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We propose an effective method to design a modified particle swarm optimization (MPSO)
singularity control method for a fully parallel robot manipulator. By adopting MPSO to obtain
simple and effective estimated damping values, the result automatically adjusts the damping
value around a singular point and greatly improves the accuracy of system responses. This
method works by damping accelerations of the end effector, so that accelerations along the
degenerated directions are zero at a singular point. These velocities, however, may not be zero
in some situations, in which case, fluctuations will be encountered around a singular point. To
overcome this drawback, we propose a control scheme that uses both damped acceleration and
damped velocity, called the hybrid damped resolved-acceleration control (HDRAC) scheme. The
MPSO optimization method can immediately provide optimal damping factors when used in an
online application. Our proposed approach offers such superior features as easy implementation,
stable convergence characteristics, and good computational efficiency. The main advantage of the
HDRAC with MPSO in the 3RPS parallel manipulator control system is that it is not necessary
for the system to plan its path for avoiding the singular point; thus, the workspace can be
improved. Illustrative examples are provided to show the effectiveness of this HDRAC in practical
applications, and experimental results verifying the utility of the proposed control scheme are
presented.

1. Introduction

Parallel robotics offers the advantages of heavy load capacity, high rigidity, and low inertia.
The triaxial RPS parallel manipulator, which is equipped with revolute joints on the base
platform and spherical joints on the moving platform, has been widely applied to electronic
gaming machines, virtual reality movies, simulations of aircraft and vehicles, and so on. In
their research on 3RPS parallel robotics, Lee and Shah [1] used loop closure equations to
deduce kinematic equations for the relationship between link lengths and the position of the
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moving platform. In a separate study, they also deduced the dynamic equations that included
the drive forces and reacting forces of 3RPS parallel robotics in the case of inverse dynamics
[2, 3]. Following their work, Fang and Huang [4] simplified the mathematic models and
established the relationship among three input-output variables. Li and Xu [5, 6] deal with
the kinematic characteristics in terms of workspace and dexterity vary with differences in the
arrangement of actuators are investigated in detail.

Generally, there are three types of singularity of parallel mechanisms, that is,
inverse, direct, and combined singularities. In this study, we deal with the direct kinematic
singularities. Therefore, the author divided the procedure of finding “direct kinematic
singularities” of 3RPS platform mechanism. In horizontal position of the moving platform, to
begin with, he assumed the direction of the moving platform and determined its horizontal
position at this moment, that is, its projection on the fixed base. Then, since the direction of
the moving platform has been assumed, also, a moving platform remaining in this direction
can only translate vertically, it is possible to locate the limiting position while this direction
has always been kept; this is the boundary of workspace, which makes the determinant of
Jacobian matrix equal to zero and thus is the “direct kinematic singularities”.

There may exist singular configurations emerging from the motions of mechanisms,
and resolved-rate control and resolved-acceleration control [7–9] are the two general
approaches used to control robots. In the neighborhood of singularities, very high speeds
are required to produce even small changes in the position or orientation of the end effector.
In this paper, singular value decomposition (SVD) is used in order to show that fluctuations
around the singular point are due to unnecessary nonzero end-effector velocities along the
degenerated directions when the manipulator is at a singularity. This paper proposes a hybrid
damped resolved-acceleration control (HDRAC) scheme, which considers both damped
acceleration and velocity as a way to remove these unnecessary velocities.

Particle swarm optimization (PSO) is a stochastic population-based optimization
approach and was first published by Kennedy and Eberhart in 1995 [10, 11]. PSO has been
shown to be an efficient, roust, and simple optimization algorithm. Most studies of the PSO
are empirical with only a few theoretical analyses that concentrate on understanding particle
trajectories. A large amount of research has been proposed to improve the performance of
PSO. From these studies, much effort has been invested to obtain a better understanding of its
convergence properties. These studies concentrated mostly on a better understanding of the
basic PSO control parameters, namely, the acceleration coefficients, inertia weight, velocity
clamping, and swarm size [12–14]. In this paper, a modified PSO algorithm is proposed to
improve the searching ability and prevent from being trapped in a local optimum. The main
difference of the MPSO from the PSO is its fitness function which considers the “distance”
to avoid converging to a local optimum. From these empirical studies, it can be concluded
that the MPSO is sensitive to control parameter choices, specifically the inertia weight,
acceleration coefficients, and velocity clamping [15]. However, wrong initialization of these
parameters may lead to divergent or cyclic behavior.

In this study, singular value decomposition (SVD) is used to show that the
abovementioned fluctuation is due to unnecessary nonzero end-effector velocities along
the degenerated directions when the manipulator is at a singularity. The hybrid damped
resolved-acceleration control scheme (HDRAC), which considers both damped acceleration
and velocity, is proposed to remove these unnecessary velocities. Numerical simulations
and the results of experiments are compared in order to demonstrate the applicability and
effectiveness of the proposed algorithms at a singularity for a 3RPS parallel manipulator.
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Figure 1: The 3RPS parallel manipulator.
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Figure 2: Coordinate systems for the 3RPS manipulator.

2. Singularity Analysis of the 3RPS Parallel Manipulator

As shown in Figure 1, one end of the 3RPS parallel manipulator is a moving platform and
the other end is a fixed base. The moving platform is connected to the fixed base by three
limbs via three spherical joints (B1, B2, and B3) and three revolute joints (A1, A2, and A3).
Each limb consists of two links connected in a series by a prismatic joint. Figure 2 shows that
the origin P of the coordinate system [x y z]T is located at the mass center of the base
moving platform. The Cartesian coordinate vector [X Y Z α β γ]T denotes the fixed
coordinates, where [X Y Z]T and [α β γ]T denote, respectively, the vectors of position
and orientation. The fixed and moving platforms of the 3 RPS are circles with radius a and b,
respectively. The distance between the three spherical joints on the moving platform is w.
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2.1. Dynamics of the 3PRS Parallel Manipulator

Let us focus on the mass center Oi of the ith link, as shown in Figure 2. There are three
components of the weight force of the moving platform that act on the ith link as iFpix, iFpiy,
and iFpiz. The weight force of the ith link is Wi, the acting force of the separately excited
DC servomotor on the revolution parts is iF1motor, and the acting force on each vertical leg is
iF2motor. The 3RPS parallel manipulator dynamic motion of the links and moving platform is
described by using Newton-Euler equations, which are formulated by separately considering
the free-body diagrams of the links and the moving platform [16–19]. Through reduction and
incorporation, we can calculate the acting force on each vertical leg by using the following
force equation for the moving vertical leg [19]:

iF2motor = iFpix +RT
i Wlix, (2.1)

where

Ri =

⎡
⎢⎢⎣

cosφ cosψ cos θ − sinφ sinψ − cosφ cos θ sinψ − sinφ cosψ cosφ sin θ

sinφ cosψ cos θ + cosφ sinψ − sinψ cos θ sinφ + cosψ cosφ sinφ sin θ

− sin θ cosψ sin θ sinψ cos θ

⎤
⎥⎥⎦, (2.2)

Wli is the weight of the ith link, iFpix = D−1Q, and matrices D and Q are given in Appendix A.
With regard to the revolution parts, we have the equation for the first motor as follows:

la1 i̇a1 + ra1ia1 = VT − kb1ω, τ = Kt1ia1, (2.3)

where Kt1 is the torque coefficient, Kb1 is the back emf of the motor, la1 is the armature
inductance, ra1 is the armature resistance, VT is the terminal voltage, ω is the rotor speed,
and ia1 is the armature current.

2.2. Deduction of Direct Kinetic Singularities

In this section, we adopt a method [16–19] to formulate the direct singular position of the
3RPS parallel manipulator. The distance between any two points of B1, B2, and B3 is always
w, which gives us the following relationships:

f1 =
(
B1B2

)2
−w2 = 0,

f2 =
(
B2B3

)2
−w2 = 0,

f3 =
(
B3B1

)2
−w2 = 0.

(2.4)
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By differentiating (2.4) with respect to time, and writing them in matrix form, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

df1

dt

df2

dt

df3

dt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎣
a11 a12 0

0 a22 a23

a31 0 a33

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

θ̇1

θ̇2

θ̇3

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣
b11 b12 0

0 b22 b23

b31 0 b33

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ḋ1

ḋ2

ḋ3

⎫⎪⎪⎬
⎪⎪⎭

= A

⎧⎪⎪⎨
⎪⎪⎩

θ̇1

θ̇2

θ̇3

⎫⎪⎪⎬
⎪⎪⎭

+ B

⎧⎪⎪⎨
⎪⎪⎩

ḋ1

ḋ2

ḋ3

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

0

0

0

⎫⎪⎪⎬
⎪⎪⎭
,

(2.5)

where matrix A and B are given in Appendix B.
If the lengths of the three limbs are represented by di (i = 1, 2, 3) and the link’s length

is divided into two components, which are parallel and normal to the base and represented
by dip and din, respectively, then we have

(
d1p, d2p, d3p

)
= (d1 cos θ1, d2 cos θ2, d3 cos θ3),

(d1n, d2n, d3n) = (d1 sin θ1, d2 sin θ2, d3 sin θ3),
(2.6)

where θ1, θ2, and θ3 are the rotating angles of the revolute joint on the first, second, and third
limbs, respectively.

This study begins with projecting the moving platform onto the fixed base, where the
projections of B1, B2, and B3 are represented by B′1, B′2, and B′3, respectively. The length A1B

′
1

is d1p = d1 cos(180− θ1), and the lengths OB′1, OB′1, and OB′3 are represented by e1, e2, and e3,
respectively, which gives us

(e1, e2, e3) =
(
d1p + 1, d2p + 1, d3p + 1

)
. (2.7)

For convenience of calculation, another coordinate system (h1, h2, h3) is defined as follows
[19]:

(h1, h2, h3) = (d3n − d2n, d1n − d3n, d2n − d1n). (2.8)

We must note that this manipulator is capable of translating upward or downward without
changing the direction of the moving platform. The approach proposed here is to start by
assuming the direction of the moving platform, which is d2n − d1n, d3n − d2n, d1n − d3n, and
equating (2.6) and (2.7) with (2.4) to solve the position of the three spherical joints, e1, e2, and
e3. The elevation of the moving platform can be represented by the levels of three spherical
joints, as follows:

dave =
(d1n + d2n + d3n)

3
. (2.9)
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We then need to find a value for d1n + d2n + d3n that makes the determinant of matrix A equal
to zero. We have det(A) = a11a22a33 + a12a23a31, while using

(d1n, d2n, d3n) = dave +
(h2 − h3, h3 − h1, h1 − h2)

3
, (2.10)

and this determinant is a cubic function of dave. Calling this function F(dave), our purpose is
then to find dave, such that [19]

F(dave) = det(A) = Ω1d
3
ave + Ω2d

2
ave + Ω3dave + Ω4 = 0, (2.11)

where the coefficients are given in Appendix C. The process of finding a solution begins with
assuming (h1, h2, h3) values, and obtaining (e1, e2, e3) values and coefficients of the cubic
polynomial equation, so that finally the roots of dave that satisfy det(A) = 0 can be found.

3. Optimization Method: Modifying Particle Swarm Optimization

3.1. Particle Swarm Optimization

Birds (particles) flocking optimizes a certain objective function in a PSO system. Each agent
knows its best value so far (pbest) and its position. This information is an analogy of personal
experiences of each agent. Moreover, each agent knows the best value so far in the group
(gbest) among pbests. This information is an analogy of knowledge of how the other agents
around them have performed. The PSO concept [10, 11] consists of changing the velocity
of each particle toward its pbest and gbest locations. In the PSO, each particle moves to a new
position according to new velocity and the previous positions of the particle. This is compared
with the best position generated by previous particles in the fitness function, and the best one
is kept; so each particle accelerates in the direction of not only the local best solution but also
the global best position. If a particle discovers a new probable solution, other particles will
move closer to it to explore the region more completely in the process.

In general, there are three attributes, current position xj , current velocity vj , and
past best position pbestj , for particles in the search space to present their features. Each
particle in the swarm is iteratively updated according to the aforementioned attributes.
For example, [10–14], the jth particle is represented as xj = (xj,1, xj,2, . . . , xj,g) in the g-
dimensional space. The best previous position of the jth particle is recorded and represented
as pbestj = (pbestj,1, pbestj,2, . . . , pbestj,g). The index of best particle among all particles in the
group is represented by the gbestg . The rate of the position change (velocity) for particle j is
represented as vj = (vj,1, vj,2, . . . , vj,g). The modified velocity and position of each particle can
be calculated using the current velocity and distance from pbestj,g to gbestj,g as shown in the
following formulas [14]:

v
(t+1)
j,g = w · v(t)

j,g + c1Rand() ·
(
pbest

(t)
j,g − x

(t)
j,g

)

+c2Rand
∗() ·

(
gbest

(t)
j,g − x

(t)
j,g

)
,

x
(t+1)
j,g = x(t)

j,g + v
(t+1)
j,g ,

j = 1, 2, . . . , n; g = 1, 2, . . . , m, (3.1)
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where n is the number of particles in a group; m is the number of members in a particle;
t is the pointer of iterations (generations); v(t)

j,g is the velocity of the particle j at iteration t,

Vmin
g ≤ v

(t)
j,g ≤ Vmax

g ; w is the inertia weighting factor; c1, c2 are the acceleration constants;

Rand(), Rand∗() are random numbers between 0 and 1; x(t)
j,g is the current position of particle

j at iteration t; pbestj is the pbest of particle j; gbestg is the gbest of the group g.
In the above procedures, the parameter Vmax

g determines the resolution or fitness, with
which regions are searched between the present position and the target position. If Vmax

g is
too high, particles might fly past good solutions. If Vmax

g is too low, particles may not explore
sufficiently beyond local solutions.

The constants c1 and c2 represent the weighting of the stochastic acceleration terms
that pull each particle toward pbest and gbest positions. Low values allow particles to roam
far from the target regions before being tugged back. On the other hand, high values result in
an abrupt movement toward or past target regions.

Suitable selection of inertia weighting factor w provides a balance between global
and local explorations, thus requiring less iteration on average to find a sufficiently optimal
solution. As originally developed, w often decreases linearly from about 0.9 to 0.4 during
a run. In general, the inertia weighting factor w is set according to the following equation
[11, 12]:

w = wmax −
wmax −wmin

itermax
× iter, (3.2)

where itermax is the maximum number of iterations (generations), and iter is the current
number of iterations.

3.2. Modified Particle Swarm Optimization

The main point of the MPSO differs from the PSO to consider the “distance” in its fitness
function to avoid converging to a local optimum. Assign a rank (i.e., the number place
1, 2, 3, . . . , etc.) REk to the calculated error of each new individual, vk, k = 1, . . . ,PS, PS is the
population size. A combined population with 2×PS individuals is formed. Unlike previously
developed statistic methods, the concept of “distance” is added to the fitness function to
prevent from being trapped in a local minimum. The fitness score of the kth individual is
modified by [20, 21]

Fk = REk + ρ × RDk, k = 1, . . . , 2 × PS, (3.3)

where ρ is an adaptive decay scale, ρmax is set as 0.7, and ρmin is set as 0.005 in this paper. RDk

is the rank of Dk assigned to the kth individual, where Dk is the distance from the individual
to the current best solution vector and is given by

Dk = ‖vk − vbest‖, (3.4)

where vk is the vector of the kth individual in the combined population, and vbest is the
current best solution vector.
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An adaptive scheme is defined as [20]

ρΔ = R ×
(
ρmax − ρmin

)

gmax
,

ρ
(
g + 1

)
=

⎧
⎨
⎩
ρ
(
g
)
− ρΔ, Fmin

(
g
)
= Fmin

(
g − 1

)
,

ρ
(
g
)
, Fmin

(
g
)
< Fmin

(
g − 1

)
,

ρ
(
g + 1

)
= ρmin if ρ

(
g
)
− ρΔ < ρmin,

(3.5)

where ρΔ is the step size; Fmin is the minimum value of fitness functions; R is the regulating
scale and is set as 1.25 in this paper, and gmax is the maximum allowable number of iterations.

Individuals will be ranked ascending according to their fitness scores by a sorting
algorithm. The PS individuals are transcribed along with their fitness for the next generation.
If the new population does not include the current best solution, the best solution must be
replaced with the last individual in the new population. In addition, a gradually decreased
decay scale can satisfy a successive statistic searching process by first using the diversification
(bigger ρ) to explore more regions and then the intensification (smaller ρ) to exploit the
neighborhood of an elite solution. The current best solution (point A) for a minimum fitness
problem as shown in the Figure 3 may not reach the global optimum [20, 21], and there
are three electable solutions. Generally, solutions with slightly better fitness (point C or
B) prevailed, so the solution was trapped into the valley prematurely. The more attractive
solution (point G) is relatively far away from point A, but it nears the global optimal. To
prevent prematurity, point G with slightly worse fitness than C, it needs a higher rank to be
selected. That is, a higher RDk is awarded to a longer Dk.

Stopping Criteria

Stopping criteria is given in the following order:

(1) maximum allowable number of iterations reached.

(2) number of iterations reached without improving the current best solution.

Figure 4 shows the flow chart of the proposed algorithm.
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4. Singularity Control Scheme

4.1. Resolved-Acceleration Control

The relationship between the velocities of the mass center P of the moving platform and the
joint velocity q̇ for parallel manipulators can be represented as

ẋ ≡
[
ṙ

ω

]
= Jq̇, q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X

Y

Z

α

β

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, q̇ =
dq
dt

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vX

vY

vZ

ωα

ωβ

ωγ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.1)

where ṙ and ω are the linear and angular velocities, respectively. The Cartesian coordinate
vector q = (X,Y,Z, α, β, γ)T with six variables is chosen to describe the position and
orientation of the moving base, that is, q̇ is the velocity and J is the Jacobian matrix.
Differentiating (4.1) gives

a ≡
[
r̈

α

]
= Jq̈ + J̇q̇, (4.2)

where r̈ and α are the linear and angular accelerations, respectively.
Now, by expanding (2.1)-(2.3), we can obtain the dynamic equation of the manipulator

in the matrix form of

τ = M(q)q̈ +N(q̇,q) +G(q) = M(q)q̈ + f(q̇,q), (4.3)

where M(q) is the inertia matrix of the manipulator, N(q̇,q) contains the Coriolis and
centrifugal force/torque components, G(q) contains the gravity force/torque components,
and τ is the vector of actuator forces. The second-order nonlinear coupled dynamic equation
(4.3) can be linearized by inputting the inverse dynamics as follows:

τ = M(q)q̈d + f(q̇,q), (4.4)

where q̈d is the vector of the desired accelerations, so that q̈ = q̈d.
The resolved-acceleration control scheme [19] is

q̈d = J−1(ad − J̇q̇
)
= J−1a∗d, (4.5a)

with

ad =

[
r̈d

αd

]
+KD

[
ṙd − ṙ
ωd −ω

]
+KP

[
εr

εe

]
, a∗d =

(
ad − J̇q̇

)
, (4.5b)
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Figure 4: The flow chart of the MPSO.

where KD and KP are gain matrices, subscript d denotes the desired value, εr = εd − r is
the positional error, and εe is the orientation error. Unfortunately, this control scheme (4.5a)
breaks down when J−1 does not exist, which occurs at a singular configuration.

4.2. Damped Least-Square Method

In this section, the damped least-square method for the inverse problem of (4.1) is applied to
solve the following optimization problem [19]:

min
q̇ρ

(∥∥Jq̇ρ − ẋ
∥∥2 + ρ2∥∥q̇ρ

∥∥2
)
, (4.6)
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where ρ is the damping factor. The solution of (4.6) is

q̇ρ = J∗ρẋ, (4.7)

where

J∗ρ =
(
JT J + ρ2I

)−1
JT , (4.8)

which always exists for ρ /= 0. This solution is a compromise between the residual error, Jq̇− ẋ,
and the velocity q̇ of the point P .

Singular value decomposition (SVD) can provide insight into the singularities of the
inverse Jacobian [19, 22, 23]. This study deals with nonredundant manipulators, and there
are two orthogonal matrices U = [u1 · · ·u6] and V = [v1 · · ·v6], such that

J = UΣVT =
6∑
i=1

σiuivTi , (4.9)

where Σ = diag[σ1, . . . , σ6] and σi are the singular values of J. The vectors ui and vi are the ith
left and the ith right singular vectors, respectively. Substituting (4.9) into (4.8) gives

J∗ρ = VΣ∗ρU
T =

6∑
i=1

σi

σ2
i + ρ

2
viuTi , (4.10)

where Σ∗ρ = diag[σ1/(σ2
1 + ρ2), . . . , σ6/(σ2

6 + ρ2)]. When the manipulator is far away from a
singular point (i.e., σi � ρ), we have σi/(σ2

i + ρ
2) ≈ 1/σi, which implies that J∗ρ ≈ J−1. When

the manipulator is near a singular point, it can be seen from (4.10) that the solutions for the
velocity q̇ have finite values.

4.3. The Hybrid Damped Resolved-Acceleration Control Scheme

In this paper, we propose a hybrid damped resolved-acceleration control scheme (HDRAC)
that restricts velocity as well as acceleration. The HDRAC is used to solve the following
optimization problem:

min
q̈hd

(∥∥Jq̈hd − a∗d
∥∥2 + ρ2∥∥q̈hd + ρhdq̇

∥∥2
)
, (4.11)

where a∗
d

is defined in (4.2), ρ is the damping factor, and ρhd is an additional damping
factor which is dependent on the smallest singular value of the Jacobian matrix. The joint
acceleration commands q̈hd have to minimize (4.11). When the manipulator is far away
from the singular point, there is no unnecessary joint velocity, so ρhd will be zero. If the
manipulator is at a singular point, the unnecessary joint velocity will have to be removed
by joint acceleration commands, so ρhd must be specified. The redundant components of the
joint acceleration commands q̈hd will be equal to the unnecessary components of q̇ multiplied
by ρhd to minimize (4.11).
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Equation (4.11) can be rewritten as

min
q̈hd

∥∥∥∥∥

[
J

ρI6

]
q̈hd −

[
a∗
d

ρρhdq̇

]∥∥∥∥∥
2

, (4.12)

where I6 denotes a 6 × 6 identity matrix. In order to obtain the solutions for this optimization
problem in a closed form, the discrete-time technique will be used. With discrete-time control,
the back difference is always used to approximate the derivative, so that

q̈hd(k) =
1
Δt

(q̇hd(k) − q̇hd(k − 1)), (4.13)

where Δt is the sampling time. Through reduction and incorporation, the solution of the
optimization problem is [19]

q̈hd ≡ q̈da + q̈hdc = J∗ρa
∗
d − ρhdρ

2
(
JT J + ρ2I6

)−1
q̇. (4.14)

Meanwhile, we have denoted the second term as q̈hdc.
The SVD theory can be reformulated as

q̈hdc = ρhd

[
6∑
i=1

−ρ2

σ2
i + ρ

2

(
vTi q̇

)
vi

]
. (4.15)

The size of the deceleration region of the HDRAC can be adjusted by a linear function ρhd,
which is chosen as

ρhd =

⎧⎪⎨
⎪⎩

1
Δt

(
1 − σmin

δhd

)
, for 0 ≤ σmin < δhd,

0, for σmin ≥ δhd,
(4.16)

where σmin is the smallest singular value or singular parameter [19] of the Jacobian matrix.
δhd is a user-defined threshold value that represents the deceleration region. Unnecessary
joint velocities will be partially removed when σmin is in this region and wholly removed at
the next sampling interval when ρhd = 1/Δt. Note that the maximum value of ρhd is 1/Δt.
If the manipulator is at a singular point of σi � ρ > 0, i = 1, . . . , k, and j = k + 1, . . . , 6, then
(4.15) can be reduced to

q̈hdc ≈
−1
Δt

6∑
i=k+1

(
vTi q̇

)
vi. (4.17)

We will next prove that this term removes unnecessary joint velocities at the next
sampling interval. Multiplying both sides of (4.13) by vivTi yields

1
Δt

(
vTi q̇hd

)
vi =

(
vTi q̈hd

)
vi +

1
Δt

(
vTi q̇

)
vi. (4.18)
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By using an ideal computed-torque scheme, we force joint velocity vi (i.e., vTi q̇) along the
degenerated direction to zero at the next sampling interval. The joint acceleration command
along vi (i.e., the product of vTi q̈hd) should then be (−1/Δt)(vTi q̇), which follows from
(4.18). This implies that (4.17) will remove unnecessary joint velocities along all degenerated
directions vi, i = k + 1, . . . , 6. According to (4.18), the desired joint velocities along vi,
i = 1, . . . , k are also decreased by the amount of ΔtvTi q̈hd (or [ρ2/(σ2

i + ρ2)]vTi q̇). Note that
the maximum coefficient of (vTi q̇)vi in (4.15) is −1/Δt when σi = 0.

5. Stability Analysis

In this section, we will show that the HDRAC is asymptotically stable and discuss its
convergent property. Let the orientation error be εe = f(θe)ue, where ue and θe are the
rotational axis and the angle between the current orientation and the desired orientation,
respectively, and f(θe) = θe for very small values of θe.

Suppose that ρ > 0 when the manipulator is at a singular point. A sufficient condition
for the global asymptotic convergence of the HDRAC in the whole workspace of the
manipulator in a situation, where r̈d = ṙd = 0 and αd = ωd = 0, is that KD is a positive-definite
matrix and

KP =

[
kprI3 0

0 kpeI3

]
, (5.1)

where kpr and kpe are positive. The equilibrium is at the point where q̇ = 0. Let a Lyapunov
function be [24]

L(q, q̇) =
1
2
kprε

T
r εr + kpeE +

1
2
q̇T

(
JT J + ρ2I6

)
q̇, (5.2)

where εr = rd − r and E =
∫θe

0 f(φ)dφ = (1/2)θ2
e , for f(φ) = φ. Clearly, L(q, q̇) ≥ 0. It is

recognized that θ̇e = ue(ωd −ω). Differentiating E with respect to time, we obtain

Ė =
∂E

∂θe
θ̇e = εe(ωd −ω). (5.3)

Evaluating ∂L/∂t in terms of the solutions of (5.2) yields

∂L

∂t
= kprεTr (ṙd − ṙ) + kpef(θe)uTe (ωd −ω) + q̇T

(
JT J + ρ2I6

)
q̈ + q̇T J̇T Jq̇. (5.4)

If the ideal computed-torque control is used, q̈ = q̈hd, (4.14) can be substituted into (5.4),
which gives us [24]

∂L

∂t
= kprεTr ṙd + kpeε

T
e ωd + q̇T JT

[
r̈d

αd

]
+ q̇T JTKD

([
ṙd

ωd

]
− Jq̇

)
− ρhdρ2q̇T q̇. (5.5)
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If r̈d = ṙd = 0 and αd = ωd = 0, then

∂L

∂t
= −q̇T JTKDJq̇ − ρhdρ2q̇T q̇. (5.6)

Since KD is a positive-definite matrix, ∂L/∂t ≤ 0 for all q̇, and ∂L/∂t = 0 only for q̇ = 0.
Combining the above results and L(q, q̇) ≥ 0, it is shown by the Lyapunov theorem that q̇ is
asymptotically stable, and the equilibrium point is q̇ = 0. However, for the proposed control
scheme, ∂L/∂t has an additional term (−ρhdρ2q̇T q̇) more than that of the HDRAC, to ensure
that ∂L/∂t is zero only for q̇ = 0, that is, the equilibrium point is q̇ = 0.

6. Numerical Simulations and Experimental Results

The purpose of inverse dynamics analysis is to determine the required torque of the
separately-excited DC servomotor for a given motion trajectory of the moving platform.
The method [19] is adopted to analyze the 3RPS parallel manipulator dynamics of the links
and moving platform by using Newton-Euler equations of motion, which are formulated by
considering the free-body diagrams of the links and moving platform separately.

Let us focus on the mass center Oi of the ith link as shown in Figure 5, where iFpix,
iFpiy, and iFpiz are three components of the weight force of the moving platform acting on
the ith link, Wi is the weight force of the ith link, iF1motor is the acting force of the separately-
excited DC servomotor on the revolution parts, and the iF2motor is the acting force on each
vertical leg. Each link is placed along the Xi axis; therefore, its inertia tensor about Xi, Yi and
Zi is a diagonal matrix with diagonal elements Iixx,Iiyy, and Iizz. The angular momentum [19]
of the ith link is

Hi = (Iixxωix)ii +
(
Iiyyωiy

)
ji + (Iizzωiz)ki. (6.1)

The rate change of Hi is given by

Ḣi =
(
Ḣi

)
xyzi +ωi ×Hi. (6.2)

It follows from Figures 2 and 5 that the external moment about the mass center Oi of the ith
link is given by

∑
MOi =

irpi × iFpi, (6.3)

where irpi is the vector from Oi to Bi with respect to the link frame with unit vector
[ii ji ki].
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iFpiy

iFpix
iFpiz

Bi

ji

ii

ki

Oi

Wi

iF1motor
iF2motor

Figure 5: Free-body diagram of acting forces on the ith link.

The equations of rotational motion of the ith link can be obtained by equating the rate
of change of Hi with the external moment. By equating (6.2) with (6.3), we obtain

(
Iizzωizωiy − Iiyyωiyωiz

)
+ İixxωix + Iixxω̇ix =

(
irpiy

iFpiz − irpiz iFpiy
)
,

−(Iizzωizωix − Iixxωixωiz) + İiyyωiy + Iiyyω̇iy = −
(
irpix

iFpiz − irpiz iFpix
)
,

(
Iiyyωiyωix − Iixxωixωiy

)
+ İizzωiz + Iizω̇iz =

(
irpix

iFpiy − irpiy iFpix
)
.

(6.4)

Since İixx = İiyy = İizz = 0, iFpix passing through the mass center Oi do not generate torques,
and irpi only has values in the Xi-axis and couples with the separately-excited DC motor; the
above equations (6.4) can be simplified as follows:

irpix
iFpiz = Iizzωizωix − Iixxωixωiz − Iiyyω̇iy + Jm1ω̇iy + Bm1ωiy −KT1ia1 −KT2ia2,

irpix
iFpiy = Iiyyωiyωix − Iixxωixωiy + Iizzω̇iz + Jm1ω̇iz + Bm1ωiz −KT1ia1 −KT2ia2,

(6.5)

where Jm1 is the moment of inertia; Bm1 is the damped coefficient; KT1 and KT2 are the torque
constants; ia1 and ia2 are the armature currents.

We now process to find the total force acting on the mass center Oi as follows:

iFpiy =

{
Iiyyωiyωix − Iixxωixωiy + Iizzω̇iz + Jm1ω̇iz + Bm1ωiz −KT1ia1 −KT2ia2

}
irpix

,

iFpiz =

{
Iizzωizωix − Iixxωixωiz − Iiyyω̇iy + Jm1ω̇iy + Bm1ωiy −KT1ia1 −KT2ia2

}
irpix

.

(6.6)
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Once the force terms iFpiy and iFpiz have been obtained in (6.6) of link motion, one should
take into consideration the force term iFpix. The angular momentum [19] of the moving
platform is described by

Hp =
(
Ipxxωpx

)
ip +

(
Ipyyωpy

)
jp +

(
Ipzzωpz

)
kp, (6.7)

where Ipxx, Ipyy, and Ipzz are, respectively, the mass moments of inertia of the moving
platform about the X, Y , and Z axes. The rate change of angular momentum is

Ḣp =
(
Ḣp

)
xyzp

+ωp ×Hp. (6.8)

The total torque acting on mass center P of the moving platform is given by

∑
MP =

3∑
i=1

pPi × pFpi, (6.9)

where PPi is the vector from P to Bi, i = 1, 2, 3.

6.1. Numerical Simulations

In this section, numerical simulations are offered to demonstrate the applicability and
effectiveness of the proposed algorithms of the 3RPS manipulator platform. The physical
model is shown in Figure 6. The moving platform of the manipulator is a circle with radius
b = 22.08 cm, and the distance between any two of the three spherical joints on the moving
platform is w = 36.16 cm. The fixed base is an inscribed triangle within a circle with radius
a = 41.72 cm. In the physical model, the constraints of the lengths d1, d2, and d3 are ±10 cm,
and the revolution angles θ1, θ2, and θ3 are ±20◦. A program has been written in order to
calculate the singular point. It was found that when d1 = 0.0717 cm, d2 = 9.7488 cm, and
d3 = 0.0771 cm, and θ1 = 19.9834◦, θ2 = 0.2438◦, and θ3 = 19.9074◦, then one singular point
exists in the workspace. That is, the center coordinate of the moving platform with respect to
the fixed base is (1.6144, −2.7933, 0.0308), and the unit is cm. In this study, point P is required
to move at a constant speed from the starting point (0, 0, 0), to then pass through the singular
point (1.6144, −2.7933, 0.0308), and then it arrives at its final point (5, −5, 5).

In this study, the HDRAC scheme is used to solve the damping factors ρ by means of
the MPSO optimization method. Damping factors ρ are not fixed values and are used to damp
the accelerations of point P when the manipulator is in the neighborhood of singularities. The
dependence of the damping factors on the accelerations can change. For on-line applications,
the optimization method can immediately provide optimal damping factors.

Figures 7(a)–7(f) show numerical simulations of the trajectories and velocities
along the X-axis, Y -axis, and Z-axis for the controller incorporating HDRAC with fixed
damping values, and for the controller incorporating HDRAC with MPSO. For the controller
incorporating HDRAC with MPSO, when the manipulator is near the singular point, the
system functions are more smooth and there is no fluctuation.
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Figure 6: Physical model of the 3RPS parallel manipulator.

Table 1: The characteristic of position limiter sensor.

Static platform error due to arm position sensor errors (mm),
this error represents the vector conversion error from joint
coordinates to the platform reference coordinates

Translation (mm) 1 (max)
Rotation (deg) 1.5 (max)
Linear position static accuracy (mm) ± 3

Repeatability
Translation (mm) 0.15 (max)
Rotation (deg) 0.2 (max)

Resolution
Translation (mm) 0.1
Rotation (deg) 0.15

6.2. Experimental Setup

In order to demonstrate the proposed control rules, PC-based experimental equipment was
devised. The parallel manipulator was coupled with a DC motor. The translation position
was measured by a sensor. A photo of the experimental equipment is shown in Figure 6.
In general, such parallel robotic is controlled by hydraulic servo, that is, to control the
extension or retraction of the limb through driving with hydraulic system. Limiter sensor
or measuring tools are generally installed on the link of the limb to enable accurate changes
in its length when controlling positions; the characteristic of position limiter sensor is shown
in the Table 1. The controller is based on a PC with Pentium-586 CPU. In order to measure
the angle, angular speed, position, and velocity of the manipulator, the interface device was
implemented by the motion control card PCI-7344. The graphical software of Simulink and
the control software LABVIEW were used to implement the proposed control rule. At the
same time, this software also determines the linear converts between the physical scales and
measured voltages from sensors.

A block diagram of the overall system with the controller incorporating HDRAC with
MPSO and acceleration feedback is illustrated in Figure 8. The experimental instrument of
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Figure 7: Numerical simulations for the controller incorporating HDRAC with fixed damping values and
the controller incorporating HDRAC with MPSO. (a) Translation responses along the X-axis. (b) Velocities
along the X-axis. (c) Translation responses along the Y -axis. (d) Velocities along the Y -axis. (e) Translation
responses along the Z-axis. (f) Velocities along the Z-axis.
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Figure 8: Block diagram of the controller incorporating HDRAC with MPSO and acceleration feedback.

the 3RPS parallel manipulator was divided into three parts: an actuator, parallel manipulator,
and controller. The actuator part consisted of a DC motor and a driver. The parameters of the
DC motor were Kt = 0.21 Nm/A, Jm = 0.000037 Nms2, Bm = 0.000013 Nms/rad, la = 2.4 mH,
and ra = 4.8Ω.

6.3. Experimental Results

Figures 9(a)–9(f) show the experimental result of trajectory and velocity along the X-
axis, Y -axis, and Z-axis with the DARAC controller that was obtained by using the 3RPS
parallel manipulator, in which the end effector passed through a singular point. The DARAC
controller functioned, such that joint acceleration along the degenerated direction was
damped when the end effector was close to the singular point. It was found that when
the manipulator approached the singular point, the system was unstable for the DARAC
controller and displayed great fluctuations.

Figures 10(a)–10(f) show the experimental result of trajectory and velocity along the
X-axis, Y -axis, and Z-axis for the controller incorporating HDRAC with fixed damping
values and for the controller incorporating HDRAC with MPSO. It was found that, by
using the controller incorporating HDRAC with MPSO, a very good performance could be
achieved under the same conditions and that the system was generally stable and had very
slight fluctuations. These experimental results demonstrate that the HDRAC overcomes the
problem of fluctuation when the manipulator arrives at the singular point. It also proves that
the proposed controller incorporating HDRAC with MPSO has great robustness.

7. Conclusion

This paper proposes a simple HDRAC scheme with an MPSO method, which has the merits
of offering a high-quality solution and better computation efficiency in the neighborhood of
a singular point. The proposed method directly damps velocities and accelerations, such that
unnecessary joint velocities are removed at a singular point. The proposed HDRAC scheme
with MPSO control is asymptotically stable and remedies the problem of fluctuation.



20 Mathematical Problems in Engineering

2.45 2.5 2.55 2.6 2.65 2.7 2.75

Time (s)

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
Po

si
ti

on
in

th
e
X

-a
xi

s

(a)

2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8

Time (s)

−6

−4

−2

0

2

4

6

8

V
el

oc
it

y
in

th
e
X

-a
xi

s

(b)

2.45 2.5 2.55 2.6 2.65 2.7 2.75

Time (s)

−3

−2.95

−2.9

−2.85

−2.8

−2.75

−2.7

Po
si

ti
on

in
th

e
Y

-a
xi

s

(c)

2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8

Time (s)

−8

−6

−4

−2

0

2

4

6

V
el

oc
it

y
in

th
e
Y

-a
xi

s

(d)

2.45 2.5 2.55 2.6 2.65 2.7 2.75

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

Po
si

ti
on

in
th

e
Z

-a
xi

s

(e)

2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8

Time (s)

−4

−2

0

2

4

6

8

V
el

oc
it

y
in

th
e
Z

-a
xi

s

(f)

Figure 9: Experimental results for the controller incorporating DARAC with fixed damping values. (a)
Translation responses along the X-axis. (b) Velocities along the X-axis. (c) Translation responses along the
Y -axis. (d) Velocities along the Y -axis. (e) Translation responses along the Z-axis. (f) Velocities along the
Z-axis.
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Figure 10: Experimental results for the controller incorporating HDRAC with fixed damping values and
the controller incorporating HDRAC with MPSO. (a) Translation responses along the X-axis. (b) Velocities
along the X-axis. (c) Translation responses along the Y -axis. (d) Velocities along the Y -axis. (e) Translation
responses along the Z-axis. (f) Velocities along the Z-axis.
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In this study, HDRAC with MPSO is used to solve the damping factors ρ by the
optimization method. The damping factors ρ are not fixed values for on-line applications,
and the optimization method can immediately provide optimal damping factors. Because
it shortens the detection processes, the MPSO method can satisfactorily predict optimal
damping values.

Comparisons between our numerical simulations and experimental results showed
that the proposed method offers greater stability and efficiency and solves the problems of
instability and fluctuation more easily and quickly. The main advantage of using a controller
incorporating HDRAC with MPSO is that the 3RPS parallel manipulator control system does
not need to plan its path to avoid any singular point, because the controller will command
the manipulator to move near the singular point with minimum trajectory errors. Moreover,
in comparison with a controller incorporating HDRAC with fixed damping values, the
proposed approach makes it easier and simpler to improve the performance of the motion
in the neighborhood of singular points.

Appendices

A.

The items contained in matrix D are as follows:

D1i = pPix Rpi21 − pPiy Rpi11, D2i = − pPix Rpi31, D3i = pPiy Rpi31, D4i = Ri11,

D5i = Ri21, D6i = Ri31.

(A.1)

The items contained in matrix Q are as follows:

Q1 = Ipzzω̇pz +
(
Ipyy − Ipxx

)
ωpyωpx

−
3∑
i=1

{
pPix

(
Rpi22

iFpiy +Rpi23
iFpiz

)
− pPiy

(
Rpi12

iFpiy +Rpi13
iFpiy +Rpi13

iFpiz
)}

+ Jm1ω̇pz + Bm1ωpz −KT1ia1 −KT2ia2,

Q2 = Ipyyω̇py +
(
Ipxx − Ipzz

)
ωpxωpz +

3∑
i=1

pPix
(
Rpi32

iFpiy +Rpi33
iFpiz

)

× Jm1ω̇py + Bm1ωpy −KT1ia1 −KT2ia2,

Q3 = Ipxxω̇px +
(
Ipzz − Ipyy

)
ωpyωpz −

3∑
i=1

pPiy
(
Rpi32

iFpiy +Rpi33
iFpiz

)

× Jm1ω̇px + Bm1ωpx −KT1ia1 −KT2ia2,

Q4 = mpapx −
3∑
i=1

(
Ri12

iFpiy +Ri13
iFpiz

)
,



Mathematical Problems in Engineering 23

Q5 = mpapy −
3∑
i=1

(
Ri22

iFpiy +Ri23
iFpiz

)
,

Q6 = mpapz −
3∑
i=1

(
Ri32

iFpiy +Ri33
iFpiz

)
+Wp.

(A.2)

B.

The items contained in matrix A are as follows:

a11 = 2[cos(α2 − α1)(d1 sin θ1 + d1d2 sin θ1 cos θ2) − (d1 sin θ1 + d1d2 sin θ2 cos θ1)],

a12 = 2[cos(α2 − α1)(d2 sin θ2 + d1d2 sin θ2 cos θ1) − (d2 sin θ2 + d1d2 sin θ1 cos θ2)],

a22 = 2[cos(α3 − α2)(d2 sin θ2 + d2d3 sin θ2 cos θ3) − (d2 sin θ2 + d2d3 sin θ3 cos θ2)],

a23 = 2[cos(α3 − α2)(d3 sin θ3 + d2d3 sin θ3 cos θ2) − (d3 sin θ3 + d2d3 sin θ2 cos θ3)],

a31 = 2[cos(α1 − α3)(d1 sin θ1 + d1d3 sin θ1 cos θ3) − (d1 sin θ1 + d1d3 sin θ3 cos θ1)],

a33 = 2[cos(α1 − α3)(d3 sin θ3 + d1d3 sin θ3 cos θ1) − (d3 sin θ3 + d1d3 sin θ1 cos θ3)].

(B.1)

The items contained in matrix B are as follows:

b11 = [cos θ1(d2 cos θ2 + 1) + 2(d1 + cos θ1 − d2 sin θ1 sin θ2)],

b12 = [cos θ2(d1 cos θ1 + 1) + 2(d2 + cos θ2 − d1 sin θ1 sin θ2)],

b22 = [cos θ2(d3 cos θ3 + 1) + 2(d2 + cos θ2 − d3 sin θ2 sin θ3)],

b23 = [cos θ3(d2 cos θ2 + 1) + 2(d3 + cos θ3 − d2 sin θ2 sin θ3)],

b31 = [cos θ1(d3 cos θ3 + 1) + 2(d1 + cos θ1 − d3 sin θ1 sin θ3)],

b33 = [cos θ3(d1 cos θ1 + 1) + 2(d3 + cos θ3 − d1 sin θ1 sin θ3)].

(B.2)

C.

The coefficients are as follows:

Ω1 = −3
4

[
3(e1e2e3) + e1

(
e2

2 + e
2
3

)
+ e2

(
e2

1 + e
2
3

)
+ e3

(
e2

1 + e
2
2

)]
,

Ω2 =
3
4

[
e1h1

(
e2

3 + e3 − e2
2 − e2

)
+ e2h2

(
e2

1 + e1 − e2
3 − e3

)
+ e3h3

(
e2

2 + e2 − e2
1 − e1

)]
,
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Ω3 =
1
4

{
− (h1h2 + h2h3 + h3h1)[e1(e2e3 − e2 − e3 + 4)

+e2(e1e3 − e1 − e3 + 4) + e3(e1e 2−e1 −e2 + 4)]

+ h1(h3 − h2)
[
e3

(
e2

2 + e2 − 2
)
− e2

(
e2

3 + e3 − 2
)]

+ h2(h1 − h3)
[
e1

(
e2

3 + e3 − 2
)
− e3

(
e2

1 + e1 − 2
)]

+h3(h2 − h1)
[
e2

(
e2

1 + e1 − 2
)
− e1

(
e2

2 + e2 − 2
)]}

,

Ω4 = −16
9

{
[h1h2(h2 − h1) + h2h3(h3 − h2) + h3h1(h1 − h3)]

× [e1(e2e3 − e2 − e3 + 4) + e2(e1e3 − e1 − e3 + 4) + e3(e1e2 − e1 − e2 + 4)]

+ 3e2e3(h2 − h3)
2(h3 − h1)(e3 − 1) + 3e2e3(h2 − h3)

2(h1 − h2)(e2 − 1)

+ 3e1e3(h3 − h1)
2(h2 − h3)(e3 − 1) + 3e1e3(h3 − h1)

2(h1 − h2)(e1 − 1)

+3e1e2(h1 − h2)
2(h2 − h3)(e2 − 1) + 3e1e2(h1 − h2)

2(h3 − h1)(e1 − 1)
}
.

(C.1)
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