥ CD
β

0,xθ̃n,i
∥∥∥
2
.

(4.40)
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From (4.39)-(4.40), the following estimation can be derived:

α
q∑
i=1

∥∥∥θ̃n,i
∥∥∥
2
+mc

q∑
i=1

∥∥∥ CD
β

0,xθ̃n,i
∥∥∥
2
+mCk1/2n

q∑
i=1

∥∥∥ CD
β

0,xθ̃n,i
∥∥∥
2

≤ C
(

q∑
i=1

∥∥∥θ̃n,i
∥∥∥
2
)1/2{∥∥θ−n

∥∥2 +
(

q∑
i=1

(
‖R1‖2 + ‖R2‖2 +

∥∥∥ CD
β

0,xR3

∥∥∥
2

+
∥∥∥ CD

β

0,xR4

∥∥∥
2
))1/2

+ ‖[un − Phun]‖
⎫
⎬
⎭.

(4.41)

Introduce the estimations from R1 to R4 and the inequality containing ‖[un − Phun]‖
into the above expression, by the definition and characteristics of the norm of the fractional
derivative space and the relation of ‖θ‖0,β,n, there holds

‖θ‖0,β,n ≤ Ckn{
∥∥θ−n

∥∥
β + h

s
n‖ut‖0,s,n + hs−βn ‖u‖0,s,n + kqn

(∥∥∥u(q+1)
∥∥∥
2

0,0,n

)

+
∥∥∥u(q)

∥∥∥
0,s,n

+
∥∥∥CD2β

0,xu(q)
∥∥∥
0,0,n

+
∥∥∥CDβ

0,xu(q)
∥∥∥
0,0,n

+
(
hsn + h

s
n−1
)‖u‖s

}
.

(4.42)

Introducing the estimations from R1 to R5 into (4.37), based on the boundedness of the
fractional operation, one has

∥∥θ−n+1
∥∥2 ≤ Ck2qn

(∥∥∥u(q+1)
∥∥∥
2

0,0,n
+
∥∥∥u(q)

∥∥∥
2

0,0,n
+
∥∥∥∥CD

2β
0,xu

(q)
∥∥∥∥
2

0,0,n
+
∥∥∥ CD

β

0,xu
(q)
∥∥∥
2

0,0,n

)

+
(
h2sn + h2sn−1

)
‖u‖2s + h2sn

(
‖ut‖20,s,n + h−2sn ‖ut‖20,s,n

)
+ C‖θ‖20,β,n +

∥∥θ−n
∥∥2.

(4.43)

From inequalities (4.42) and (4.43), there holds

∥∥θ−n+1
∥∥2 ≤ Ck2qn (1 + kn)

(∥∥∥u(q+1)
∥∥∥
2

0,0,n
+
∥∥∥ CD

2β
0,xu

(q)
∥∥∥
2

0,0,n
+
∥∥∥ CD

β

0,xu
(q)
∥∥∥
2

0,0,n

)

+ (1 + kn)
(
h2sn + h2sn−1

)
‖u‖2s + (1 + kn)h2sn ‖ut‖20,s,n + (1 + kn)

∥∥θ−n
∥∥2
β.

(4.44)
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According to the above inequality, we can estimate θ−n . With the θj , 0 ≤ j ≤ n,

∥∥θ−n+1
∥∥2
β
≤

n∏
j=0

C
(
1 + kj

)‖θ0‖2β

+ C
n∑

m=0

n∏
j=m+1

(
1 + kj

){
Ck

2q
m

(∥∥∥u(q+1)
∥∥∥
2

0,0,m
+
∥∥∥ CD

2β
0,xu

(q)
∥∥∥
2

0,0,m
+
∥∥∥ CD

β

0,xu
(q)
∥∥∥
2

0,0,m

)

+
(
h2sm + h2sm−1

)
‖u‖2s + h2s‖ut‖0,s,n

+ (1 + kn)h
2s−2β
n ‖u‖0,s,n + k2qn (1 + kn)

∥∥∥u(q)
∥∥∥
2

0,0,n

}
.

(4.45)

For a fixed n, if kj → 0, j = 1, 2, . . . , n, we choose k = max0≤j≤nkj , then there holds

n∏
j=0

(
1 + kj

) ≤
n∏
j=0

(1 + k) = (1 + k)n ≤ eCtn+1 . (4.46)

Setting C1 = eCtn+1 , since θ−0 = u0 − Phu0, we get

∥∥θ−n+1
∥∥2 ≤ C‖u0 − Phu0‖2β + C1

n∑
m=0

{
k
2q
m

(∥∥∥u(q+1)
∥∥∥
2

0,0,m
+
∥∥∥ CD

2β
0,xu

(q)
∥∥∥
2

0,0,m
+
∥∥∥ CD

β

0,xu
(q)
∥∥∥
2

0,0,m

)

+
(
h2sm + h2sm−1

)
‖u‖2s + h2sm‖ut‖0,s,m + h2s−2β‖u‖2s

+ (1 + kn)h
2s−2β
n ‖u‖0,s,n + k2qn (1 + kn)

∥∥∥u(q)
∥∥∥
2

0,0,n

}
.

(4.47)

Taking it into (4.43), we have

‖θ‖0,β,n ≤ Ck1/2n h0‖u0‖s + C1k
1/2
n

n∑
m=0

{
k
2q
m

(∥∥∥uq+1
∥∥∥
2

0,0,m
+
∥∥∥ CD

2β
0,xu

(q)
∥∥∥
2

0,0,m
+
∥∥∥ CD

β

0,xu
(q)
∥∥∥
2

0,0,m

)

+
(
h2sm + h2sm−1

)
‖u‖2s + h2sm‖ut‖0,s,m + (1 + kn)h

2s−2β
n ‖u‖0,s,n

+ k
2q
n (1 + kn)

∥∥∥u(q)
∥∥∥
2

0,0,n

}
.

(4.48)

Note that ‖U − u‖∞,β,n ≤ ‖θ‖∞,β,n + ‖W − u‖∞,β,n. By Lemma 2.8, the estimate of ‖W − u‖ is
proved. Therefore, the proof of Theorem 4.5 is ended.
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Table 1: Numerical error result for Example 5.1.

h ‖u − uh‖∞, 0 Cvge. rate
1/10 0.1220e − 003 —
1/20 0.7433e − 004 0.7147
1/40 0.3244e − 004 1.1962
1/80 0.1642e − 004 0.9828
1/160 0.7880e − 005 1.0588
1/320 0.3952e − 005 0.9955

5. Numerical Examples

In this section, we present numerical results for the Galerkin approximations which support
the theoretical analysis derived in Section 4.

Let Sh denote a uniform partition on spacial domain [0, a] and Xh the space of
continuous piecewise linear functions on Sh. In order to implement the discontinuous
Galerkin finite element approximation, we adapt the finite elements scheme in space domain
and the discontinuous finite element scheme along time domain. We associate shape function
of space Xh with the standard basis of hat functions on the uniform grid of size h = 1/n and
adapt the same shape functions along time axis. In our scheme, the finite element trial and
test spaces for Problem 1 are chosen to be the same.

Example 5.1. Consider the following equation:

∂u

∂t
=

(
− CD

1.6
0,x

x1.6

Γ(4.6)
− CD

0.8
0,x

x0.8

Γ(3.8)

)
u, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(x, 0) = x2, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = et, 0 ≤ t ≤ 1.

(5.1)

The exact solution of the equation is u(x, t) = e−tx2.
If we select kn = ch and note u(x, 0) is smooth enough, then we have the following

numerical results presented in Table 1.
Table 1 includes numerical calculations over a regular partition of [0, 1]. We can see

that, when the size of grid becomes smaller, the finite element approximation becomes better.
We can also observe that the experimental rates of convergence agree well with the theoretical
rates for the numerical solution.

Example 5.2. We consider another space fractional nonlinear Fokker-Planck differential
equation. The u(x, t) = e−tx3 is the exact solution of the following equation:

∂u

∂t
=
(
− CD

1.8
0,x

12etu
Γ(5.8)x1.2

+ CD
0.9
0,x

6etu
Γ(4.9)x2.1

)
u(x, t), x ∈ (0, 2), t ∈ [0, 1),

u(x, 0) = x3, 0 ≤ x ≤ 2,

u(0, t) = 0, u(1, t) = et, 0 ≤ t ≤ 1.

(5.2)
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Table 2: Numerical error result for Example 5.2.

h ‖u − uh‖∞, 0 Cvge. rate

1/10 0.0231 —

1/20 0.0127 0.8610

1/40 0.0067 0.9315

1/80 0.0034 0.9660

1/160 0.0017 0.9830

1/320 0.0009 0.9915

Table 3: Numerical error result for Example 5.3.

h ‖u − uh‖∞, 0 Cvge. rate

1/10 0.6125e − 003 —

1/20 0.4199e − 003 0.5447

1/40 0.1765e − 003 1.2500

1/80 0.0985e − 003 0.8425

1/160 0.0527e − 003 0.9003

We can also select kn = ch. Table 2 shows the error results at different sizes of space
grid. We can still observe that the experimental rates of convergence are inline with the
theoretical convergence rates.

Example 5.3. Equation u(x, t) = e−t(x2 − x1.9) is the exact solution of the following problem:

∂u

∂t
= − CD

1.6
0,x

(
x−0.4u + x1.5)u

Γ(4.6)
+

x0.9Γ(3.5)
Γ(4.6)Γ(1.9)

− x2

2
e−t, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(x, 0) = x2 − x1.9, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1.

(5.3)

Table 3 includes numerical calculations over a regular partition of [0, 1]. We can see that the
experimental numerical is valid and inline with the theoretical result. We can also see that
this method is valid for more generalized fractional diffusion-type equation, and the rate of
convergence depends on the highest order of the equation and the order of the shape function.
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