
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 346965, 12 pages
doi:10.1155/2010/346965

Research Article
A New Global Optimization Algorithm for
Solving Generalized Geometric Programming

San-Yang Liu, Chun-Feng Wang, and Li-Xia Liu

Department of Mathematical Sciences, Xidian University, Xi’an 710071, China

Correspondence should be addressed to Chun-Feng Wang, wangchunfeng09@126.com

Received 13 October 2010; Accepted 23 December 2010

Academic Editor: J. J. Judice

Copyright q 2010 San-Yang Liu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A global optimization algorithm for solving generalized geometric programming (GGP) problem
is developed based on a new linearization technique. Furthermore, in order to improve the
convergence speed of this algorithm, a new pruning technique is proposed, which can be used
to cut away a large part of the current investigated region in which the global optimal solution
does not exist. Convergence of this algorithm is proved, and some experiments are reported to
show the feasibility of the proposed algorithm.

1. Introduction

This paper considers generalized geometric programming GGP problem in the following
form:

(GGP)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min φ0(x)

s.t. φj(x) ≤ βj , j = 1, . . . , m,

X0 =
{
x : 0 < l0 ≤ x ≤ u0},

(1.1)

where φj(x) =
∑Tj

t=1 cjt
∏n

i=1x
γjti
i , cjt, βj , γjti ∈ R, t = 1, . . . , Tj , i = 1, 2, . . . , n, j = 0, 1, . . . , m.

Generally speaking, GGP problem is a non convex programming problem, which
has a wide variety of applications, such as in engineering design, economics and statistics,
manufacturing, and distribution contexts in risk management problems [1–4].

During the past years, many local optimization approaches for solving GGP problem
have been presented [5, 6], but global optimization algorithms based on the characteristics of
GGP problem are scarce. Maranas and Floudas [7] proposed a global optimization algorithm
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for solving GGP problem based on convex relaxation. Shen and Zhang [8] presented
a method to globally solve GGP problem by using linear relaxation. Recently, several branch
and bound algorithms have been developed [9, 10].

The purpose of this paper is to introduce a new global optimization algorithm for
solving GGP problem. In this algorithm, by utilizing the special structure of GGP problem, a
new linear relaxation technique is presented. Based on this technique, the initial GGP problem
is systematically converted into a series of linear programming problems. The solutions of
these converted problems can approximate the global optimal solution of GGP problem by
successive refinement process.

The main features of this algorithm are: (1) a new linearization technique for solving
GGP problem is proposed, which applies more information of the functions of GGP problem,
(2) the generated relaxation linear programming problems are embedded within a branch
and bound algorithm without increasing the number of variables and constraints, (3) a new
pruning technique is presented, which can be used to improve the convergence speed of
the proposed algorithm, and (4) numerical experiments are given, which show that the
proposed algorithm can treat all of the test problems in finding global optimal solution within
a prespecified tolerance.

The structure of this paper is as follows. In Section 2, first, we construct the lower
approximate linear functions for the objective function and the constraint functions of GGP
problem; then, we derive the relaxation linear programming (RLP) problem of GGP problem;
finally, to improve the convergence speed of our algorithm, we present a new pruning
technique. In Section 3, the proposed branch and bound algorithm is described, and the
convergence of the algorithm is established. Some numerical results are reported in Section 4.

2. Linear Relaxation and Pruning Technique

The principal structure in the development of a solution procedure for solving GGP
problem is the construction of lower bounds for this problem, as well as for its partitioned
subproblems. A lower bound of GGP problem and its partitioned subproblems can be
obtained by solving a linear relaxation problem. The proposed strategy for generating this
linear relaxation problem is to underestimate every nonlinear function φj(x) (j = 0, . . . , m)
with a linear function. In what follows, all the details of this procedure will be given.

Let X = [x, x] represents either the initial box X0, or modified box as defined for some
partitioned subproblem in a branch and bound scheme.

Consider term
∏n

i=1x
γjti
i in φj(x) (j = 0, . . . , m). Let

∏n
i=1x

γjti
i = exp(yjt), then, we have

yjt =
n∑

i=1

γjti lnxi. (2.1)

From (2.1), we can obtain the lower bound and upper bound of yjt as follows:

y
jt
=

n∑

i=1

min
{
γjti lnxi, γjti lnxi

}
, yjt =

n∑

i=1

max
{
γjti lnxi, γjti lnxi

}
. (2.2)

To derive the linear relaxation problem, we will use a convex separation technique and
a two-part relaxation technique.
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2.1. First-Part Relaxation

Let yj = (yj1, . . . , yjTj ), then φj(x) can be expressed in the following form:

φj(x) =
Tj∑

t=1

cjt
n∏

i=1

x
γjti
i =

Tj∑

t=1

cjt exp
(
yjt

)
� fj
(
yj

)
. (2.3)

For fj(yj), we can derive its gradient and the Hessian matrix:

∇fj
(
yj

)
=

⎛

⎜
⎜
⎜
⎜
⎝

cj1 exp
(
yj1
)

...

cjTj exp
(
yjTj

)

⎞

⎟
⎟
⎟
⎟
⎠

,

∇2fj
(
yj

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cj1 exp
(
yj1
)

cj2 exp
(
yj2
)

. . .

cjTj exp
(
yjTj

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(2.4)

Therefore, by (2.4), the following relation holds:

∥
∥
∥∇2fj

(
yj

)∥∥
∥ ≤ max

1≤t≤Tj

∣
∣cjt
∣
∣max
1≤t≤Tj

exp
(
yjt

)
. (2.5)

Let λj = max1≤t≤Tj |cjt|max1≤t≤Tj exp(yjt) + 0.1, then, for all yj ∈ Yj � [y
j
, yj], we have

∥
∥
∥∇2fj

(
yj

)∥∥
∥ < λj . (2.6)

Thus, the function (1/2)λj‖yj‖2+fj(yj) is a convex function on Yj . Consequently, the function
fj(yj) can be decomposed into the difference of two convex functions, that is, fj(yj) is a d.c.
function, which admits the following d.c. decomposition:

fj
(
yj
)
= gj
(
yj

) − hj

(
yj

)
, (2.7)

where

gj
(
yj

)
=

1
2
λj
∥
∥yj

∥
∥2 + fj

(
yj

)
, hj

(
yj

)
=

1
2
λj
∥
∥yj

∥
∥2. (2.8)

Let yjmid = (1/2)(y
j
+ yj). Since gj(yj) is a convex function, we have

gj
(
yj

) ≥ gj
(
yjmid

)
+∇gj

(
yjmid

)T(
yj − yjmid

)
� gl

j

(
yj

)
. (2.9)
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In addition, for yjt ∈ [y
jt
, yjt], it is not difficult to show

(

y
jt
+ yjt

)

yjt − y
jt
yjt ≥ y2

jt. (2.10)

Furthermore, we can obtain

Tj∑

t=1

[(

y
jt
+ yjt

)

yjt − y
jt
yjt

]

≥ ∥∥yj

∥
∥2. (2.11)

Since λj > 0, it follows that

hl
j

(
yj

)
� 1

2
λj

Tj∑

t=1

[(

y
jt
+ yjt

)

yjt − y
jt
yjt

]

≥ 1
2
λj
∥
∥yj

∥
∥2 = hj

(
yj

)
. (2.12)

Thus, from (2.7), (2.9), and (2.12), we have

fl
j

(
yj

)
� gl

j

(
yj

) − hl
j

(
yj

) ≤ fj
(
yj

)
. (2.13)

Hence, by (2.1), (2.3), and (2.13), the first-part relaxation Lj(x) of φj(x) can be obtained as
follows

φj(x) = fj
(
yj

)
= gj
(
yj

) − hj

(
yj

)

≥ gl
j

(
yj

) − hl
j

(
yj

)

= gj
(
yjmid

)
+∇gj

(
yjmid

)T(
yj − yjmid

) − 1
2
λj

Tj∑

t=1

[(

y
jt
+ yjt

)

yjt − y
jt
yjt

]

=
Tj∑

t=1

[

cjt exp
(
yjmid(t)

)
+ λjyjmid(t) − 1

2
λj

(

y
jt
+ yjt

)]

yjt

+ gj
(
yjmid

) − ∇gj
(
yjmid

)T
yjmid +

1
2
λj

Tj∑

t=1

y
jt
yjt

=
Tj∑

t=1

[

cjt exp
(
yjmid(t)

)
+ λjyjmid(t) − 1

2
λj

(

y
jt
+ yjt

)] n∑

i=1

γjti lnxi

+ gj
(
yjmid

) − ∇gj
(
yjmid

)T
yjmid +

1
2
λj

Tj∑

t=1

y
jt
yjt

=
n∑

i=1

⎛

⎝
Tj∑

t=1

(

cjt exp
(
yjmid(t)

)
+ λjyjmid(t) − 1

2
λj

(

y
jt
+ yjt

))

γjti

⎞

⎠ lnxi

+ gj
(
yjmid

) − ∇gj
(
yjmid

)T
yjmid +

1
2
λj

Tj∑

t=1

y
jt
yjt � Lj(x).

(2.14)
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2.2. Second-Part Relaxation

Consider the function lnxi on the interval [xi, xi]. As we all know, its linear lower bound
function and upper bound function can be derived as follows:

Ki

(
xi − xi

)
+ lnxi ≤ lnxi ≤ Kixi − 1 − lnKi, (2.15)

where Ki = (lnxi − lnxi)/(xi − xi).
In Lj(x) (j = 0, . . . , m), let

αji =
Tj∑

t=1

(

cjt exp
(
(
yjmid(t)

)
+ λjyjmid(t) − 1

2
λj

(

y
jt
+ yjt

)))

, i = 1, . . . , n. (2.16)

Then, from (2.14) and (2.15), we can obtain the linear lower bound function of φj(x) denoted
by φl

j(x) as follows:

φl
j(x) �

n∑

i=1

αjiϕi(xi) + gj
(
yjmid

)
+∇gj

(
yjmid

)T
yjmid +

1
2
λj

Tj∑

t=1

y
jt
yjt, (2.17)

where

ϕi(xi) =

⎧
⎨

⎩

Ki

(
xi − xi

)
+ lnxi, if αji ≥ 0,

Kixi − 1 − lnKi, else.
(2.18)

Obviously, φl
j(x) ≤ Lj(x) ≤ φj(x).

Consequently, the corresponding approximation relaxation linear programming (RLP)
problem of GGP problem on X can be obtained

(RLP)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min φl
0(x)

s.t. φl
j(x) ≤ βj , j = 1, . . . , m,

x ∈ X.

(2.19)

Theorem 2.1. Let δi = xi − xi, i = 1, . . . , n. Then, for all x ∈ X, the difference of φj(x) and φl
j(x)

satisfies φj(x) − φl
j(x) → 0 as δi → 0, i = 1, . . . , n, j = 0, . . . , m.

Proof. For all x ∈ X, let

Δ = φj(x) − φl
j(x) = φj(x) − Lj(x) + Lj(x) − φl

j(x), (2.20)

and let Δ1 = φj(x) − Lj(x), Δ2 = Lj(x) − φl
j(x). Then, it is obvious that we only need to prove

Δ1 −→ 0, Δ2 −→ 0, as δi −→ 0. (2.21)
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To this end, first, we consider the difference Δ1 = φj(x) − Lj(x). By (2.7), (2.13), and (2.14), it
follows that

Δ1 = φj(x) − Lj(x)

=
Tj∑

t=1

cjt
n∏

i=1

x
γjti
i −
⎡

⎣

Tj∑

t=1

(

cjt exp
(
(
yjmid(t)

)
+ λjyjmid(t) − 1

2
λj

(

y
jt
+ yjt

)))

×
n∑

i=1

γjti lnxi + gj
(
yjmid

) − ∇gj
(
yjmid

)T
yjmid +

1
2
λj

Tj∑

t=1

y
jt
yjt

⎤

⎦

=
Tj∑

t=1

cjt exp
(
yjt

) −
⎡

⎣

Tj∑

t=1

(

cjt exp
(
(
yjmid(t)

)
+ λjyjmid(t) − 1

2
λj

(

y
jt
+ yjt

)))

yjt

+gj
(
yjmid

) − ∇gj
(
yjmid

)T
yjmid +

1
2
λj

Tj∑

t=1

y
jt
yjt

⎤

⎦

= fj
(
yj

) − fl
j

(
yj

)

= gj
(
yj

) − gl
j

(
yj

)
+
1
2
λj
∥
∥yj

∥
∥2 − 1

2
λj

Tj∑

t=1

[(

y
jt
+ yjt

)

yjt − y
jt
yjt

]

≤ (∇gj(ξ) − ∇gj
(
yjmid

))T(
yj − yjmid

)
+
1
2
λj

∥
∥
∥
∥yj − y

j

∥
∥
∥
∥

2

≤ 2λj
∥
∥ξ − yjmid

∥
∥
∥
∥yj − yjmid

∥
∥ +

1
2
λj

∥
∥
∥
∥yj − y

j

∥
∥
∥
∥

2

≤ 5
2
λj

∥
∥
∥
∥yj − y

j

∥
∥
∥
∥

2

,

(2.22)

where ξ is a constant vector, and satisfies gj(yj) − gj(yjmid) = ∇gj(ξ)
T (yj − yjmid).

By the definition of yjt, we have ‖yj − y
j
‖ → 0 as δi → 0 (i = 1, . . . , n). Thus, we have

Δ1 → 0 as δi → 0 (i = 1, . . . , n).
Second, we consider the difference Δ2 = Lj(x) − φl

j(x). From the definitions of Lj(x)

and φl
j(x), it follows that

Δ2 = Lj(x) − φl
j(x)

=
n∑

i=1

αji

(
lnxi − ϕi(xi)

)

=
∑

αji≥0
αji

(
lnxi −Ki

(
xi − xi

) − lnxi

)
+
∑

αji<0

αji(lnxi −Kixi + 1 + lnKi).

(2.23)

By [8], we know that | lnxi −Ki(xi − xi) − lnxi| → 0 and | lnxi −Kixi + 1 + lnKi| → 0,
as δi → 0 (i = 1, . . . , n). Thus, we have Δ2 → 0 as δi → 0 (i = 1, . . . , n).
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Taken togethe the above, it implies that

Δ = Δ1 + Δ2 −→ 0, as δi −→ 0 (i = 1, . . . , n), (2.24)

and this completes the proof.

From Theorem 2.1, it follows that φl
j(x) will approximate the function φj(x) as δi →

0 (i = 1, . . . , n).
Based on the above discussion, it can be seen that the optimal value of RLP problem

is smaller than or equal to that of GGP problem for all feasible points, that is, the optimal
value of RLP problem provides a valid lower bound for the optimal value of GGP problem.
Thus, for any problem (P), let us denote the optimal value of (P) by V (P), then we have
V (RLP) ≤ V (GGP).

2.3. Pruning Technique

In order to improve the convergence speed of this algorithm, we present a new pruning
technique, which can be used to eliminate the region in which the global optimal solution
of GGP problem does not exist.

Assume that UB is current known upper bound of the optimal value φ∗
0 of GGP

problem. Let

τi = α0iKi, i = 1, . . . , n,

T =
n∑

i=1

Ti, where Ti =

⎧
⎨

⎩

α0i
(
lnxi −Kixi

)
, if α0i ≥ 0,

α0i(−1 − lnKi), else,

T = T + g0
(
y0mid

) − ∇g0
(
y0mid

)T
y0mid +

1
2
λ0

T0∑

t=1

y
0t
y0t.

(2.25)

Theorem 2.2. For any subrectangle X = (Xi)n×1 ⊆ X0 with Xi = [xi, xi]. Let

ρk = UB −
n∑

i=1,i /= k

min
{
τixi, τixi

} − T, k = 1, . . . , n. (2.26)

If there exists some index k ∈ {1, . . . , n} such that τk > 0 and ρk < τkxk, then there is no globally
optimal solution of GGP problem on X1; if τk < 0 and ρk < τkxk, then there is no globally optimal
solution of GGP problem on X2, where

X1 =
(
X1

i

)

n×1
⊆ X, with X1

i =

⎧
⎪⎨

⎪⎩

Xi, i /= k,
(
ρk
τk

, xk

]⋂
Xi, i = k,

X2 =
(
X2

i

)

n×1
⊆ X, with X2

i =

⎧
⎪⎨

⎪⎩

Xi, i /= k,
[

xk,
ρk
τk

)⋂
Xi, i = k.

(2.27)
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Proof. First, we show that for all x ∈ X1, φ0(x) > UB. When x ∈ X1, consider the kth
component xk of x. Since xk ∈ (ρk/τk, xk]

⋂
Xk, it follows that

ρk
τk

< xk ≤ xk. (2.28)

Note τk > 0, we have ρk < τkxk. From the definition of ρk and the above inequality, we obtain

UB <
n∑

i=1,i /= k

min
{
τixi, τixi

}
+ τkxk + T

≤
n∑

i=1

τixi + T

=
n∑

i=1

τiϕi(xi) + g0
(
y0mid

) − ∇g0
(
y0mid

)T
y0mid +

1
2
λ0

T0∑

t=1

y
0t
y0t

= φl
0(x).

(2.29)

This implies that, for all x ∈ X1, φ0(x) ≥ φl
0(x) > UB ≥ φ∗

0. In other words, for all x ∈ X1,
φ0(x) is always greater than the optimal value of GGP problem. Therefore, there is no globally
optimal solution of GGP problem on X1.

For all x ∈ X2, if τk < 0 and ρk < τkxk with some k, by arguments similar to the above,
we can derive that there is no globally optimal solution of GGP problem on X2.

3. Algorithm and Its Convergence

In this section, based on the former relaxation linear programming (RLP) problem, a branch
and bound algorithm is presented to globally solve GGP problem. In order to ensure
convergence to the global optimal solution, this algorithm needs to solve a sequence of (RLP)
problems over partitioned subsets of X0.

In this algorithm, the set X0 will be partitioned into subrectangles. Each subrectangle
is concerned with a node of the branch and bound tree, and is associated with a relaxation
linear subproblem.

At stage k of the algorithm, suppose that we have a collection of active nodes denoted
by Qk. For each node X ∈ Qk, we will have computed a lower bound for the optimal
value of GGP problem via solution LB(X) of RLP problem, so that the lower bound of the
optimal value of GGP problem on the whole initial box region X0 at stage k is given by
LBk = min{LB(X), for all X ∈ Qk}. Whenever the solution of RLP problem for any node
subproblem turns out to be feasible to GGP problem, we update the upper bound UB if
necessary. Then, for each stage k, the active nodes collection Qk will satisfy LB(X) < UB,
for all X ∈ Qk. We now select an active node to partition its associated rectangle into two
subrectangles according to the following branching rule. For such two subrectangles, the
fathoming step is applied in order to identifywhether the subrectangles should be eliminated.
In the end, we obtain a collection of active nodes for the next stage. This process is repeated
until convergence is obtained.
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3.1. Branching Rule

As we all know, the critical element in guaranteeing convergence to the global optimal
solution is the choice of a suitable partitioning strategy. In this paper, we choose a simple
and standard bisection rule. This rule is sufficient to ensure convergence since it drives all
the intervals to a singleton for all variables. Consider any node subproblem identified by
rectangle

X =
{
x ∈ Rn | xi ≤ xi ≤ xi, i = 1, . . . , n

} ⊆ X0. (3.1)

The branching rule is as follows.

(a) Let s = argmax{xi − xi, i = 1, . . . , n}.

(b) Let γs satisfy γs = (1/2)(xs + xs).

(c) Let

X1 =
{
x ∈ Rn | xi ≤ xi ≤ xi, i /= s, xs ≤ xs ≤ γs

}
,

X2 =
{
x ∈ Rn | xi ≤ xi ≤ xi, i /= s, γs ≤ xs ≤ xs

}
.

(3.2)

Through this branching rule, the rectangle X is partitioned into two subrectangles
X1 and X2.

3.2. Algorithm Statement

Based on the former results, the basic steps of the proposed global optimization algorithm
are summarized as follows. Let LB(X) refer to the optimal value of RLP problem on the
rectangle X.

Step 1. Choose ε > 0. Find an optimal solution x0 and the optimal value LB(X0) for RLP
problem with X = X0. Set LB0 = LB(X0). If x0 is feasible to GGP problem, then update the
upper bound UB0 = φ0(x0). If UB0 − LB0 ≤ ε, then stop: x0 is a global ε-optimal solution of
GGP problem. Otherwise, set Q0 = {X0}, F = ∅, k = 1.

Step 2. Set LBk = LBk−1. Subdivide Xk−1 into two rectangles Xk,1, Xk,2 via the branching rule.
Let F = F

⋃{Xk−1}.

Step 3. For each new subrectangle Xk,t, t = 1, 2, utilize the pruning technique of
Theorem 2.2 to prune box Xk,t, t = 1, 2. Update the corresponding parameters Ki, y

j
,

yj (i = 1, . . . , n, j = 0, . . . , m). Compute LB(Xk,t) and find an optimal solution xk,t for RLP
problem with X = Xk,t, where t = 1, 2. If possible, update the upper bound UBk =
min{UBk, φ0(xk,t)}, and let xk denote the point which satisfies UBk = φ0(xk,t).
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Step 4. If UBk ≤ LB(Xk,t), then set F = F
⋃{Xk,t}.

Step 5. F = F
⋃{X ∈ Qk−1 | UBk ≤ LB(X)}.

Step 6. Set Qk = {X | X ∈ Qk−1
⋃{Xk,1, Xk,2}, X /∈F}.

Step 7. Set LBk = min{LB(X) | X ∈ Qk}, and let Xk ∈ Qk satisfy LBk = LB(Xk). If
UBk − LBk ≤ ε, then stop: xk is a global ε-optimal solution of GGP problem. Otherwise, set
k = k + 1, and go to Step 2.

3.3. Convergence of the Algorithm

The convergence properties of the algorithm are given in the following theorem.

Theorem 3.1. (a) If the algorithm is finite, then upon termination, xk is a global ε-optimal solution
of GGP problem.

(b) If the algorithm is infinite, then, along any infinite branch of the branch and bound tree, an
infinite sequence of iterations will be generated, and any accumulation point of the sequence {xk} will
be a global solution of GGP problem.

Proof. (a) If the algorithm is finite, then it terminates in some stage k, k ≥ 0. Upon
termination, by the algorithm, it follows that UBk − LBk ≤ ε. From Steps 1 and 3, this implies
that φ0(xk)−LBk ≤ ε. Let φ∗

0 denote the optimal value of GGP problem, then, by Section 2, we
know that LBk ≤ φ∗

0. Since x
k is a feasible solution of GGP problem, φ0(xk) ≥ φ∗

0.
Taken together above, this implies that φ∗

0 ≤ φ0(xk) ≤ LBk + ε ≤ φ∗
0 + ε. Therefore,

φ∗
0 ≤ φ0(xk) ≤ φ∗

0 + ε, and the proof of part (a) is complete.

(b) Let D denote the feasible region of GGP problem. When the algorithm is
infinite, from the construction of the algorithm, we know that LBk is a nondecreasing
sequence bounded above by minx∈Dφ0(x), which guarantees the existence of the limit LB =
limk→∞LBk ≤ minx∈Dφ0(x). Since {xk} is contained in a compact set X0, there exists one
convergent subsequence {xs} ⊆ {xk}, and suppose lims→∞xs = x. Then, from the proposed
algorithm, there exists a decreasing subsequence {Xr} ⊆ {Xs}, where xr ∈ Xr,LBr = LB(Xr) =
φl
0(x

r), and limr→∞Xr = x. According to Theorem 2.1, we have

lim
r→∞

φl
0(x

r) = lim
r→∞

φ0(xr) = φ0(x). (3.3)

The only remaining problem is to prove that x ∈ D. Since X0 is a closed set, it
follows that x ∈ X0. Assume that x /∈D, then there exists some φj(x) (j = 1, . . . , m) such
that φj(x) > βj . Since φl

j(x) is continuous, by Theorem 2.1, the sequence {φl
j(x

r)} will
convergent to φj(x). By the definition of convergence, there exists r, such that for any
r > r, |φl

j(x
r) − φj(x)| < φj(x) − βj . Therefore, for any r > r, we have φl

j(x
r) > βj ,

which implies that RLP(Xr) is infeasible. This contradicts the assumption of xr = x(Xr).
Therefore, x ∈ D, that is, x is a global solution of GGP problem, and the proof of part (b) is
complete.
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4. Numerical Experiment

In this section, we report some numerical results to verify the performance of the proposed
algorithm. The test problems are implemented on a Pentium IV (1.66GHZ) microcomputer.
The algorithm is coded in Matlab 7.1 and uses simplex method to solve the relaxation linear
programming problems. In our experiments, the convergence tolerance set to ε = 1.0e − 3.

Example 4.1 (see [8]). We have the following:

min 0.5x1x
−1
2 − x1 − 5x−1

2

s.t. 0.01x2x
−1
3 + 0.01x2 + 0.0005x1x3 ≤ 1,

x ∈ X0 = {x | 70 ≤ x1 ≤ 150, 1 ≤ x2 ≤ 30, 0.5 ≤ x3 ≤ 21}.

(4.1)

By using the method in this paper, the optimal solution is (150, 30, 1.3189), the optimal
value is −147.6667, and the number of algorithm iterations is 557. But using the method in
[8], the optimal solution is (88.72470, 7.67265, 1.31786), the optimal value is −83.249728406,
and the number of algorithm iterations is 1829.

Example 4.2 (see [10]). We have the following:

min x1

s.t. 4x2 − 4x2
1 ≤ 1,

− x1 − x2 ≤ −1,

x ∈ X0 = {x | 0.01 ≤ x1 ≤ 15, 0.01 ≤ x2 ≤ 15}.

(4.2)

Through using the method in this paper, the optimal solution (0.5, 0.5) with optimal
value 0.5 is found after 16 iterations. But using the method in [10], the optimal solution (0.5,
0.5) with optimal value 0.5 is found after 96 iterations.

Example 4.3. We have the following:

min − x1 + x1.2
1 x0.5

2 − x0.8
2

s.t. − 6x1x
3
2 + 8x0.5

2 ≤ 3,

3x1 − x2 ≤ 3,

x ∈ X0 = {x | 0.5 ≤ x1 ≤ 15, 0.5 ≤ x2 ≤ 15}.

(4.3)

By utilizing the method in this paper, the optimal value −1.3501 is found after 14
iterations at an optimal solution (0.5, 1.5).
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Example 4.4. We have the following:

min 0.3578x0.1
3 + 0.8357x1x5

s.t. 0.00002584x3x5 − 0.00006663x2x5 − 0.0000734x1x4 ≤ 5,

0.00085303x2x5 + 0.00009395x1x4 − 0.00033085x3x5 ≤ 5,

1.3294x−1
2 x−1

5 − 0.4200x1x
−1
5 − 0.30586x−1

2 x2
3x

−1
5 ≤ 5,

0.00024186x2x5 + 0.00010159x1x2 + 0.00007379x2
3 ≤ 5,

2.1327x−1
3 x−1

5 − 0.26680x1x
−1
5 − 0.40584x4x

−1
5 ≤ 5,

0.00029955x3x5 + 0.00007992x1x3 + 0.00012157x3x4 ≤ 5,

x ∈ X0 = {x | 1 ≤ x1 ≤ 60, 1 ≤ x2 ≤ 60, 1 ≤ x3 ≤ 60, 1 ≤ x4 ≤ 60, 1 ≤ x5 ≤ 60}.

(4.4)

Utilizing the method in this paper, we find the optimal value 1.1935 after 15 iterations
at an optimal solution x∗ = (1.0, 30.2734, 1.0, 17.4640, 1.0).

In the future work, we will do more numerical experiments to test the performance of
the proposed algorithm.
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