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As a helpful guide for applications, the alternative hypotheses of the three-hypothesis test
problems are designed under the required error probabilities and average sample number in this
paper. The asymptotic formulas and the proposed numerical quadrature formulas are adopted,
respectively, to obtain the hypothesis designs and the corresponding sequential test schemes under
the Koopman-Darmois distributions. The example of the normal mean test shows that our methods
are quite efficient and satisfactory for practical uses.

1. Introduction

In practice, the multihypothesis test problems are of considerable interest in the areas
of engineering, agriculture, clinical medicine, psychology, and so on. For instance, the
multihypothesis tests are involved in pattern recognition [1–4], multiple-resolution radar
detection [5–7], products’ comparisons [8, 9], and information detection [10]. Before the
inspections, the hypotheses must be determined according to such practical needs as the
balance of risks and costs. As Wetherill and Glazebrook [11] pointed out, combinations of
hypotheses, risks, and costs may need to be tried iteratively until an acceptable design is
attained. This bothers and burdens the practitioners.

To avoid too many troublesome trials and to produce the hypotheses directly, we
discuss the hypothesis designs under the controlled risks and expected costs in this paper. As
an initial exploration, only the three-hypothesis test problems are considered here. Indeed,
our methods may extend to the multihypothesis cases.

In practice, test costs are mainly determined by sample sizes. Therefore, the sample
size becomes an issue relating to the statistical analysis of problems in many aspects; see for
example, Chen et al. [12], Oliveira et al. [13], Li and Zhao [14], Li et al. [15], Bakhoum and
Toma [16], Cattani [17], as well as Cattani and Kudreyko [18]. Accordingly, we consider the
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Average Sample Number (ASN), which is one of the most important values in evaluating the
expected costs of sequential test schemes.

In the three-hypothesis test problem, the null hypothesis is always set as a standard
and medium status. For example, Anderson [8] discussed the three-hypothesis test problem
to decide whether the difference of two yarns’ strength is zero (the null hypothesis), positive
or negative. Realistically, the standard and medium status (denoted as θ0) is definite, while
the two alternatives beside it need to be designed to balance the risks and costs. Thus, in this
paper, we try to design the alternatives θ−1 and θ1 (θ−1 < θ0 < θ1) under the required error
probabilities and ASN for testing the parameter θ of the Koopman-Darmois distribution

fθ(x) = exp{l(x) + θx − b(θ)}, where b(θ) is a convex function, θ ∈ Θ. (1.1)

To simplify the discussion, we only consider the designs of the two alternative
hypotheses symmetric with the null hypothesis, that is, θ1 − θ0 = θ0 − θ−1 = k(> 0). Actually,
the asymmetric designs may be obtained by extending our methods slightly.

Then, the test problem here is

H−1 : θ = θ−1 = θ0 − k vs. H0 : θ = θ0 vs. H1 : θ = θ1 = θ0 + k. (1.2)

For the multihypothesis test problems, Armitage [19] provided a classical test scheme
by simultaneously applying the method of Sequential Probability Ratio Test (SPRT) on each
pair of the hypotheses. This test scheme pattern is simple and easy to implement. When
testing the three hypotheses for the Koopman-Darmois distribution (1.1), Armitage’s scheme
may be illustrated as in Figure 1, where AL//CM are boundaries for “θ = θ1 versus θ = θ0”
and CP//DQ are for “θ = θ0 versus θ = θ−1” when the boundaries for “θ = θ1 versus θ = θ−1”
are encircled by AL and DQ and thus are neglected. According to Figure 1, the decision rule
should be

Accept H1 if Tn ≥ a + n tanψ,

Accept H0 if c + (n − n0) tanϕ ≤ Tn ≤ c + (n − n0) tanψ,

Accept H−1 if Tn ≤ d + n tanϕ,

Continue sampling without any decision, otherwise,

(1.3)

where Tn =
∑n

i=1 Xi and X1, X2, . . . are independent sequential observations from a Koopman-
Darmois distribution.

For the given θ−1, θ0, and θ1, the test scheme in Figure 1 is decided by 6 parameters
(n0, a, c, d, ψ, ϕ). ψ and ϕ may be determined according to Armitage [19], that is, tanψ =
[b(θ1) − b(θ0)]/(θ1 − θ0), tanϕ = [b(θ0) − b(θ−1)]/(θ0 − θ−1) under the Koopman-Darmois
distribution (1.1), then the remaining 4 parameters (n0, a, c, d) form the scheme. Altogether
with the hypothesis design value k in the test problem (1.2), the 5 underdetermined values
are (k, n0, a, c, d).
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Figure 1

In the three-hypothesis test problems, the error probabilities α and β should be
assigned to the error probabilities (γ1, γ2, γ3, γ4) in correspondence with the requirements

P
(
Accept H0 | H1

)
≤ γ1,

P
(
Accept H0 | H−1

)
≤ γ2,

P
(
Accept H1 | H0

)
≤ γ3,

P
(
Accept H−1 | H0

)
≤ γ4.

(1.4)

Commonly, we set γ1 = γ2 = β, γ3 = γ4 = α/2, as Payton and Young [20, 21] indicated.
And the request on the ASN should be

ASN(θASN) ≤N, (1.5)

where N(> 0) is a provided integer and θASN(∈ Θ) is the point at which the ASN needs to be
controlled. θASN may take values of θ−1, θ0, θ1, and so on according to practical needs.

Then, under the constraints (1.4) and (1.5), we may find the proper (k, n0, a, c, d) by
virtue of their relationships with the error probabilities and ASN.

Unfortunately, however, to the best knowledge of the authors, the accurate formulas
for the performances of the three-hypothesis test scheme are still unavailable possibly
because of its sequential feature and anomalistic continuing sampling area. In the following,
the hypothesis designs and the test scheme parameters are determined under the required
error probabilities and ASN in terms of some approximate expressions, that is, the asymptotic
formulas and the proposed numerical quadrature formulas.

2. Designs under Asymptotic Formulas

In this section, we try to find the hypothesis designs and test schemes under the required error
probabilities and ASN by virtue of the asymptotic formulas of the multihypothesis sequential
test scheme by Dragalin et al. in [22, 23].
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Firstly, we discuss how to control the error probabilities. Let Ci be the critical value of
the logarithmic likelihood ratio function for accepting θi, and let Ri be the probability limit of
incorrectly accepting θi, i = −1, 0, 1. According to Dragalin et al. [22], under the condition of
equal prior probabilities for the three hypotheses, the probability of wrongly accepting θi for
the Armitage [19] scheme may be controlled by Ri if the critical value Ci is set as

Ci = ln
{

2
3Ri

}

, i = −1, 0, 1. (2.1)

Thus, the error probabilities (γ1, γ2, γ3, γ4) are in control if we follow the critical values in (2.1),
where R−1 = γ4, R0 = min{γ1, γ2}, and R1 = γ3. Setting the critical values (C−1, C0, C1) equal to
the corresponding logarithmic likelihood ratio functions, we have the following expressions
for the test scheme parameters under the Koopman-Darmois distribution (1.1):

n0 =
C0(1/(θ0 − θ−1) − 1/(θ0 − θ1))

(b(θ0) − b(θ1))/(θ0 − θ1) − (b(θ0) − b(θ−1))/(θ0 − θ−1)
=

2C0

b(θ0 + k) + b(θ0 − k) − 2b(θ0)
,

a =
C1

θ1 − θ0
=
C1

k
,

c =
C0

θ0 − θ1
+ n0 tanψ = −C0

k
+ n0

b(θ0 + k) − b(θ0)
k

,

d =
C−1

θ−1 − θ0
= −C−1

k
.

(2.2)

Note that the expressions in (2.2) define the relations between the hypothesis design
parameter k and the test scheme parameters (n0, a, c, d), while k has not been determined so
far.

In the following, the hypothesis design parameter k is found with the help of Dragalin
et al.’s asymptotic ASN formulas [23].

Based on the nonlinear renewal theory, Dragalin et al. [23] summarized and developed
the asymptotic ASN formulas under max{α, β} → 0. Specifically, when θ1 − θ0 = θ0 − θ−1, the
asymptotic ASN formulas under the two alternatives θ−1 and θ1 are

ASN(θi) ≈
Ci +Oθi

Dθi

, i = −1, 1, (2.3)

where Dθi = minj /= iEθi(ln{fθi(x)/fθj (x)}) and Oθi is the expected limiting overshoot under
θi, i = −1, 0, 1.

And for the null hypothesis θ0 under θ1 − θ0 = θ0 − θ−1, the asymptotic ASN formula is

ASN(θ0) ≈
F2(C0, Dθ0 , v) +Oθ0

Dθ0

, (2.4)

where F2(x, q, u) = x+uh∗2
√
x/q + u2(h∗2)

2/(4q2)+u2(h∗2)
2/(2q) (h∗2 = 0.5641895835 here), and

v is the value related to the covariance of the logarithmic likelihood ratio functions.
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Notice that the approximate ASN formulas (2.3) and (2.4) only depend on the
hypothesis design parameter k when θ0 is given. Therefore, to find the proper hypothesis
design under the desired number N, we set up an equation about k to meet the ASN
requirement on one of the three hypothesis values, that is,

ASN(θASN) =N, (2.5)

where θASN may be θ−1, θ0, or θ1.
Then, the hypothesis design parameter k is the solution to (2.5) and the test scheme

with (n0, a, c, d) may be obtained correspondingly according to (2.2). Illustrations are
provided in Example 1 for testing the normal mean with the variance known.

Example 1. Suppose that the sequential observations X1, X2, . . . are independent and
identically distributed (i.i.d.) with N(μ, 1). Let μ0 = 0, γ1 = γ2 = β, and γ3 = γ4 = α/2.
Small values (≤ 30) are set on N as practical sequential inspections always require.

Accordingly, we have C0 = ln{2/(3γ1)}, C1 = C−1 = ln{2/(3γ3)}. In this example, the
test scheme parameters should be

n0 =
2C0

k2
, a =

C1

k
, c = 0, d = −a, tanψ =

k

2
, tanϕ = − tanψ. (2.6)

And for the normal distribution N(μ, 1), there are

Dμi = min
j /= i

(
μi − μj

)2

2
=
k2

2
, i = −1, 0, 1,

Oμi = 1 +
k2

4
− k

∞∑

l=1

1√
l

[

φ

(
k

2

√
l

)

− k
2

√
lΦ

(

−k
2

√
l

)]

, i = −1, 0, 1,

v =
√

2k,

(2.7)

where φ(·) and Φ(·) are the probability density function (p.d.f.) and cumulative distribution
function (c.d.f.) of the standard normal distribution, respectively.

Consider the following 4 cases, respectively:

μASN = μ0, α = β = 0.002,

μASN = μ0, α = β = 0.05,

μASN = μ1, α = β = 0.002,

μASN = μ1, α = β = 0.05.

(2.8)

Then, solving (2.5), we obtain the hypothesis designs k as shown in Column 2 of Tables 1,
2, 3, and 4. The corresponding test scheme parameters (n0, a, tanψ) from (2.6) are listed in
Columns 3–5 of Tables 1–4. To evaluate the method’s efficiency, we record the Monte Carlo
simulation study results with 1,000,000 replicates in Tables 5, 6, 7, and 8, where ASN′(μASN)
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Table 1: Hypothesis designs and test schemes for μASN = μ0, α = β = 0.002.

N
Under Asymptotic formulas Under Gaussian quadrature formulas

εk (%)
k n0 a tanψ k n0 a tanψ

5 2.1090 2.6121 3.0831 1.0545 1.8953 2.6876 3.0725 0.9477 11.28
10 1.4400 5.6030 4.5155 0.7200 1.3193 5.8833 4.6576 0.6597 9.15
15 1.1604 8.6279 5.6034 0.5802 1.0674 9.0266 5.8910 0.5337 8.71
20 0.9977 11.6709 6.5170 0.4989 0.9228 12.3354 6.9039 0.4614 8.12
25 0.8882 14.7257 7.3204 0.4441 0.8246 15.6592 7.7944 0.4123 7.71
30 0.8082 17.7888 8.0458 0.4041 0.7523 18.9949 8.5984 0.3762 7.43

Table 2: Hypothesis designs and test schemes for μASN = μ0, α = β = 0.05.

N
Under Asymptotic formulas Under Gaussian quadrature formulas

εk (%)
k n0 a tanψ k n0 a tanψ

5 1.6066 2.0072 2.0438 0.8033 1.3025 2.1953 2.2175 0.6513 23.35
10 1.0908 4.3542 3.0102 0.5454 0.9087 5.0028 3.4233 0.4544 20.04
15 0.8767 6.7395 3.7450 0.4384 0.7401 8.0001 4.2242 0.3701 18.46
20 0.7527 9.1448 4.3624 0.3764 0.6392 11.0000 5.2525 0.3196 17.76
25 0.6693 11.5630 4.9054 0.3347 0.5708 14.0000 5.9086 0.2854 17.26
30 0.6085 13.9903 5.3957 0.3043 0.5204 17.0000 6.5244 0.2602 16.93

Table 3: Hypothesis designs and test schemes for μASN = μ1, α = β = 0.002.

N
Under Asymptotic formulas Under Gaussian quadrature formulas

εk (%)
k n0 a tanψ k n0 a tanψ

5 1.7893 3.6290 3.6340 0.8947 1.7105 3.2864 3.4644 0.8553 4.61
10 1.2179 7.8334 5.3391 0.6090 1.1900 7.1875 5.2255 0.5950 2.34
15 0.9800 12.0973 6.6350 0.4900 0.9667 11.1560 6.5639 0.4834 1.38
20 0.8419 16.3926 7.7236 0.4210 0.8352 15.1594 7.6882 0.4176 0.80
25 0.7490 20.7080 8.6809 0.3745 0.7460 19.1851 8.6770 0.3730 0.40
30 0.6812 25.0379 9.5454 0.3406 0.6803 23.2266 9.5698 0.3402 0.13

Table 4: Hypothesis designs and test schemes for μASN = μ1, α = β = 0.05.

N
Under Asymptotic formulas Under Gaussian quadrature formulas

εk (%)
k n0 a tanψ k n0 a tanψ

5 1.3089 3.0237 2.5085 0.6545 1.1875 2.9124 2.4858 0.5938 10.22
10 0.8835 6.6369 3.7164 0.4418 0.8264 6.2545 3.8213 0.4132 6.91
15 0.7083 10.3268 4.6358 0.3542 0.6715 10.0000 4.8351 0.3358 5.48
20 0.6071 14.0566 5.4085 0.3036 0.5803 13.4993 5.6872 0.2902 4.62
25 0.5393 17.8118 6.0883 0.2697 0.5183 17.0061 6.4368 0.2592 4.05
30 0.4899 21.5853 6.7022 0.2450 0.4727 20.8842 7.1131 0.2364 3.64

is the simulated value of ASN(μASN) and ε is the relative difference between ASN′(μASN) and
N. Note that the simulated probabilities under μ−1 are neglected here since they are nearly
equivalent to their counterparts under μ1 in terms of the schemes’ symmetry.

Obviously, the accuracy of the solution k to (2.5) is decided by the efficiency of the
ASN formulas (2.3) and (2.4). On one hand, from Dragalin et al. [23] and the ε’s in Tables
5–8, we conclude that the formulas in (2.3) for ASN(θ−1) and ASN(θ1) are more efficient than
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Table 5: Simulated performances for the schemes under asymptotic formulas in Table 1.

N

When μ1 is true When μ0 is true
ASN′(μ0) ε (%)Probability of accepting Probability of accepting

μ−1 μ0 μ1 μ−1 μ0 μ1

5 0 0.0007 0.9993 0.0005 0.9990 0.0005 4.7053 6.26

10 0 0.0009 0.9991 0.0007 0.9986 0.0007 9.3601 6.84

15 0 0.0011 0.9989 0.0007 0.9985 0.0008 13.9845 7.26

20 0 0.0011 0.9989 0.0008 0.9984 0.0008 18.5910 7.58

25 0 0.0012 0.9988 0.0009 0.9982 0.0009 23.1885 7.81

30 0 0.0013 0.9987 0.0010 0.9980 0.0010 27.8046 7.90

Table 6: Simulated performances for the schemes under asymptotic formulas in Table 2.

N

When μ1 is true When μ0 is true
ASN′(μ0) ε (%)Probability of accepting Probability of accepting

μ−1 μ0 μ1 μ−1 μ0 μ1

5 0 0.0186 0.9814 0.0148 0.9703 0.0149 4.4409 12.59

10 0 0.0273 0.9727 0.0195 0.9610 0.0195 8.4229 18.72

15 0 0.0317 0.9682 0.0219 0.9562 0.0219 12.3687 21.27

20 0 0.0323 0.9677 0.0236 0.9529 0.0235 16.4767 21.38

25 0 0.0344 0.9656 0.0246 0.9508 0.0245 20.3535 18.59

30 0 0.0361 0.9638 0.0252 0.9494 0.0255 24.2233 19.26

the one in (2.4) for ASN(θ0) when testing the normal mean. On the other hand, the asymptotic
ASN formulas perform better under smaller error probabilities since the asymptotic limit is
taken as max{α, β} → 0. For applications, with such a simple computation, the efficiency of
the design is quite satisfactory for small error probabilities conditions.

However, this method may only serve to control the ASN on the three hypothesis
values since the asymptotic ASN formulas out of these points are absent so far. And the
quantities Dθi ,Oθi (i = −1, 0, 1), and v should be deduced according to specific distributions
(see [23]). Besides, the discrepancies between the real performances and the required ones
show the method’s conservativeness. In the next section, an improved method is proposed
and more efficient formulas are developed through the numerical quadrature.

3. Designs under Numerical Quadrature Formulas

This section proposes a method to obtain more efficient hypothesis designs and test schemes
through a system of equations based on the numerical quadrature formulas of the error
probabilities and ASN.

In studies by Payton and Young in [20, 21], for the provided hypotheses, the error
probabilities (γ1, γ2, γ3, γ4) are approximately attained by solving a system of equations about
the 4 scheme parameters (n0, a, c, d). This method is hoped to fully make use of the required
error probabilities and to obtain efficient designs. Enlightened by Payton and Young, we
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Table 7: Simulated performances for the schemes under asymptotic formulas in Table 3.

N

When μ1 is true When μ0 is true
ASN′(μ1) ε (%)Probability of accepting Probability of accepting

μ−1 μ0 μ1 μ−1 μ0 μ1

5 0 0.0008 0.9992 0.0005 0.9990 0.0005 4.9907 0.19
10 0 0.0010 0.9990 0.0007 0.9985 0.0008 9.9818 0.18
15 0 0.0010 0.9990 0.0009 0.9983 0.0008 14.9705 0.20
20 0 0.0012 0.9988 0.0010 0.9981 0.0009 19.9525 0.24
25 0 0.0013 0.9987 0.0009 0.9981 0.0010 24.9494 0.20
30 0 0.0012 0.9988 0.0010 0.9980 0.0010 29.9059 0.31

Table 8: Simulated performances for the schemes under asymptotic formulas in Table 4.

N

When μ1 is true When μ0 is true
ASN′(μ1) ε (%)Probability of accepting Probability of accepting

μ−1 μ0 μ1 μ−1 μ0 μ1

5 0 0.0226 0.9774 0.0173 0.9655 0.0172 4.7976 4.05
10 0 0.0313 0.9687 0.0221 0.9560 0.0219 9.4322 5.68
15 0 0.0336 0.9664 0.0241 0.9518 0.0241 14.1221 5.85
20 0 0.0346 0.9654 0.0255 0.9492 0.0253 18.7665 6.17
25 0 0.0367 0.9632 0.0265 0.9471 0.0264 23.3316 6.67
30 0 0.0371 0.9628 0.0270 0.9459 0.0270 27.9989 6.67

propose to find the hypothesis design and test scheme by solving the following system of
equations:

P
(
Accept H1 | H0

)
= γ3,

P
(
Accept H−1 | H0

)
= γ4,

P
(
Accept H0 | H1

)
= γ1,

P
(
Accept H0 | H−1

)
= γ2,

ASN(θASN) =N.

(3.1)

Obviously, the key is to find the formulas of the error probabilities and ASN on the
left side of the equations in (3.1). Unfortunately, the available approximate formulas cannot
meet applicable needs well. For example, Payton and Young [20, 21] adopted the formulas
under the continuous-time process and the required minimum sample size before decisions,
and obtained some inefficient results. Also, as mentioned in Section 2, Dragalin et al.’s results
are restricted to the conditions of small error probabilities and θASN = θi (i = −1, 0, 1) [22, 23].

To find efficient and applicable designs, we develop the approximate formulas through
the numerical quadrature for the three-hypothesis test scheme’s performances on the error
probabilities and ASN.

To deduce the formulas for the realistic discrete-time situation, we denote nt as the
minimum integer that is not less than n0. Let Lj and Uj be the values on the two boundaries
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DQ and AL in Figure 1 at n = j, that is, Lj = d + j tanϕ, Uj = a + j tanψ, j = 1, . . . , nt. Denote
cL = c + (nt − n0) tanϕ, cU = c + (nt − n0) tanψ, a′ = a + nt tanψ, and d′ = d + nt tanϕ. With the
decision rule (1.3), we rewrite the system of (3.1) as

R1(θ0) + S1(θ0) − L1(θ0) = γ3,

R−1(θ0) + S−1(θ0) − L−1(θ0) = γ4,

L1(θ1) + L−1(θ1) + L0(θ1) = γ1,

L1(θ−1) + L−1(θ−1) + L0(θ−1) = γ2,

N0(θASN) +N1(θASN) +N−1(θASN) + ntJ(θASN) =N,

(3.2)

where R1(θ) = Pθ(Accept H1 through AL when n ≤ nt);R−1(θ) = Pθ(Accept H−1 through
DQ when n ≤ nt); S1(θ) = Pθ(cU < Tnt < a′, Lj < Tj < Uj , j = 1, . . . , nt − 1); S−1(θ) = Pθ(d′ <
Tnt < cL, Lj < Tj < Uj , j = 1, . . . , nt − 1); L1(θ) = Pθ(Accept H0 through CM when n > nt);
L−1(θ) = Pθ(Accept H0 through CP when n > nt); L0(θ) = Pθ(Accept H0 at n = nt); J(θ) =
S1(θ) + S−1(θ) + L0(θ);N0(θ) is the average sample number from a point in (d, a) at n = 0 to
the point of accepting H1 or H−1 when n ≤ nt. N1(θ) is the average sample number from a
point in (cU, a′) at n = nt to the point of making a decision when n > nt. And N−1(θ) is the
average sample number from a point in (d′, cL) at n = nt to the point of making a decision
when n > nt.

The following theorem provides the approximate formulas through the numerical
quadrature for the quantities in (3.2). In fact, these formulas are developed by a stepwise
dealing for the continuing sampling area before n0 and the results by Li and Pu in [24] for the
parallel lines areas inside AL//CM and inside CP//DQ, respectively. With such an idea, the
proof of Theorem 3.1 is trivial and is neglected here.

Theorem 3.1. Assume that X1, X2, . . . are i.i.d. observations. Let fθ(x) and Fθ(x) be the p.d.f. and
c.d.f. of X, respectively. Assume that F−θ (x) = Pθ(X < x). Denote g̃1θ(x) = fθ(x), and g̃j+1θ(x)

=
∑m

i=1 ω(u
(j)
i )g̃jθ(u

(j)
i )fθ(x − u

(j)
i ), where u(j)i is the ith numerical quadrature root for [Lj,Uj],

i = 1, . . . , m, j = 1, . . . , nt − 1, and ω(u) is the corresponding weight for the numerical quadrature
root u. Let u(nt)i and u(nt)

′

i be the ith numerical quadrature root for [cU, a′] and for [d′, cL], respectively,
i = 1, . . . , m.

Then, the approximate values R̃1(θ), R̃−1(θ), S̃1(θ), S̃−1(θ), L̃1(θ), L̃−1(θ), L̃0(θ), Ñ0(θ),
Ñ1(θ), and Ñ−1(θ) for the quantities in (3.2) are the following.

(1)

R̃1(θ) = 1 − F−θ (U1) +
nt∑

j=2

m∑

i=1

ω
(
u
(j−1)
i

)
g̃j−1θ

(
u
(j−1)
i

)[
1 − F−θ

(
Uj − u

(j−1)
i

)]
. (3.3)

(2)

R̃−1(θ) = Fθ(L1) +
nt∑

j=2

m∑

i=1

ω
(
u
(j−1)
i

)
g̃j−1θ

(
u
(j−1)
i

)
Fθ

(
Lj − u

(j−1)
i

)
. (3.4)
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(3)

S̃1(θ) =
m∑

i=1

ω
(
u
(nt−1)
i

)
g̃nt−1θ

(
u
(nt−1)
i

)[
F−θ

(
a′ − u(nt−1)

i

)
− Fθ

(
cU − u(nt−1)

i

)]
. (3.5)

(4)

S̃−1(θ) =
m∑

i=1

ω
(
u
(nt−1)
i

)
g̃nt−1θ

(
u
(nt−1)
i

)[
F−θ

(
cL − u(nt−1)

i

)
− Fθ

(
d′ − u(nt−1)

i

)]
. (3.6)

(5) Denote q(1)
θ
(x) = [q(1)

θj
(x)]1×m, where q

(1)
θj
(x) = ω(u(nt)j )fθ(u

(nt)
j +tanψ−x), j = 1, . . . , m;

p(1)
θ

= [p(1)
θi
]m×1, where p

(1)
θi

= Fθ(cU+tanψ−u(nt)i ), i = 1, . . . , m;Q(1)
θ

= [q(1)
θij
]m×m, where

q
(1)
θij = ω(u

(nt)
j )fθ(u

(nt)
j + tanψ − u(nt)i ), i, j = 1, . . . , m. Let I be them ×m identity matrix.

Then, there is

L̃1(θ) =
m∑

i=1

ω
(
u
(nt)
i

)
g̃ntθ

(
u
(nt)
i

)
ÕC1θ

(
u
(nt)
i

)
, (3.7)

where ÕC1θ(x) = Fθ(cU + tanψ − x) + q(1)
θ (x)(I −Q(1)

θ )−1p(1)
θ .

(6) Denote q(2)
θ
(x) = [q(2)

θj
(x)]1×m, where q

(2)
θj
(x) = ω(u(nt)

′

j )fθ(u
(nt)′

j +tanϕ−x), j = 1, . . . , m;

p(2)
θ

= [p(2)
θi
]m×1, where p

(2)
θi

= Fθ(d′ + tanϕ−u(nt)
′

i ), i = 1, . . . , m;Q(2)
θ

= [q(2)
θij
]m×m, where

q
(2)
θij

= ω(u(nt)
′

j )fθ(u
(nt)′

j + tanϕ − u(nt)
′

i ), i, j = 1, . . . , m. Then, we have

L̃−1(θ) = S̃−1(θ) −
m∑

i=1

ω
(
u
(nt)

′

i

)
g̃ntθ

(
u
(nt)

′

i

)
ÕC−1θ

(
u
(nt)

′

i

)
, (3.8)

where ÕC−1θ(x) = Fθ(d′ + tanϕ − x) + q(2)
θ
(x)(I −Q(2)

θ
)−1p(2)

θ
.

(7)

L̃0(θ) =
m∑

i=1

ω
(
u
(nt−1)
i

)
g̃nt−1θ

(
u
(nt−1)
i

)[
Fθ

(
cU − u(nt−1)

i

)
− F−θ

(
cL − u(nt−1)

i

)]
. (3.9)

(8)

Ñ0(θ) = 1 +
nt∑

j=2

j
m∑

i=1

ω
(
u
(j−1)
i

)
g̃j−1θ

(
u
(j−1)
i

)[
1 − F−θ

(
Uj − u

(j−1)
i

)
+ Fθ

(
Lj − u

(j−1)
i

)]
. (3.10)
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Table 9: Simulated performances for the schemes under Gaussian quadrature formulas in Table 1.

N

When μ1 is true When μ0 is true
ASN′(μ0) ε (%)Probability of accepting Probability of accepting

μ−1 μ0 μ1 μ−1 μ0 μ1

5 0 0.0021 0.9979 0.0010 0.9980 0.0010 5.0003 0.01
10 0 0.0020 0.9980 0.0010 0.9980 0.0010 10.0078 0.08
15 0 0.0019 0.9981 0.0010 0.9980 0.0009 14.9949 0.03
20 0 0.0020 0.9980 0.0010 0.9980 0.0010 19.9888 0.06
25 0 0.0020 0.9980 0.0011 0.9979 0.0010 24.9980 0.01
30 0 0.0020 0.9980 0.0010 0.9980 0.0010 29.9972 0.01

(9)

Ñ1(θ) =
m∑

i=1

ω
(
u
(nt)
i

)
g̃ntθ

(
u
(nt)
i

)
ñ1θ

(
u
(nt)
i

)
, (3.11)

where ñ1θ(x) = 1 + q(1)
θ
(x)(I −Q(1)

θ
)−11 with 1 being them × 1 vector of 1’s.

(10)

Ñ−1(θ) =
m∑

i=1

ω
(
u
(nt)

′

i

)
g̃ntθ

(
u
(nt)

′

i

)
ñ−1θ

(
u
(nt)

′

i

)
, (3.12)

where ñ−1θ(x) = 1 + q(2)
θ (x)(I −Q(2)

θ )−11.

Notice that the values on the left side of the equations in (3.2) must be obtained
through a computer program with much iterative work, which reveals the method’s
complexity in computation and impairs the speed of solving the system of (3.2). Nevertheless,
the time it costs is tolerable when the accuracy of solving the equations is not too demanded.

Example 1 (Continued). Consider the same problems as those in Example 1 in Section 2.
By applying the formulas (3.3)–(3.12) and the 64 Gaussian quadrature roots, we solve the
system of (3.2) in a computer program. The hypothesis designs and the corresponding test
schemes are listed in Columns 6–9 of Tables 1–4. As a comparison with the method under the
asymptotic formulas in Section 2, εk in Column 10 of Tables 1–4 records the relative difference
between the two hypothesis designs of the two methods. The Monte Carlo simulation study
with 1,000,000 replicates in Tables 9, 10, 11, and 12 reveal the schemes’ real performances.

The real performances in Tables 9–12 show that the requirements on controlling the
error probabilities and ASN may be fully made use of under this method and the numerical
quadrature formulas are almost accurate. Therefore, the hypothesis designs and test schemes
are highly efficient in terms of, for instance, more efficient designs with smaller k in Tables
1–4 under this method.

To further explain the methods, an example of the airbag quality inspection is provided
in the appendix.
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Table 10: Simulated performances for the schemes under Gaussian quadrature formulas in Table 2.

N

When μ1 is true When μ0 is true
ASN′(μ0) ε (%)Probability of accepting Probability of accepting

μ−1 μ0 μ1 μ−1 μ0 μ1

5 0 0.0500 0.9500 0.0250 0.9501 0.0249 4.9998 0.00

10 0 0.0499 0.9501 0.0249 0.9499 0.0251 10.0032 0.03

15 0 0.0486 0.9514 0.0271 0.9456 0.0274 15.0038 0.03

20 0 0.0520 0.9480 0.0228 0.9543 0.0229 20.0061 0.03

25 0 0.0510 0.9490 0.0236 0.9530 0.0234 24.9795 0.08

30 0 0.0512 0.9488 0.0235 0.9532 0.0233 29.9926 0.02

Table 11: Simulated performances for the schemes under Gaussian quadrature formulas in Table 3.

N

When μ1 is true When μ0 is true
ASN′(μ1) ε (%)Probability of accepting Probability of accepting

μ−1 μ0 μ1 μ−1 μ0 μ1

5 0 0.0019 0.9981 0.0011 0.9979 0.0010 4.9994 0.01

10 0 0.0020 0.9980 0.0010 0.9980 0.0010 9.9917 0.08

15 0 0.0020 0.9980 0.0010 0.9980 0.0010 15.0154 0.10

20 0 0.0020 0.9980 0.0010 0.9979 0.0010 20.0129 0.06

25 0 0.0020 0.9980 0.0010 0.9980 0.0010 24.9880 0.05

30 0 0.0020 0.9980 0.0010 0.9980 0.0010 30.0151 0.05

Table 12: Simulated performances for the schemes under Gaussian quadrature formulas in Table 4.

N

When μ1 is true When μ0 is true
ASN′(μ1) ε (%)Probability of accepting Probability of accepting

μ−1 μ0 μ1 μ−1 μ0 μ1

5 0 0.0499 0.9501 0.0252 0.9500 0.0248 4.9973 0.05

10 0 0.0499 0.9501 0.0254 0.9496 0.0250 9.9876 0.12

15 0 0.0505 0.9495 0.0250 0.9499 0.0252 15.0181 0.12

20 0 0.0502 0.9498 0.0249 0.9502 0.0249 20.0105 0.05

25 0 0.0498 0.9502 0.0251 0.9500 0.0249 24.9896 0.04

30 0 0.0499 0.9500 0.0250 0.9502 0.0248 30.0180 0.06

4. Conclusions and Remarks

For the three-hypothesis test problems, the methods of designing the hypotheses, together
with obtaining the corresponding test schemes, are proposed by adopting asymptotic
formulas or numerical quadrature formulas in this paper. As a helpful guide for practitioners,
they aid to directly find proper hypotheses under controlled risks and costs in preventing
from too many iterative trials on combinations of hypotheses to meet practical needs.

The asymptotic formulas and the numerical quadrature formulas are both alternative
tools for the hypothesis designs. Several aspects should be considered when choosing
between them in applications.
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(1) The method with numerical quadrature formulas outperforms the one under the
asymptotic formulas especially when the error probabilities are not very small,
as the example shows. In reality, the required error probabilities always range
from 0.05 to 0.30 in sequential inspections, which seems to suggest choosing the
numerical quadrature formulas to obtain efficient designs.

(2) In computation, the asymptotic formulas provide great convenience for applica-
tions, while the numerical quadrature formulas demand much iterative computa-
tional work especially when the number of numerical quadrature roots is large. But
from the computation with the 64 Gaussian quadrature roots in the example, the
time it costs in a common computer is tolerable if the start values for the system
of equations are proper. We recommend finding the designs under the asymptotic
formulas first, and then apply them as starts to obtain more efficient hypotheses
from the numerical quadrature formulas when needed.

(3) When adopting the asymptotic formulas, the expressions for the quantities
Dθi ,Oθi (i = −1, 0, 1), and v should be developed for a specific distribution (see
[23]). For the use of numerical quadrature formulas, the quadrature roots may be
particularly arranged to fit the support points in the discrete distributions (e.g, see
Reynolds and Stoumbos [25]). And for the θASN out of (θ−1, θ0, θ1), only the method
with numerical quadrature formulas may take effect.

Actually, the two methods may apply to any distribution out of the Koopman-Darmois
family. However, the test schemes under these distributions may be different from that in
Figure 1, and the numerical quadrature formulas should be changed according to the test
scheme patterns.

For the hypothesis designs asymmetric with the null hypothesis or the multihypothe-
sis test problems, the methods proposed in this paper are still applicable by some extensions
of adding more constraints on the designs. The hypothesis design problems under other
requests, for example, under the desire of stopping sampling before a limit guaranteed by
a provided probability, are still open to scholars and practitioners.

Appendix

Illustration of Airbag Quality Inspection

According to Li et al. [26], the airbag deployment pressure rate per unit of time, which is
always assumed to conform with a standard normal distribution after some standardized
transformation, is a key index of the airbag quality. The concerned problem here is whether
the quality index is zero, positive, or negative. This quality index is measured in a 100
cubic feet testing air tank with sensors and the inspection is destructive. Since the airbag
is expensive, the three-hypothesis sequential test scheme is needed to reduce the average
inspection costs.

Suppose that the two error probabilities are α = β = 0.05 and the required ASN(μ0) is
no more than 5. Then, the hypothesis designs and test schemes of “N = 5” in Table 2 should
be taken, that is, (k, n0, a, c, d, tanψ, tanϕ) = (1.6066, 2.0072, 2.0438, 0, −2.0438, 0.8033,−0.8033)
under the method with asymptotic formulas and (k, n0, a, c, d, tanψ, tanϕ) =
(1.3025, 2.1953, 2.2175, 0,−2.2175, 0.6513,−0.6513) under the method with Gaussian
quadrature formulas.
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Table 13: Test process under the test scheme from asymptotic formulas.

j Xj Tj a + j tanψ c + (j − n0) tanψ c + (j − n0) tanϕ
d + j tanϕ Decision

when j ≥ n0 when j ≥ n0

1 0.5689 0.5689 2.8471 ∗ ∗ −2.8471 ∗
2 −0.2556 0.3133 3.6504 ∗ ∗ −3.6504 ∗
3 −0.3775 −0.0642 4.4537 0.7975 −0.7975 −4.4537 Accept H0

Table 14: Test process under the test scheme from Gaussian quadrature formulas.

j Xj Tj a + j tanψ c + (j − n0) tanψ c + (j − n0) tanϕ
d + j tanϕ Decision

when j ≥ n0 when j ≥ n0

1 0.5689 0.5689 2.8688 ∗ ∗ −2.8688 ∗
2 −0.2556 0.3133 3.5201 ∗ ∗ −3.5201 ∗
3 −0.3775 −0.0642 4.1714 0.5241 −0.5241 −4.1714 Accept H0

Under the method with asymptotic formulas, the hypothesis test problem should be

H−1 : μ = −1.6066 vs. H0 : μ = 0 vs. H1 : μ = 1.6066. (A.1)

Taking the simulated observations fromN(0, 1) by Li et al. in [26], we may reach a decision of
accepting H0 when T3 = −0.0642 falls in [c+(3−n0) tanϕ, c+(3−n0) tanψ] = [−0.7975, 0.7975]
according to the test process in Table 13.

Under the method with Gaussian quadrature formulas, the hypothesis test problem
should be

H−1 : μ = −1.3025 vs. H0 : μ = 0 vs. H1 : μ = 1.3025. (A.2)

Also taking the simulated observations from N(0, 1) by Li et al. in [26], we may accept H0

after inspecting the third airbag according to the test process in Table 14.
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