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This paper proposes combining the biometric fractal pattern and particle swarm optimization
(PSO)-based classifier for fingerprint recognition. Fingerprints have arch, loop, whorl, and
accidental morphologies, and embed singular points, resulting in the establishment of fingerprint
individuality. An automatic fingerprint identification system consists of two stages: digital image
processing (DIP) and pattern recognition. DIP is used to convert to binary images, refine out noise,
and locate the reference point. For binary images, Katz’s algorithm is employed to estimate the
fractal dimension (FD) from a two-dimensional (2D) image. Biometric features are extracted as
fractal patterns using different FDs. Probabilistic neural network (PNN) as a classifier performs
to compare the fractal patterns among the small-scale database. A PSO algorithm is used to tune
the optimal parameters and heighten the accuracy. For 30 subjects in the laboratory, the proposed
classifier demonstrates greater efficiency and higher accuracy in fingerprint recognition.

1. Introduction

Physiological biometrics for uniquely recognizing humans include fingerprints, facial
features, hand and palm geometry, deoxyribonucleic acid (DNA), retina, and vein
authentication. These information are permanent and unique, and distinguish individuals
from one another, and are also used to identify individuals in groups in home or office
buildings, industrial networks, and other controlled systems [1–4]. The fingerprint-based
technique is widely accepted due to its easy collection, low cost, and lack of change with age.
Its techniques have become popular for biometric security systems, including the fingerprint-
based security system, identity (ID) card, and smart-gate system. The identification function
authenticates users from the fingerprint alone without the smartcards, usernames, or ID
numbers. The template is compared to all records within the database and the closest match
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decision is returned. The closest match within the allowed specific threshold is deemed to
be individual and authenticated. The fingerprint identification problem can be considered
a pattern recognition problem on a one-to-one basis. The goal of this study is to create an
efficient and automatic technique as well as a default security level (the safest mode) for
fingerprint matching.

In the literatures, many automatic techniques have been proposed to solve this
problem. Fingerprints can be represented by the ridge flow and direction, morphologies
(arch, loop, whorl, and accidental), and the position of the singular points [5, 6]. These
features result in fingerprint individuality. Fingerprint orientation models, such as the
gradient-based method and 2D Fourier expansion and Taylor expansion with sine and cosine
nonlinear functions, are used to describe overall ridge topology, which can be extracted from
the gradients of image gray intensity changes [2, 5, 6]. However, the first method is very
sensitive to noise in poor-quality images. For an N×N image size, the second method results
in 2× (2N + 1)2 model coefficients needed to estimate a series of basis functions and memory
requirements. Then, significant features are identified using the multilayer artificial neural
networks (MLNN), fuzzy logic and neural networks, principal component analysis (PCA),
and support vector machines (SVM) [3, 7–10]. The above-mentioned methods provide
promising results for fingerprint recognition.

A fingerprint image conceals several spiral-segment schemes alternating along the
anatomical structure of human thumbs and fingers. To reduce a large mount of parameters
requirement, Katz’s algorithm [11, 12] is used to estimate the fractal dimensions (FDs) from
a 2D image. An attractor with different FDs and scaling factors is used to extract features and
form various fractal patterns whose can enhance the confidentiality and uniqueness. Then, a
classifier performs to compare the fractal patterns among the current database and decides
the identity of the user’s fingerprint. In real-world applications, the adaptive classifier should
be applied in a dynamical modeling system with current database changes. It also has abilities
of machine learning and pattern matching, and has effect in real-time detection. The PNN
classifier is identified as a nonlinear dynamic system in pattern recognition and allows add-
in and delete-off training patterns. Its advantages have simple algorithm and less parameters
adjustment. In this study, PSO algorithm is used to automatically estimate the best network
parameters and adjust the desired targets. It is a population-based method to search an
optimal solution in the high-dimensional problem space [13–18]. It can be suitable to apply
in a dynamical modeling environment and can overcome the problems of over learning,
learning speed, and local minimum in the large-scale training patterns. For a laboratory scale
database of 30 subjects, the testing results will show computational efficiency and accurate
recognition.

2. Method Description

2.1. Digital Image Preprocessing (DIP)

DIP can be divided into the image processing and reference point location. Fingerprint images
are captured from subjects using an optical fingerprint reader (OFR), as shown in Figure 1.
It is a complementary metal-oxide-semiconductor (CMOS) sensor (StarTex Engineering Inc.,
FU320U, PIV-071006) with a 500 × 500 pixel-sized window, 8 bites/pixel, maximum 256 gray
scales, 500 dpi image resolution, and 1 : 1 image ratio of length to width, capturing a right or
left thumbprint and translating the information into the computer. Many popular techniques
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Figure 1: Optical fingerprint reader.

have been presented for image processing and reference point location (RPL), and are not
described here [19–22]. By the way, RPL is used to locate a unique reference point, providing
a stable sampling window for fingerprint analysis. A reference point can quickly be detected
in the capture area. Central to the detected reference point, the captured template is defined
as a 256 × 256 matrix, in which each element represents a binary value at the nth row and nth
column. The key features can be further extracted using this specific window.

2.2. Fractal Dimension (FD)-Based Features

A fingerprint is a pattern of interleaved ridges (dark lines) and valleys (bright lines) that
are often run in parallel, and are sometimes bifurcate and terminative, as shown in Figure 2.
We can consider a ridged curve to which it is impossible to attribute a length. This curve
could be locally rectifiable. Let construct a sequence Φ of graph Γ so the maximal length of
the segments of Φ is less than ε. We know the Hausdorff distance dist(Γ,Φ) tends to zero.
So graph Γ is of infinite length if the length L(Φ) tends to infinity [23]. Suppose Φ is a non-
constant continuous function with a limited interval, and curve Γ is its graph, then

Δ(Γ) = lim
ε→ 0

sup
(

2 −
log Varε(Φ)

log ε

)
(2.1)

Varε(Φ) is the variation of a function Φ on a segmented graph. If Φ is a constant function, the
variation is zero for all ε. In particular, if Φ is differentiable, then Varε(Φ) ≈ ε and the limit is
one, corresponding to the dimension of a graph of finite length. We define the dimension as

1 ≤ Δ(Γ) ≤ 2. (2.2)

For a 2D binary image with N ×N pixels (image size = 256 × 256 and resolution = 500 dpi in
this study), the f(n,m) has binary value of 1 at each row, n = 1, 2, 3, . . . ,N,m = 1, 2, 3, . . . ,N,
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Figure 2: 2D fingerprint image (image size = 256 × 256 and resolution = 500 dpi in this study).

and Mn is the total number of the binary value 1 (dark portion). Katz’s algorithm [11] is used
to estimate the fractal dimension dn, which can be directly estimated as

dn =
log10(N)

log10(Mn)
, Mn /= 0, n = 1, 2, 3, . . . ,N. (2.3)

A set of N rows, each FD is generated using (2.3), and each one can construct the fractal
pattern Φ as

Φ =
N⋃
n=1

(
n′, dn

)
, (2.4)

n′ =
[

(dn − 1)
(n + 1) − n

]
× n = (dn − 1) × n, (2.5)

where n′ is the horizontal scaling factor (HSF) satisfying 0 < n′ < N. Equation (2.4) is utilized
to construct the various fractal patterns of subjects’ thumbs in the laboratory. The stored data
can be reduced from N ×N to 1 ×N for each subject. Fractal features as codes are not binary
or integer values, and they can enhance confidentiality and uniqueness.

2.3. Adaptive Probabilistic Neural Network

The radial basis network (RBN) has a family network that can be designed in two different
ways, including the generalized regression neural network (GRNN) and probabilistic neural
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network (PNN) [24–30]. The first network is often used for function approximation. It gives
a sufficient number of hidden neurons and can approximate a linear or nonlinear function
to an arbitrary accuracy. Radial basis functions (RBFs) create RBN with as many radial basis
neurons as there are input vectors in the training data. The second network can be used
for control system, identification, and classification applications [24, 25, 29]. Its design is
straightforward and does not depend on training. A PNN is guaranteed to converge to a
Bayesian classifier providing it is given enough training data, and the number of radial
basis neurons is proportional to the complexity of the problem. RBNs may require more
neurons than standard feed-forward backpropagation networks, but they can be designed in
a fraction of the time it takes to train standard feed-forward networks. They work best when
many training data are available. The assignments of the network parameters are usually
based-on the overall statistical calculation from a precollected batch of training data. In a
continuous modeling system, an adaptive PNN is used to design the fractal pattern classifier
for fingerprint identification, as shown in Figure 3.

A general structure of the PNN consists of four layers, including the input layer, pat-
tern layer, summation layer, and output layer, that have the parallelism distributed process,
learning, and pattern recognition ability. Let input pattern Φ = [ϕ1, ϕ2, ϕ3, . . . , ϕn, . . . , ϕN]
connect to the PNN. The input layer transmits pattern Φ to the PNN, and its Euclidean
distance (ED) to the recorded patterns are computed in each pattern node (also called hidden
node) at pattern layer as

ED(k) =

√√√√ N∑
n=1

(
ϕn −wIH

kn

)2
, (2.6)

where the weights wIH
kn are created by the training patterns Φ(k) = [ϕ1(k), ϕ2(k),

ϕ3(k), . . . , ϕN(k)], k = 1, 2, 3, . . . , K. The output of pattern node Hk can be computed by [30]

Hk =
ξ

1 + exp
[
ED(k)2/σ2

k

] , (2.7)

where ξ is the recognition coefficient with an interval of (0,∞); σk is the smoothing parameter
and σ1 = σ2 = · · · = σk = · · · = σK = σ. The activation function Hk is applied to the ED(k)
between the input pattern and K training patterns. It is inversely proportional to the ED(k). If
ED(k) approaches zero, theHk will be a maximum value, meaning the input pattern is similar
to the kth training pattern. This concept can be used for analyzing pattern relationships.
Equation (2.7) can enhance the contrast, and its intensity adjustment is a technique for
mapping an original intensity value to a specific range. The range of the Hk is in the interval
[0, ξ/2]. The coefficient ξ is selected to � 1 to make Hk more distinguishable. The output
Oj, j = 1, 2, 3, . . . , K, can be computed by

Oj =

∑K
j=1 w

HS
jk
Hk∑K

k=1 Hk

=
Sk∑K
k=1 Hk

. (2.8)



6 Mathematical Problems in Engineering

Parameter
estimation

Hk. . .H2H1

Sk. . .S2S1

OkOk−1O2O1

ϕNϕN−1ϕnϕ2ϕ1Input
layer

Pattern
layer

Summation
layer

Output
layer

Error
signal

Desired
output

∑
Hk

Sk−1

Hk−1

. . .

. . . . . .

Figure 3: The structure of adaptive PNN.

Equation (2.8) expresses each predicted output component wHS
jk

is a function of the
corresponding output Oj associated with each stored pattern Φ(k). The output Oj always
lies between the minimum and maximum value (0 ≤ Oj ≤ 1).

For an online application, the adaptive mechanism may be suitable to apply in a
dynamical modeling system, such as a smoothing parameter assignment and automatic tar-
gets adjustment. In the adaptation strategy, the choice of smoothing parameter significantly
affects the network outcome and further refines the accuracy. Literatures have proposed
optimum methods to automatically tune the parameter σ and desired targets, such as the
traditional genetic algorithm (GA) [13, 14], gradient/steepest descent method [24, 25], and
least mean square (LMS) method [30]. The optimization techniques are used to minimize the
object function, which is defined as the mean squared error function (MSEF)

MSEF =
1
K

K∑
k=1

K∑
j=1

[
Tj(k) −Oj(k)

]2
, (2.9)

where Tj(k) is the desired target for the kth training pattern. The optimal parameter σ is
intended to minimize the MSEF. However, MSEF is a nonlinear function and its partial
differential equation is difficult to obtain. Traditional GA provides a promising result for
optimizing a multivariate function, but it cannot guarantee convergence to a global optimal
solution and is time-consuming.

The particle swarm optimization (PSO) algorithm is one of the evolutionary
optimization techniques, which has been proven to be efficient in solving optimization
problems, such as featuring nonlinearity, multiple optima, nondifferentiability, and high
dimensionality [15–18, 28]. It guides searches using multiple particles rather than individuals
and can avoid trapping at a local minimum. Each particle represents a candidate solution to
the optimization problem. Particles modify their search points around a multidimensional
search space until unchanged positions have been achieved. Each position is adjusted by
dynamically altering the velocity of each particle, according to its flying experience and the
flying experiences of the other particles in the search space. The PSO algorithm can handle
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the nonlinear optimization problem with only a small program. The best σ as a position
associated with the best object function is called the global best σbest. The σbest is determined
and updated during the search. The modification of parameter σ can be represented by the
concept of velocity. Velocity Δσtg of each agent can be represented as

Velocity : Δσt+1
g = ωΔσtg + c1rand1

(
σbestg − σtg

)
+ c2rand2

(
σbest − σtg

)
, (2.10)

Position : σt+1
g = σtg + Δσt+1

g , (2.11)

where ω is the inertia weight controlling the impact of the current velocity on the next
velocity, c1 and c2 are the positive acceleration parameters pulling each particle toward the
best positions, rand1 and rand2 are the uniformly random numbers between 0 and 1, σti is the
current position of agent gth at iteration number t, g = 1, 2, 3, . . . , G, G is the population size,
σbestg is the individual best.

The second part of (2.10) is the “cognitive component”, representing the personal
thinking of each particle. It encourages the particles to move toward their own best positions
found so far. The third part is the “social component”, representing the collaborative effect
of the particles to find the global optimal solution. To efficiently convergence to the global
optimal solution, PSO with time-varying acceleration coefficients (TVAC) is used to improve
the performance of PSO. Parameters c1 and c2 can be modified as [17, 18]

c1 = (b1 − a1)
t

tmax
+ a1,

c2 = (b2 − a2)
t

tmax
+ a2,

(2.12)

where a1, b1, a2, and b2 are constant, tmax is the maximum number of allowable iterations,
t = 1, 2, 3, . . . , tmax. With a large cognitive component and small social component, particles
are allowed to move around the search space at the beginning stage. Through reducing the
cognitive component and increasing the social component, a small cognitive component and
a large social component allows the particles to converge to the global optimal at the end
of search. The selected values are used in this study with changing c1 from 2.5 to 0.5 and
changing c2 from 0.5 to 2.5. These experience values find the best ranges with numerical
experiments [17].

There are two convergent conditions to terminate the PSO algorithm: (a) the objective
function MSEF is less than the prespecified value; (b) the number of iteration achieves the
maximum allowable number tmax. Thus, the optimal parameter σ can be found to minimize
the MSEF.

3. PSO-Based Classifier Construction

3.1. Experimental Setup

In this study, an optical sensor is capable of digitizing the fingerprint on contact. Live-scanned
images are directly acquired by sensing the tip of the fingers. A fixed fingertip location and
a specific sampling window are used to capture a reliable fingerprint image. Each image



8 Mathematical Problems in Engineering

Subject 1 Subject 2

Subject 3 Subject 4

(a) Fingerprint image

Subject 1

Subject 2

Subject 3

Subject 4

Horizontal scaling factor

1.22

1.11

1

1.22

1.11

1

1.22

1.11

1

1.22

1.11

1
0 2 4 6 8 10 12 14 16 18 20 22 24

Fr
ac

ta
ld

im
en

si
on

(b) Fractal pattern

Figure 4: Original fingerprint image and their fractal patterns for four subjects.

is binarized using image adjustment with a binarization threshold associating bright pixels
with binary value 0 and the dark pixels with binary value 1, translating the information into
the computer. The RPL process is used to specify a 256(horizontal) × 256(vertical) sampling
window for key features extraction. Let f(n,m), n = 1, 2, 3, . . . , 256, m = 1, 2, 3, . . . , 256, the
sampling window is defined as a 256 × 256 matrix, where each element represents a binary
value at the nth row and mth column. Equation (2.3) is used to extract the fractal dimensions
in the row-direction, and the number of fingerprint features can be reduced from 256 × 256 to
256 × 1. Then (2.4) and (2.5) are used to form the various fractal patterns. For 30 subjects in the
laboratory, a small-scale database was used to validate the fingerprint identification. These
fingerprints can be classified into three typologies such as loop, whorl, and arch, and the
major typology is loop. For example, Subject 1∼Subject 4, various fractal patterns are shown
in Figure 4, where horizontal scaling factors (HSFs) are chaotic orbit satisfying 0 < n′ < 24,
and fractal dimensions (FDs) obey 1.00 < dn < 1.22. According to the various fractal patterns,
we can systematically create training data. We have 30-set training patterns for the proposed
classifier.

We proposed a PSO-based classifier with 256 input nodes, 30 hidden nodes, 31
summation nodes, and 30 output nodes. The overall nodes are fully connected among the
four layers. In the learning stage, the classifier structure was determined based on the number
of input-output training data. According to the various fractal patterns, we can systematically
create training pattern Φ(k) using (2.4) and (2.5). The associated fractal patterns could be
expressed as weights wIH

kn
, k = 1, 2, 3, . . . , 30, n = 1, 2, 3, . . . , 256, between the input and

hidden layer. The desired targets could also be expressed as weights wHS
jk , j = 1, 2, 3, . . . , 30,

between the hidden and summation layer. These are encoded as binary values with signal “1”
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Figure 5: The best smoothing parameters and mean squared errors versus the number of iterations.

denoting the 30 identities while the rest of the weights are zero. For 30 subjects classification,
each output automatically adjusts to approach its desired target wjj(wjj = Tj(j) = 1) after the
training stage. The final output Oj(j) of each subject will be equal or close to value 1 using
(2.8). Finally, a threshold of rejection is used to confirm the decision, can be defined as

Oj > threshold θ = 0.95 × 1
30

30∑
j=1

Oj

(
j
)
, (3.1)

where Oj is the output of PNN in the recalling stage. That means Oj is maximum one and
is up to the threshold θ = 0.95 × average output, we have a security criterion to judge the
identity of the user’s fingerprint. A threshold θ is as high as possible and approaches to 1.

3.2. PSO-Based Classifier Training

The related data of the PSO-based classifier are shown in Table 1. The related parameters
of the PSO algorithm with TVAC are given by population size G = 20 for each iteration,
inertia weight ω = 0, coefficients a1 = 2.5, b1 = 0.5 (acceleration parameter c1 = 2.5∼0.5),
a2 = 0.5, b2 = 2.5 (acceleration parameter c2 = 0.5∼2.5) [17], and number of iterations tmax

= 100 for the optimal parameter estimation. The convergent condition is set a predefined
number of iterations tmax to terminate the evolution computations. The optimal parameter
σbest = 0.0129 minimizes the classification error. These promising results could be obtained
after at least 5 successive learning stages. Figure 5 shows the best smoothing parameters and
mean squared errors versus the number of iterations, respectively. It can rapidly converge for
less than 22 learning iterations and takes 2.5790 seconds to classify the 30 training data. The
performance of the traditional PSO algorithm is poor with constant acceleration coefficients
c1 = 2.5 and c2 = 0.5 or c1 = 0.5 and c2 = 2.5. It can quickly search an optimum solution,
but it is easy to trap local minimum (σbest = 0.0733, CPU time = 2.3130 seconds). In PSO
optimization research, PSO can find a good solution for considerable two control factors,
such as the number of iterations and population sizes. However, only slight improvement
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Table 1: Related data of the PSO-based classifier and traditional classifier.

Method
Task Proposed PSO-based classifier Traditional classifier
Training data 30 30

Activation function

(2.7) Gaussian function:

ξ = 5, Hk = exp

[
−ED(k)2

2σ2
k

]

k = 1, 2, 3, . . . , K, k = 1, 2, 3, . . . , K,
σ1 = σ2 = · · · = σK = σ. σ1 = σ2 = · · · = σK = σ.

Parameter assignment

ω ∈ [0, 1] σ(t = 0) = 0.4∼1.0
rand1 ∈ [0, 1] η(t = 0) = 1.0
rand2 ∈ [0, 1] η(t → ∞) = 0.1

a1 = 2.5, b1 = 0.5 η = 0.1∼1.0
c1 = 2.5∼0.5

a2 = 0.5, b2 = 2.5
c2 = 0.5∼2.5
tmax = 100

Parameter estimation PSO algorithm with TVAC Least mean square (LMS) Algorithm

Convergent condition
The number of iterations achieve the

maximum allowable number
tmax = 100

MSEF is less than the prespecified
value 10−3

Training iteration Figure 5 Figure 5
Optimal parameter 0.0129 0.0131∼0.0302
Training time (sec) 2.5790 2.4210

Note: Time-Varying Learning Rate: η(t) = η0 exp(−t/τ).

of optimal parameters was obtained by increasing above two control factors (G = 20∼40
and tmax = 50∼100). Its training stage increases the number of evolution computations to
minimize the MSEF, and average CPU time also increases from 2.50 seconds to 20.00 seconds.
For experimental analysis, the global optimum solution can be achieved with time-varying
cognitive components and social component, whose are the sensitivities on the global search.

For comparison with learning performance, the least mean square (LMS) algorithm is
also considered. However, it is difficult to derive the partial derivative of the nonlinear MSEF
as (2.9). To simplify the learning procedure, the first partial derivatives of MSEF are used in
this study [24–26]. The best smoothing parameters and mean squared errors versus the num-
ber of iterations are also shown in Figure 5. For the convergent condition MSEF ≤ 10−3, the tra-
ditional classifier converges to the optimal solution for less than 40 learning iteration. It takes
2.4210 seconds to classify the 30 training data. The optimal parameter σbest = 0.0302 mini-
mizes the MSEF. The choice of initial smoothing parameter σ(t = 0), learning rate, and conver-
gent condition will affect the learning performance, which are determined by the experience
formulas or trial-and-error procedure. In addition, its can rapidly approach to near optimal
solution with time-varying learning rates from η(t = 0) = 1.0 to η(t → ∞) = 0.1, the so-called
search-convergence rule. However, its solution is monotone decreasing and is easy to trap the
local minimum. As the number of training data increases, the training process and classifica-
tion efficiency become the main problem. These comparisons show the proposed PSO-based
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Figure 6: Fingerprint images with/without attrition lines and their fractal patterns.

classifier has better performance than other methods. Therefore, we can reduce the stress of
the operator waiting for the convergence of the learning and construction procedure.

4. Experimental Results

The proposed PSO-based classifier was developed on a PC Pentium-IV 3.0 GHz with
480 MB RAM and Matlab software (MathWorks Inc.), which is a well-known image
processing workspace to examine the proposed PSO-based classifier. The definition of
fingerprint identification is to verify a live-scanned fingerprint against the previously
enrolled fingerprint, checking if they came from the same finger. It requires a security
criterion to judge the identity of the fingerprint. The specific threshold is set via the
experimental results using (3.1). To set the “threshold value” and test the “security level”,
the testing images were produced with attrition lines to evaluate the security criterion. The
performances of the proposed classifier were tested as detailed below.

A laboratory-scale database of 30 subjects is used to validate the fingerprint
identification system. A live-scanned fingerprint could be captured with noise, including
naturally occurring dirt, bruises, and moisture on the image. This means these noises will
affect the security level. Therefore, a critical threshold is important in further fingerprint
recognition. To test the robustness of the proposed classifier, attrition lines were randomly
generated on the scanned image. Twelve randomly selected subjects’ fingerprints involving
attrition lines were used to examine the security level. Synthetic attrition lines are gradually
increased, and are randomly added to the original fingerprint image, as shown in Figure 6. It
can be seen that the fractal dimensions of original image are between 1.00 and 1.11, and the
fractal dimensions increase as the attrition lines increase, as shown in dash-line portion. If
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Table 2: Compares the results of the proposed method and other methods.

Security level A B C D E
The number of attrition lines 0 1 2∼3 4 ≥5

Proposed PSO-based
classifier

Accuracy (%) 100% 100% 100% 16.7% 0.00%

Average output 1.0000 1.0000 0.9583 0.1667 0.0000

Threshold value 0.95 0.95 0.91 — —

LMS-based classifier
Accuracy (%) 100% 100% 100% 16.7% 0.00%

Average output 0.9998 0.9920 0.9044 0.2981 0.0000

Threshold value 0.95 0.95 0.86 — —

Traditional PSO-based
classifier

Accuracy (%) 100% 100% 75% 16.7% 0.00%

Average output 0.9998 0.9920 0.8310 0.3187 0.0000

Threshold value 0.95 0.95 0.79 — —
Note: (1) Accuracy(%) = (Nr/Nt) × 100%, Nr : the number of correctly discriminated fingerprints; Nt: total number of
fingerprints.
(2) Average Output = (1/30)

∑30
j=1 Oj(j).

(3) Symbol—means that overall outputs of the classifier are close, and the threshold values is unable to determine.

the fingerprint is clear and average, the fractal pattern will not corrupt the previous features.
To ensure the identification quality, a critical threshold of rejection is important in further
fingerprint recognition. The average outputs decay as the attrition lines increase. Security
levels A to C are the safest mode with less than three attrition lines, providing 100% accuracy
and an average output = 0.9583. The experimental results show the proposed PSO-based
classifier has high identification confidence using the threshold θ = 0.91, as shown in Table 2.

To develop an automatic fingerprint identification system, a designer can set the
“security level” according to the enrolled quality. The following five conditions may occur
[31].

(i) Level A. Enrollment of user’s fingerprint is successful and very clear, has stable
features, and is suitable for further identification.

(ii) Level B. Enrollment of user’s fingerprint is successful and clear, has stable features,
and is suitable for further identification.

(iii) Level C. Enrollment of user’s fingerprint is average with enough stable features for
further identification.

(iv) Level D. Fingerprint may not be very clear, or may not have very good features. At
this level, some subjects may not be able to be identified.

(v) Level E. Fingerprint is not clear. The false rejection for this level is higher than other
levels.

Fingerprint enrollment is the key stage in the biometric security system. If a user
does not place her/his finger on the OFR (FU320U, PIV-071006) correctly, the RPL program
will prompt user with a warning message (at least three times and check the enrolled
quality). The enrollment will be finished when a fingerprint enough stable features for further
identification. The proposed PSO-based classifier could tolerate minor noise. The default
security level could be set to “level C” for a real world application. It provides reliable
and accurate results, and the matching compares a live-scanned fingerprint with the specific
threshold enhances the authentication.



Mathematical Problems in Engineering 13

5. Conclusion

A PSO-based classifier using fractal patterns and an adaptive PNN to recognize fingerprints
has been proposed. Live-scanned images are captured using an optical fingerprint reader. The
digital image processing is used to enhance the image, convert to a binary image, and locate
the reference point. Katz’s algorithm is used to estimate the fractal dimensions from a two-
dimensional image. The fractal patterns are not binary or integer values, whose can avoid
becoming duplicated and decoded templates. They can retain the main particular features
with FDs and HSFs. The proposed PSO-based classifier can also tolerate minor noise. The
default security level C could be set for automatic fingerprint identification with average and
enough stable features. For a small-scale database, the examination results show efficiency
and higher accuracy. The proposed method has been verified in a personal computer-based
biometric security system. The framework could implement in a portable device or hardware
device, such as digital signal processor (DSP) and field-programmable gate array (FPGA).
It can be further integrated into the identity access management system, industrial security
network, and smartgate system.
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