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We propose a method for designing chaos generators. We introduce a switched system with
three-dimensional space functions for generating a new type of chaotic attractor, and then we
introduce saturated function series for generating n-scroll chaotic attractor. Moreover, we present
some examples with numerical simulations that illustrate the efficiency of ourmethod. The statistic
behavior is also discussed, which reveals the regularities in the complex dynamics.

1. Introduction

Chaos is a very interesting nonlinear phenomenon, which has been extensively investigated
during the last four decades. Since the 1960s, many chaotic (strange) attractors in dynamical
systems have been found numerically and experimentally [1–3], such as Lorenz attractor [4],
Rössler attractor [5], and Chua’s attractor [6–11]. This proved that pursuing systems that can
exhibit chaos in form of chaotic attractors is very helpful in understanding complex behavior
of nonlinear dynamical systems, and is especially important for chaos communication
technology [12], in which a chaos generator is prerequisite for chaos communication.

The Chua’s circuit system that has double-scroll attractor is probably the best known
and the simplest chaotic system that roots in a concrete physical system and has been
extensively studied up to date [6, 13]. Moreover, multiscroll attractors are also found in
some simple systems, to which nonlinear scalar functions, such as saturated function series
[14] and switching scalar linear feedback [15], are implemented. Besides n-scroll attractors,
patterns of strange attractors, such as multiple stripes [16], and spherical pattern [17], have
been constructed using simple structures.

In [18], a chaotic attractor in a new funnel-shape is introduced, simply by designing
a switched system with hysteresis switching signal. It also could be regarded as a method of
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chaotic attractor generation with one-dimensional space function. Motivated by this work,
we introduce a switched system with three-dimensional space functions for generating a
new type of chaotic attractor, and then we have made further effort to generate more
chaotic behaviors, by introducing saturated function series, that is, a switched system with
saturated function series approach is investigated. To our happiness, n-scroll chaotic attractor
is observed. Andmoreover, the attractor with funnel-shape is also emerged in each scroll. The
statistic behavior is also discussed, which reveal the regularities in the complex dynamics.

The rest of this paper is organized as follows. In Section 2, the concept of function
series is proposed and the basic system framework is introduced. Section 3 introduces a
switched systemwith three-dimensional space functions for generating a new type of chaotic
attractor. Then n-scroll attractor generation analysis and simulation are given in Section 4.
Finally, a brief conclusion is given in Section 5.

2. Preliminaries

In this section, we introduce the concept of integral function series and saturated function
series and then apply them to our basic system framework.

2.1. Integral Function Series and Saturated Function Series

Consider the following integral function series:

h(x,m) = i if im ≤ x < (i + 1)m, i,m ∈ Z, x ∈ R, (2.1)

wherem is positive integer, h(x,m) is switched from i to i+ 1 ifmx reaches the threshold i+ 1
from below and is switched from i + 1 to i if mx reaches i + 1 from above.

Consider the following saturated function:

f(x; k, e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k, if x > e,

kx, if |x| ≤ e,

−k, if x < −e,
(2.2)

where k is positive and e is the infinitesimal; we need to use saturated function series
to simulate the integral function series. Based on it, the saturated function series can be
described as:

f(x; k,m, e) =

⎧
⎪⎨

⎪⎩

2ki, if im + e < x < (1 + i)m − e,

k(x − im)
e

− k + 2ki, if |x − im| ≤ e.
(2.3)

We should point out that hysteresis function series and saturated function series are
not continuous in switching methods.
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2.2. System Formulation

We consider the following linear systems:

Ẋ = A1X + b1, (2.4)

Ẋ = A2X + b2, (2.5)

where X is a 3-dimensional state vector, X = (x1, x2, x3)
T , A1, A2 are 3 × 3 constant matrices,

and b1, b2 are 3-dimensional constant vectors.
We consider the switched systems (2.4) and (2.5)with the following specifications:

A1 =

⎛

⎜
⎜
⎝

a b 0

−b a 0

0 0 c

⎞

⎟
⎟
⎠, b1 =

⎛

⎜
⎜
⎝

0

0

ε

⎞

⎟
⎟
⎠, (2.6)

A2 =

⎛

⎜
⎜
⎝

f 0 0

0 g h

0 −h g

⎞

⎟
⎟
⎠, b2 =

⎛

⎜
⎜
⎝

0

0

0

⎞

⎟
⎟
⎠, (2.7)

where we assume that a > 0, c /= 0, f < 0, g < 0, ε > 0. System (2.4) with A1 and b1 given
by (2.6) will be referred to as system (2.6). Similarly, system (2.5) with A2 and b2 given by
(2.7) will be referred to as system (2.7).

By solving Ẋ = 0, the equilibrium of system (2.6) is found to be X∗
1 = (0, 0,−ε/c). The

Jacobian matrix J at this point is

J =

⎛

⎜
⎜
⎝

a b 0

−b a 0

0 0 c

⎞

⎟
⎟
⎠, (2.8)

whose eigenvalues are λ1,2 = a ± bi and λ3 = c. Therefore, the equilibrium (0, 0,−ε/c) is
unstable.

The equilibrium of system (2.7) isX∗
2 = (0, 0, 0). The eigenvalues ofA2 are λ1,2 = g ±hi,

and λ3 = f . Thus, the equilibrium (0, 0, 0) is stable.

3. Generating Chaotic Attractor by Three-Dimensional
Space Functions

This section presents the switched systems (2.6) and (2.7)which can generate chaotic attractor
by three-dimensional space functions.

The switching rule is constructed as follows. Firstly, we introduce three-dimensional
space function as follows:

g(x1, x2, x3) = x2
1 + x2

2 + x2
3. (3.1)
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Secondly, we assume two approximate integrals G1 = 25, G2 = 900. Finally, when
system (2.6) is active, it will switch to system (2.7) at time t1 if g(x(t1), y(t1), z(t1)) =
G1. Similarly, when system (2.7) is active, it will switch to system (2.6) at time t2 if
g(x(t2), y(t2), z(t2)) = G2.

With this switching rule, we can generate chaos or chaos-like behavior by the system
parameters are chosen as follows:

a = 1, b = 11, c = 0.5, ε = 0.01, f = −0.5, g = −1, h = 3. (3.2)

As shown in Figure 1, the maximum Lyapunov exponent is 0.0026.
From this, we can see that the proposed space functions are quite effective in the

generation of attractor with obviously quasi-periodic or chaotic behaviors and other chaotic
attractors can be easy generated based on the change of parameters.

4. Generating n-Scroll Chaotic Attractor

This section presents novel systems—the switched systems with saturated function series—
which can generate n-scroll funnel attractors. To generate n-scroll chaos, a nonlinear
controller, saturated function series is added to system (2.6) and system (2.7). So the whole
systems can be written as

Ẋ = A1X + b1 + F1, (4.1)

Ẋ = A2X + b2 + F2, (4.2)

where

F1 =

⎛

⎜
⎜
⎝

f1
1 (X)

f2
1 (X)

f3
1 (X)

⎞

⎟
⎟
⎠, F2 =

⎛

⎜
⎜
⎝

f1
2 (X)

f2
2 (X)

f3
2 (X)

⎞

⎟
⎟
⎠. (4.3)

4.1. Generating Double-Scroll Chaotic Attractors

Similar to the form of (2.3), we introduce the following saturated function:

f0(x; k,m, e) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2k, if x > m + e,

k(x −m)
e

+ k, if |x −m| ≤ e,

0, if x < m − e,

(4.4)

f0(x) is the abbreviation for f0(x; k,m, e) in the following work for convenience.
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Figure 1: Chaotic attractor generated by three-dimensional space function.
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For generating double-scroll attractors located at x-axis, f1
1 (X) is set to −af0(x1), f2

1 (X)
is set to bf0(x1) and f3

1 (X) is set to 0, the system (4.1) can be written as:

ẋ1 = a
[
x1 − f0(x1)

]
+ bx2,

ẋ2 = −b[x1 − f0(x1)
]
+ ax2,

ẋ3 = cx3 + ε.

(4.5)

Similarly, f1
2 (X) is set to −f ∗ f0(x1), f2

2 (X) and f3
2 (X) are set to 0, and the system (4.2)

can be written as

ẋ1 = f
[
x1 − f0(x1)

]
,

ẋ2 = gx2 + hx3,

ẋ3 = −hx2 + gx3.

(4.6)

Here we select parameter as (3.2) and

a = 1, b = 11, c = 0.5, ε = e = 0.01, f = −0.5,
g = −1, h = 3, k = m = 5.

(4.7)

Figure 2 shows a double-scroll attractor, where 2 scrolls are generated in (−10, 0) and
(0, 0). Figure 2(d) illustrates that the variable x(t) spirals around the equilibrium points −10
and 0, which exhibits a random behavior.

Under the parameter set (4.7), there exist two equilibrium points (−10, 0) and (0, 0),
corresponding to saturated plateaus and saturated slope, respectively. It’s noticed that the
scrolls are generated only around the saturated plateaus.

4.2. Generating n-Scroll Chaotic Attractors

Similar to the form of (2.3), we introduce the following saturated functions:

f1(x; k1, m1, e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2k1, if x > m1 + e,

k1(x −m1)
e

+ k1, if |x −m1| ≤ e,

0, if x < m1 − e,

f2(x; k2, m2, e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2k2, if x > m2 + e,

k2(x −m2)
e

+ k2, if |x −m2| ≤ e,

0, if x < m2 − e,

(4.8)

f1(x) and f2(x) are the abbreviations for f1(x; k,m, e), and f2(x; k,m, e) in the following
work for convenience.
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Figure 2: Double-scroll chaotic attractor generated by fo(x).

In the following, saturated function series controller is added to system (2.6) and
system (2.7), aiming to generated n-scroll chaotic attractors. The form of the controller is
similar to the one used in last section, the difference is that F1 and F2 are chosen to saturated
function series defined by (2.3).

As a simple sample, we generate 2 × 2-scroll attractors located at x-axis and y-axis,
f1
1 (X) is set to −af1(x1) − bf2(x2), f2

1 (X) is set to bf1(x1) − af2(x2), and f3
1 (X) is set to 0, the

system (4.1) can be written as

ẋ1 = a
[
x1 − f1(x1)

]
+ b

[
x2 − f2(x2)

]
,

ẋ2 = −b[x1 − f1(x1)
]
+ a

[
x2 − f2(x2)

]
,

ẋ3 = cx3 + ε.

(4.9)
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Figure 3: 2 × 2-scroll chaotic attractor generated by f1(x) and f2(x).

Similarly, f1
2 (X) is set to −f ∗ f1(x1), f2

2 (X) is set to −gf2(x2), and f3
2 (X) is set to h ∗

f2(x2), the system (4.2) can be written as

ẋ1 = f
[
x1 − f1(x1)

]
,

ẋ2 = g
[
x2 − f2(x2)

]
+ hx3,

ẋ3 = −h[x2 − f2(x2)
]
+ gx3.

(4.10)

Here we select parameter as (3.2) and

ε = e = 0.01, k1 = m1 = 5, k2 = m2 = 4. (4.11)

Figure 3(a) shows a 2 × 2-grid scroll chaotic attractor, where 2 × 2 scrolls can be
confirmed at the equilibrium points in (0, 0), (−10, 0), (0,−8), (−10,−8), and the maximum
Lyapunov exponent is 0.0016.

From these numerical simulations it is shown that we can easily generate n-scroll
chaotic attractors by switched systems with three-dimensional space functions and saturated
function series. From this, we can also get other n-scroll chaotic attractors based on the
change of parameters. Moreover, the statistic behavior is also researched by giving the largest
Lyapunov exponents.
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5. Conclusion

This paper introduces a switched system with three-dimensional space functions for
generating a new type of chaotic attractor, and then, it also introduces n-scroll attractors’
generation which by two switched systems with three-dimensional space functions and
saturated function series. The generated attractors include 1D n-scroll and 2D n × m-grid
scroll. And moreover, new funnel-shape attractor is emerged in each scroll, which adds
stochastic properties of the chaos signal. Furthermore, the statistic behavior is also discussed,
which reveal the regularities in the complex dynamics. In addition, the method has been
developed in this paper can also applied to nonlinear dynamical systems and other fields. It
is desirable that one could design more chaos generators by means of the method proposed
in this paper.
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