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This work aims to study some dynamical problems in the framework of nonlinear theory
of micromorphic thermoelastic solids. First, the continuous dependence of smooth admissible
thermodynamic processes upon initial state and supply terms is investigated in the region of state
space where the internal energy is a convex function and the elastic material behaves as a definite
conductor of heat. Then, a uniqueness result is demonstrated.

1. Introduction

Motivated by experimental studies, various continuous models of deformable bodies have
been proposed in literature in order to describe the thermomechanical behavior of media
with microstructure. In the micromorphic theory introduced by Eringen and Suhubi [1] and
Eringen [2], a material body is envisioned as a collection of a large number of deformable
particles (subcontinua or microcontinua). Each particle possesses finite size and directions
representing its microstructure. The microdeformation gives rise to extra degrees of freedom.
Thus, the particle has nine independent degrees of freedom describing both rotations and
stretches, in addition to the three classical translational degrees of freedom of its center.
Many deformable solids point to the necessity for the incorporation of micromotions
into mechanics. Porous solids with deformable grains and pores, composites, polymers with
deformable molecules, crystals, solids with microcracks, dislocation and disclinations, and
biological tissues (bones and muscles) are just a few examples of deformable solids which
require the degrees of freedom given by the micromorphic theory. As a consequence, the
micromorphic mechanics is the subject of detailed studies both from theoretical and practical
reasons. In the linear context, uniqueness theorems have been proved by So6s [3] and lesan
[4], variational principles have been established by Maugin [5] and Nappa [6], applications
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to earthquake problems have been suggested by Teisseyre [7], Dresen et al. [8], and Teisseyre
et al. [9], plane harmonic waves have been studied by Eringen [2], reciprocal and existence
theorems have been demonstrated by Iesan [4], and material constants for isotropic materials
have been determined by Chen and Lee [10].

On the other hand, the theory has been generalized to mixtures of micromorphic
materials by Twiss and Eringen [11, 12], to higher-grade materials by Eringen [13],
and to electromagnetic micromorphic thermoelastic solids by Eringen [14]. Moreover, the
constitutive theory of micromorphic thermoplasticity has been formulated by Lee and Chen
[15], the concept of material forces was extended to micromorphic theory by Lee and Chen
[16], the problem of heat flow in a micromorphic continua with microtemperatures has been
investigated by Iesan and Nappa [17].

This paper deals with the nonlinear micromorphic thermoelasticity. The main purpose
is to investigate the stability of smooth thermodynamic processes. In this sense, we use the
method developed for nonlinear thermoelastic solids which are nonconductor of heat by
Dafermos [18] and updated later by Chirita [19] to heat-conducting thermoelastic materials.
In the general context of heat-conducting nonlinear micromorphic solids, we prove the
continuous dependence of smooth admissible thermodynamic processes upon initial state
and supply terms. We present also a uniqueness theorem. Both results are obtained in the
region of state space where the internal energy is a convex function and the elastic material
behaves as a definite conductor of heat.

We recall that the Dafermos method has been utilized recently to prove continuous
dependence results for nonconductor-of-heat mixtures [20-22] and for materials with voids
[23].

The paper is organized as follows. In the next section, we recall the basic equations
of the nonlinear theory of micromorphic thermoelasticity. Then, in Section 3, we use the
consequences of the second law of thermodynamics to prove a uniqueness theorem and
the continuous dependence of smooth thermodynamic processes upon initial state and body
loads.

2. Basic Formulation

We consider a micromorphic continuum, and we assume that at time #; the body occupies
the region B of the Euclidean three-dimensional space and is bounded by a piecewise
smooth surface 0B. Following [2], a point C in the body is characterized by its rectangular
coordinates Xi, X, X3, in a fixed system of rectangular Cartesian axes OXx, K =1,2,3,and a
deformable vector Z. One writes C(X, 2). Deformation carries C(X, Z) to c(x, §) in the spatial
configuration at time ¢, where x1, xp, and x3 are the rectangular coordinates with respect to a
new coordinate Cartesian system ox;, i = 1,2,3, and ¢ is the vector attached to c. The motion
can be expressed as

X; = xl-(X, i’), gi = XiK(X/ t)EK, XeB, tel, (21)

where, and henceforth, the summation convention on repeated indices is understood and
I =[to, t1), t1 > to.
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The inverse motion can be written as
Xk =Xk(x 1),  Ex=Xki(x ), (2.2)
where
XikXkj = 6ij, XikXLi = OkL- (2.3)
In what follows f denotes the material time rate of f. Moreover, we use the notations

fx =0f/0Xk and f; = 0f /0x;.

The balance laws of micromorphic continua can be expressed as follows [1, 2]:

(i) the conservation of mass:

po=Jp or p+pv;=0, (2.4)

where po(X) and p(x,t) are the mass densities at time ¢y, and at present time, respectively,
] = det(0x;/0Xk), and v; are the components of velocity vector;

(ii) the conservation of micromorphic inertia:

. . di . .
i = Ixkpxkx i,  Ixr = iuXgXn  or —p = temVim + dimVim, (2.5)

where vy is the microgyration tensor defined by
vij = XikXkj, (2.6)

and Ikr(X) are the components of the inertia stress tensor at time ¢y and ik (x,t) are the
components of the microinertia tensor at time t. Clearly, Ixr(X) and ik (x, ) are symmetric
and positive definite;

(iii) the balance of momentum:
tjij +pfi = poi, (2.7)
(iv) the balance of moment of momentum:

Miijk + t]',' - Sji + pl,] = pOij, (28)
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(v) the balance of energy:

pé = t]-iv,-,]- + mki]-vi]-,k + (S]'i = tji)”ij +qii+ pr, (29)

where t, m, s, o, e, q are the stress tensor, moment stress tensor, microstress average, spin
inertia, internal energy, and heat input, respectively, and f, 1, r are the body force, external
body moment, and heat source, respectively. The tensor s is symmetric, that is, s;; = s;;. The
spin inertia 0;; may be expressed as

0ij = IkL ik Xjr = imj(Vim + VinVnm)- (2.10)

The second law of thermodynamics is written as
; 1
PO = gii = pr + 5410 2 0, (2.11)

where 7 is the entropy density and 0 is the absolute temperature.

The above formulation is described in detail in the book by Eringen [2]. Since we deal
with micromorphic solids, we reformulate the basic equations in Lagrangean description.
Thus, introducing the Piola-Kirchhoff tensors

Tki = J Xk jtji, Mkir = J Xk jXrkmjix, Qx = JXk,i4i,

(2.12)
Ski = J Xk,Sji, Lik = Xkjlij,
and making the notation
Gir = X1 [xjx (Ski — Txi) — xjmxMkim]|, (2.13)
then, with the help of the relations (2.4), (2.6), and (2.10) and the identity
(ﬁf)jza (2.14)
we obtain the equations of motion
Txix + pofi = poki,
(2.15)

Mkir,x = Gir + poLir = polkr{ix,
the energy equation

poé = Tkivi k + MkirXirx + Gik ik + Qx x + pot, (2.16)
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and the inequality
. 1
pobi = Qux = por + 5Qx0x 2 0. (2.17)
Introducing Helmholtz’s free energy ¢ as
g =e-01, (2.18)

then, with the help of (2.15), the energy equation can be expressed as

d 1 1
I [Po <</f +0n + SUIvi+ EIKLXiKXiL>] = (Tkivi + Mkir it + QK),K +po(fivi + LipYiL + 7).
(2.19)

Moreover, from (2.16), (2.17), and (2.18), we deduce
. 1
—po (g5 +10) + Tkivik + ML ik + Gik ik + 5Q1<9,K > 0. (2.20)

The response of a micromorphic thermoelastic solid is characterized by the following
constitutive equations:

¢ =¢(L), Ty = T1j(9), GiL = Gjr(£), Mijp = Mpjp(L),

n=1(£), Qu=0L(9),

(2.21)

where
£ ={xik xix, Xik.m, 0,0 x; Xk } (2.22)

and @, TLj, GjL, M Ljp, 1, and QL are sufficient smooth functions.
We assume that there is no kinematical constraint. Then, it follows from the inequality
(2.20) that

o = ¢(xik, xik, Xikm 0, Xk), QL= Qr(L),

_ oy _ o _op oG (2.23)
T _POE' G —POW]_L/ ML _poaX;—'L,K, =39
Qr (xix, ik, Xik,m, 6,0; Xk) = 0. (2.24)

The inequality (2.20) reduces to

Ok > 0. (2.25)
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3. Uniqueness and Continuous Dependence

In this section, we establish a uniqueness result and the continuous dependence of smooth
thermodynamic processes upon initial state and supply terms.

We assume that B is a bounded region and that 0B is sufficiently regular to assure the
common laws of transformation of surface integrals. We will employ the following notations:
Nk are the components of the unit outward normal vector to the surface 0B; I denotes the
time interval [to,t;), where f; may be infinity; the symbol | - | denotes a norm, either in
Euclidean vector space or in a tensor space, while || - ||;2(p) denotes the L?-norm.

Definition 3.1. By a thermodynamic process on B x I one means an ordered array of functions
{xi, xiL, 0, ¢, Tki, GiL, Mkir, 1, Qxk, fi, Lir, v} which satisfy the equations of motion (2.15), the
energy equation (2.19), and the constitutive relations (2.21).

Definition 3.2. A thermodynamic process will be called admissible if it also satisfies the
Clausius-Duhem inequality (2.17). From the previous section it follows that the Clausius-
Duhem inequality (2.17) holds for all admissible processes in B x I if and only if (2.23), (2.24),
and (2.25) are satisfied.

For admissible thermodynamic processes, one may write the energy equation in
reduced form

001 = Qk x + por- (3.1)

Definition 3.3. One will say that U = {x;, yir, 0} is an admissible state corresponding to the
load (fi, Lir, v) if {xi, xir, 6, ¢, Tki, Gir, Mkir, 1, Qk, fi, Lir, } is an admissible thermodynamic
process. The admissible state U = {x;, yir, 0} is smooth if x;, yir, and 6 are functions of class
C.

Let U = {x;, xir,0} and u = {E,-,YiL,é} be two smooth admissible states on B x I

corresponding to the loads (f;, Lir, ) and (?i, LiL, 7), respectively. We define the function D(-)
on I by

D= IB [EPO(Ui -0;)(vi — ;) + EpOIKL <in< - XiK> <x,-L - XiL) + poy — pog

~Txi(xix — Xix) — Gix (ix — Xix) — Miir <XiL,K - Y,-L,K> + pon (9 - 5)] dv,
(3.2)

where

%i=%,  F=§ (% X Yoo & Xx), Qo= Qu(Fix X Xisc 0,0 Xic)s

— _ oy
M il — = --—.
KjL = Po n 50

GiL=po

TL' =P0=—/ a— 7 — ’
=F 0L XL XLk
(3.3)
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On account of (2.23) and (3.3) it is easy to see that D is of quadratic order in

||V_VIX_YIF_iIX_YIY_?/9_6 LZ(B), (34)

where F = (x;x), x = (xix), and y = (yir,x)- The evolution in time of this function is described
by the following.

Theorem 3.4. If U = {x;, yiL, 0} and u = {E,-,YiL,é} are two smooth admissible states on B x I
corresponding to the loads (f;, LiL, ) and (fi,fiL,F) in L*(B x I), then

D=| TdA+ IB [A +Z+po (fi - ﬁ) (vi —0i) + po <LiL - f,-L> (XiL - fiL)

o° (3.5)
+%°(r—7)<9—§) - %(QKK +po7) (0-0) ]dV
where
I'= [(TKi - TK:’) (vi —0i)+ <MKiL - MK:’L) <XiL - YfL) +% <QK QK> < > Nk, (3.6)
S DR T RECIERE S
() - G0
+Xi I:GiK_CiK - SG;K (x50 = %) - ?3%[( <X7L X;‘L> _aa;—;(w <X7’L,M - YjL,M)
0Gix —
9]
3.7)

+ XiLk [MKiL ML - Xong (xj,m —Xjm)
]/

ML

X jm OXjmN

(XjM - YjM) - % <XjM’N - YjMN) aAE/)I;IL <9 9>]

- _ oq _ on —
— po [q -n- ﬁ(xzx — XiKk) = Ey (xix = Xix)

on _ on
S 1) <09

=—(Qx-Qx) <9 5 9) E (3.8)
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Proof . From (3.2) we obtain

) d 1 1
D= J‘B{a [Po <</f +0n + SV + EIKLXiKXiL)]
d o= 1__ 1 L -
— 5 [P\ ¥ + 01+ 500+ S Ik Xixc Xir
—po <Ui5i +0i0; - 2551‘) - polke ()'CiKY,-L + {ik X — 2)7«71) (3.9)
~Txi (xix —XiK) — Gix (Xik = Xix) — MriL <XiL,K - Y,-L,K>
~Tki (xi,K - 7i,1<> - Gix (XiK - Yi K) ~ Mkir <XiL,I< - fiL, 1<>

- poB (- 71) - poB (71~ 77) }dV.

Using the balance laws (2.15) and (2.19), we may write (3.9) in the form

D= IB{ [(TKi - TKi) (vi—v;i) + <MK,-L - MK:’L) <XiL - YI.L>] . 10
’ 3.10
+ P0<fi _7,-> (Ui —Ei) + PO(LiL _EiL> <X‘,'L _YiL> + R+ P}dV,

where
R= —TKi(xi,K ~ %K)+ Xik <TK1' - TKi) - MI<iL <XiL,I< - YiL,K)
+ YiL’K <MK1'L - MKiL) -Gix (xik = Xix) * Xix <Gil< - aiK)
; o 3.11)
~poB(n—7) +poi(6 - 6),
P = por + Qr x — por — @K,K - po <ﬁ9 + 1'15 - 2ﬁ§>

It follows from (3.3) that

7 aTKij . aTKiY . OT ki T aTKié
Ki = = XjL — X ~— X - =Y,
oxj. o™ t OXjL,m M 5

a@K; aEiK; a@K - a@K;
=—XjL+—Xiqgt——X; +—_9,
ox; XL Xt LM Xjt.m 06

ol
=

(3.12)
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With the help of (3.12) and (3.3), we find that

R=A. (3.13)

On the other hand, using (3.1), we have

= 0 /— N 6
P = por + Qrx — por — Qg x + §<Q1<,1< +P07‘> - é(QK,K + por)

- (Qux + o) (2 -2+ %) =B -7)(0-9) (3.14)

N [<QK_§K>$],{ @—@)(?)/K— L(@cxror)o-9)"

Collecting (3.10), (3.13), and (3.14) and using (3.6), (3.7), and (3.8) and the divergence
theorem we conclude that (3.5) holds. The proof is complete. O

From (2.21), it follows that

Qi =Qx + K (0, -8.) + 2k +QY, (3.15)
where
80 s o
Krr =38, (), = (Fim Xont: Xinin: 0,005 X1 ), (3.16)
and Qg is given by

Qx = Brir(xir — %) + Crir (iz = Xy ) + Exitm <XiL,M - YiL,M> +ak (9 - §>, (3.17)

BriL = ngIZ (E) Cxir = g%z <E) T = aaQK <E) Ax = %(E). (3.18)

In (3.15), Q% is a function of order o(g), ¢ being defined by
o=|F—F|+Ix-X+lr-7+|0-8] +I5 -3, (3.19)

where F = (xi k), x = (xix), 1 = (XiLk), and g = (0 ).
Let us introduce the following definition for a definite heat conductor material (see
Chirita [19]).



10 Mathematical Problems in Engineering

Definition 3.5. One says that the admissible state U resides in the region where the material is
a definite heat conductor if

kxréxén >0, (3.20)
for any nonzero ¢k, where EKL is given by
kxr = %(EKL + EK). (3.21)
We introduce the following notation:
yO = (F-Ex-Xr-1.0-0)Cblee, tel (3.22)

Theorem 3.6. Let U = {Ei,}iL,é} be a smooth admissible state residing in the region where the
material is a definite conductor of heat. Then there exist the positive constants 6, my, and my with the
following property: if U = {x;, i, 0} is any smooth admissible process defined on B x I, such that

o= [F—F|+Ix-Xl+Ir-¥+|0-8|+Ig-8 <5 (3.23)
on B x 1, then

[ zav <-miE-B 60l + ), el (3.24)
Proof. In view of (3.8), (3.15), and (3.21), it follows that

23 (0x-B0) (02 -0) 0w 05~ (0-7)

(3.25)
= —%EKL <9K - 5[() <9L - §L> + R+ O<Q2>,
where
fi= 0 (0x - Bx) + ée,K [Keo(6:-8,) + 2] (0-8). (3.26)

Using the arithmetic-geometric inequality

2ab < a’f* +b*B2, for all nonzero constant 3, (3.27)
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Schwarz’s inequality, and (3.17), we deduce
2[ Sav < B+ B+ B+ ) I~ B)C Dl

_ 2
+ (M2 D) I(F-F) 60, + (M3A2 49310 = 0 Dl 528)

+ (M3B2+ ) 1 - DD )
2

+ (M3B2 + N2+ N3? + N2+ N2 1(0-8) (0,

where f,, (p = 1,2,3,4) and ys, (s = 1,2, 3) are arbitrary nonzero constants and

M = max|9‘1§ , M, = max|9_1E|, M; = max|9‘12|,
= a0=T =T =T
M,y =max|0"a+0°K g|, N; =max|0™B g|, N> =max(07C g|, (3.29)
T
N; = max|07%& g, N? = 2max|9_25g|.

In view of (3.20), we conclude that there exists a positive constant A such that
1— - - e
- fB kKt (9,,< - e,K) (9,L - e,L)dv <-AM(g-8) Dl teL (3.30)

Collecting (3.25), (3.28), and (3.30), we conclude that there exists a positive constant 6 with
the property that whenever (3.23) holds, we have

— 2
[ zav <-milg-B1C 01w+l (F-F) oI,

(3.31)
— 2 — 2 — 2
+call(x =T Dl + sl =T Dl + esll(0-8) 0L, ,
where
1 _ _
m=t-g(fe e e f) 2a=MpTl 2a-Migted
2es = M3fs*+y3, 208 = My + Nyy" + Nopp” + Naps” + N2
Now, taking the constants f3,, (p = 1,2, 3,4) such that m; > 0 and setting
my = max{cy, C2,C3,C}, (3.33)

from (3.22) and (3.31), we obtain (3.24), and the proof is complete. O
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Following [18], we introduce the following.

Definition 3.7. One says that the admissible state U = {Ei,}m,é} resides in the convexity
region of the internal energy if the following two conditions are satisfied:

(i) for each (X, t) € B x I, there exists a positive constant y such that

oy oy oy W
%YiKYjL + éQiKQjL + %(DiKM(D]-LN +2 ==Yk QjL
OXi kXL Xik XL ik, mX LN OXi kX iL
oy oy
+ 26_—_Yqu)]'LM +2——QikDjrm 2 p(Yix Yik + QixQix + Pixr Dikr),
Xi, K Xir,m Xix XjL,m
(3.34)
for all Y;k, Qix, and ®;xr.
(ii) and
o
a5 0. (3.35)
00

Our study on stability and uniqueness is based on the following Gronwall-type
inequality [18].

Lemma 3.8. Assume that the nonnegative functions z(t) € L*[0,s] and g(t) € L'[0, s] satisfy the
inequality
.
22(1) < M222(0) + 2f [(a +2BT) 22 (H) + Ng(t)z(t)]dt, T €[0,s] (3.36)
0
with a, p, M, and N being nonnegative constants. Then

z(s) < [MZ(O) + NJE g(t)dt] exp<os + ﬁsz>, (3.37)

where o = a + f/ a.
Now, we are ready to state the following stability result.

Theorem 3.9. Let U = {%i, Xiks 5} be a smooth admissible state on B x I corresponding to the loading
(?i,fiL,?) € L* (B x I) and residing in the region where the internal energy is a convex function and
the material is a definite conductor of heat. Then there exist the positive constants 50, ag, Mo, and Ny
with the following property: if U = {x;, yix, 0} is any smooth admissible state on B x I corresponding
to the loading (fi, Lik,r) € L* (B x I), such that

o= |F—F|+Ix-X+Ir-¥+|0-8| +lg-8l <&, (3.38)
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on Bx1,and

[(TKi - TKi) (vi—0;) + <MK1'L - MKiL) (X'iL - Yl-L> + é<QK - éK) <9 - 5)] Nk =0,

(3.39)
on 0B x 1,
then for any s € I, one has
zo(s) < [M()ZQ(O) + NO_[ go(t)dt] exp(aos), (3.40)
0
where
() = || (v-VF-Ex-X £ -%71-T.0-0)(9)],
(3.41)

go(s) = ||<f—f,L—f,r _7>(.,s)

L2(B)’

Proof. From (3.6) and (3.39), we have I' = 0. In view of (3.5), (3.7), (3.24), and Schwarz
inequality, it follows that there exist the positive constants 6, v1, and v, such that whenever
(3.23) holds, we have

D(t) <my?(t) + mgo(t)w(t), tel, (3.42)
where y(t) is defined in (3.22) and

w(t) = [(v-9,£-X,0-0)(. 1)) (3.43)
Let us fix s € I and integrate (3.42) over [0, 7], with 7 € [0, s]. Then, we have

D(1) < D(0) + v f Zi(t)dt + v, f go(H)zo(t)dt. (3.44)
0 0

Here we used the inequalities y(t) < zo(t) and w(t) < zo(t), t € I.
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On the other hand, in view of (2.23) and (3.3), we obtain

pog — poip — Ti(xix = Xix) — Gix (Xik — Xix) — MiL (XiL,K - EL,K> + pot] <9 - 5)
_P| % Vx —F
|:6x,1<6x]L(xl’K xi,k) (XjL —XjL)
+W(X1K X1K)<X]L X]L>

m <XiK'M - YiK,M) <XjL,N - f]-L,N>

- (3.45)
+ Zm (xi,k = XiK) <XJ'L - X;L)

oy _ —
+ Zm(xu( - xi,K) <XjL,M - XjL,M)
oy - -
——(Xik - X; iLM = Xj
aXIKaX]L M Ot~ Xix) <X] XIL'M>:|
1 on

69<9 9> +o<|F F| +x - x| + |y - r| +|9 9|>

It follows from (3.2), (3.34), (3.35), and (3.45) that there exist the positive constants 6y and v3
such that whenever

|F_F|+|x—y|+|y—7|+|9—§|<50, (3.46)

we have

V3ZQ(t) < ZD(f), tel. (347)

Setting 80 = min(5, 6y) in (3.38), from (3.44) and (3.47), we obtain

T T
Vg,z%(T) <2D(0) +2»; f zﬁ(t)dt +2vy | go(t)zo(t)dt. (3.48)
0 0
Using the estimate
D(0) <wyzp(0), wy>0, (3.49)
and the notations
5 2wy V1 V2
M(] = @y = —, NO = (350)
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then (3.48) implies that

22(1) < M2z(0) + 2f [aozg(t)dt + No go(t)zo(t)]dt. (3.51)
0
An application of Lemma 3.8 completes the proof. O

A direct consequence of the above theorem is the following uniqueness result.

Theorem 3.10. Let U and U be as in Theorem 3.9. Assume that the corresponding body loads coincide
on B x I and U and U originate from the same state, namely,

xi(X, 0) =xi(X,0), Ui(X/ 0) = 5i(X/ 0)/ XE(X/ 0) = YiL(X’ 0)/

$iL060) =%, (6,0),  6(X,0) = B(X,0), Xebo G5

Then, U and U coincide on B x 1.
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