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We provide a new method of constructing an optimal lattice. Applying our method to the
cryptanalysis of the short exponent RSA, we obtain our results which extend Boneh and Durfee’s
work. Our attack methods are based on a generalization to multivariate modular polynomial
equation. The results illustrate the fact that one should be careful when using RSA key generation
process with special parameters.

1. Introduction

The RSA [1] cryptosystem is the most widely used public-key cryptosystem. The modulo
N of RSA cryptosystem is the product of two large prime numbers p and q, without loss of
generality, we assume that p < q. The public exponent e and the secret exponent d satisfy the
equation

ed ≡ 1
(
modφ(N)

)
, (1.1)

where φ(N) = (p−1)(q−1) is Euler’s totient function. In a typical RSA cryptosystem, p and q
have approximately the same number of bits and e < N. The most basic security requirement
for public key cryptosystem is that it should be hard to recover the secret key from the public
key.

In order to speed up the decryption or signing process, one might be tempted to
use small secret exponent. Unfortunately, Wiener [2] showed that if d < N1/4, then the
factorization ofN can be found in polynomial time using only the public information (N, e).
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In 1996, Coppersmith [3] introduced two methods for finding small roots of polynomial
equations using lattice reduction, where one is for the univariate modular case and the other
is for the bivariate case over the integers. Coppersmith’s technique has been found many
applications for breaking variants of RSA; for example, Boneh and Durfee [4] improved the
bound of secret exponent to d < N0.292, Coron and May [5] applied Coppersmith’s technique
to show the deterministic equivalence between recovering the secret exponent d and factoring
N, and May [6] presented two polynomial time attacks for the case of imbalanced prime
factors p and q.

For a given RSA modulo N, it is not difficult to get a polynomial time algorithm for
finding [

√
N], where [

√
N] is the integral part of N. Then p and q can be rewritten as p =

[
√
N] − x0 and q = [

√
N] + y0, where x0, y0 are unknown positive integers. Our observation

is that the bound of secret exponent d of balanced RSA is related to the bound of |x0 − y0|.
For instance, when p and q are twin prime numbers, that is, q − p = 2, then p is a root of the
following polynomial:

N = x(x + 2). (1.2)

Therefore, for any security exponent d, there often exists an algorithm that factors N with
polynomial time. In general case, relations between the bound |x0 − y0| and the bound of
secret exponent d are obtained. Boneh and Durfee’s results in [4] are special cases of our
results in this paper.

We reduce our method into two cases according to the size of the public exponent e
and obtain the results by applying a new method of constructing a lattice basis. When e is
large, set fe(x, y) := x(y −A) + 1, then the polynomial fe(x, y) has (k,U) as a root modulo e,
where U = y0 − x0 and k satisfies

ed + k
(
N + 1 − p − q

)
= 1. (1.3)

Let

gi1i2
(
x, y

)
=

xi1yi2

lk
fe
(
x, y

)k
em−k, (1.4)

for k = 0, . . . , m, where l is a leading monomial of fe (for a detailed definition, see Section 3).
All the polynomials gi1i2 have the root (k,U) modulo em. A lattice L is defined by taking the
coefficient vectors of gi1i2(xX, yY ) as a basis. In general, one can force the matrix of the lattice
to be lower triangular. According to the LLL-algorithm, one hopes that the dimension of the
lattice is as large as possible and entries of the diagonal are as small as possible. The following
definitions are useful for describing our method clearly.

Definition 1.1. Suppose a lattice L is spanned by vectors {b1, b2, . . . , bω} and the matrix
describing L is a lower triangular. A vector of which the last entry of the row exceeds the
modulo of the lattice is called a bad vector. A vector of which the last entry of the row is less
than the modulo of the lattice is called a good vector. A lattice spanned by a basis of which
all its vectors are good is called an optimal lattice.

The key ingredient of the lattice reduction technique is to construct an optimal lattice
of which the dimension is as large as possible. Jochemsz and May’s strategy of constructing
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a lattice basis [7] is to chose a continued subset of the polynomials gi1i2 as a lattice basis
in which there may be some bad vectors. Our most significant contribution is that we can
discard all the unnecessary bad vectors in a lattice basis with a simple newway and construct
a lattice whose dimension of the lattice is large enough. We construct an optimal lattice basis
by choosing a discontinued subset of the polynomials gi1i2 . When e is small, a difference
polynomial is chosen; similar methods but more complicated are applied to construct a lattice
basis. In order to show that our method is practical, the properties of resultant are considered
also in this paper.

The paper is organized as follows: some lattice preliminaries are given in Section 2.
Section 3 shows the proposed method of attacking the RSA with large e. Section 4 shows the
method of attacking the RSA with small e. The last section is the conclusion.

2. Lattice Theory

Let b1, b2, . . . , bω ∈ Z
n be linearly independent vectors with ω ≤ n. A lattice L spanned by

{b1, b2, . . . , bω} is the set of all integer linear combinations of b1, b2, . . . , bω. Such a set of vectors
bi’s is called a lattice basis. We say that the lattice is full rank if ω = n.

Let f(x, y) =
∑

i,j aijx
iyj ∈ Z[x, y] be a bivariate polynomial with coefficients aij in

the ring of integers. The Euclidean norm of f is defined as the norm of the coefficient vector
‖f‖2 = ∑

ij a
2
ij .

Lemma 2.1. Let B = {b1, b2, . . . , bn} be a basis. On input B, the L3-algorithm outputs another basis
{v1, v2, . . . , vn} with

‖v1‖ ≤ ‖v2‖ ≤ 2n/4det(L)1/(n−1), (2.1)

in time polynomial in n and in the bit-size of the entries in B.

Based on the LLL-algorithm, Coppersmith [3] presented a method of finding small
solutions to the modular polynomial which has the desired small root over the integers.
Howgrave-Graham [8] formulated a useful condition on how to find such a polynomial in
terms of normal of a polynomial.

Lemma 2.2 (Howgrave-Graham [8]). Let h(x, y) ∈ Z[x, y] which is the sum of at most ω
monomials. Suppose that h(x0, y0) ≡ 0 mod ϕm, where |x0| < X, |y0| < Y and ‖h(xX, yY )‖ <
ϕm/

√
ω. Then h(x0, y0) = 0 holds over the integers.

3. The Case for Large e

Let e, d be integers such that ed ≡ 1(modφ(N)). It follows that there exists an integer k
satisfying

ed + k
(
N + 1 − p − q

)
= 1. (3.1)
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Suppose that the public key and the security key satisfy e < Nα, d < Nβ for some α, β. In this
section, we consider the case that e is of the same order of magnitude asN and therefore α is
very close to 1.

By (3.1), we have

k <
2ed
N

≤ Nα+β−1. (3.2)

Rewriting p = [
√
N] − x0, q = [

√
N] + y0, A = N + 1 − 2[

√
N], and U = y0 − x0, we obtain

k(A −U) ≡ 1(mode). (3.3)

Suppose fe(x, y) := x(y −A) + 1, then the polynomial fe(x, y) has (k,U) as a root modulo e.
A monomial l of fe, with coefficient al, is called a leading monomial if there are no

monomials in fe besides l that is divisible by l. Here the leading monomial of fe is xy and its
coefficient is 1. Let ε > 0 be an arbitrarily small constant. Depending on 1/ε,we fix an integer
m. For k ∈ {0, . . . , m + 1}, we define the sets Mk of monomials as

M0 :=
{
xi1yi2 | xi1yi2 is a monomial of fm

e

} ⋃

1≤j≤t

{
xi1yi1+j | 1 ≤ i1 ≤ m

}
,

Mk :=

{

xi1yi2 | xi1yi2 is a monomial of fm
e and

xi1yi2

lk
is a monomial of fm−k

e

}

⋃

1≤j≤t

{
xi1yi1+j | k ≤ i1 ≤ m

}
,

(3.4)

where t is a parameter to be chosen later. We note that each set Mk in [7] is the whole
monomials of fm−k

e , while, in our method, we discard all bad rows of the lattice and consider
part monomials of fm−k

e .
We define the following shift polynomials

gi1i2
(
x, y

)
=

xi1yi2

lk
fe
(
x, y

)k
em−k, (3.5)

for k = 0, . . . , m, and xi1yi2 ∈ Mk \Mk+1.
All the polynomials gi1i2 have the root (k,U)modulo em. We define a lattice L by taking

the coefficient vectors of gi1i2(xX, yY ) as a basis. We can force the matrix describing L to be
lower triangular. It is not difficult to see that the sets Mk can be rewritten as

M0 :=
{
xi1yi2 | 0 ≤ i2 ≤ i1 ≤ m

} ⋃

1≤j≤t

{
xi1yi1+j | 1 ≤ i1 ≤ m

}
,

Mk :=
{
xi1yi2 | k ≤ i2 ≤ i1

} ⋃

1≤j≤t

{
xi1yi1+j | k ≤ i1 ≤ m

}
.

(3.6)
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Table 1

1 x xy x2 x2y xy2 x2y2 x2y3

e2 e2

xe2 ∗ Xe2

fe ∗ ∗ XYe

x2e2 ∗ ∗ ∗ X2e2

xfe ∗ ∗ ∗ ∗ X2Ye

yfe ∗ ∗ ∗ ∗ ∗ XY 2e

f2 ∗ ∗ ∗ ∗ ∗ ∗ X2Y 2

yf2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ XY 3

As an example, we consider the case m = 2, and t = 1. From the definition of Mk, we have

M0 =
{
x2y3, x2y2, xy2, x2y, x2, xy, x, 1

}
,

M1 =
{
x2y3, x2y2, xy2, x2y

}
, M2 =

{
x2y3, x2y2

}
.

(3.7)

The matrix of the lattice form = 2 is shown in Table 1.
In general, we find that the condition det(L) < em(ω+1−n), derived from Lemmas 2.1

and 2.2, can be reduced to

Xs1Ys2 < esN , for

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

st =
∑

xi1yi2∈M0

it, t = 1, 2

sN =
m∑

k=1

|Mk|.
(3.8)

Assuming that |U| ≤ Nγ , inequality (3.8) is equivalent to

(
α + β − 1

)
s1 + γs2 − αsN < 0. (3.9)

By calculation, we obtain that

s1 =
m(m + 1)(2m + 4 + 3t)

6
,

s2 =
m(m + 1)(m + 2)

6
+
mt(m + t + 2)

2
,

sN =
m(m − 1)(m + 1 + 3t)

6
.

(3.10)

For anym, the left hand side of (3.9) is minimized at t = m(1 − β − γ)/2γ . Plugging this value
into (3.9) and omitting a neglect number, we have

4αγ + 2βγ + γ2 − 3β2 − 2γ + 6β − 3 < 0. (3.11)
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Notice that there are some bad rows in the above lattice. Next, we refine the
construction method and improve the above result. In fact, the following lattice is an optimal
lattice.

For k ∈ {1, . . . , m + 1}, let

tk =
2 − α − β − γ

γ
k, t0 = max{t1, . . . , tm},

M0 :=
{
xi1yi2 | xi1yi2 is a monomial of fm

e

} ⋃

0≤k≤m

⋃

1≤j≤tk

{
xi1yi1+j | i1 = k

}
,

Mk :=

{

xi1yi2 | xi1yi2 is a monomial of fm
e and

xi1yi2

lk
is a monomial of fm−k

e

}

⋃

k≤l≤m

⋃

1≤j≤tl

{
xi1yi1+j | i1 = l

}
.

(3.12)

The definition of shift polynomials gi1i2(x, y) is the same as above. From the definition
ofMk, we have

M0 :=
{
xi1yi2 | 0 ≤ i2 ≤ i1 ≤ m

} ⋃

0≤k≤m

⋃

1≤j≤tk

{
xi1yi1+j | i1 = k

}
,

Mk :=
{
xi1yi2 | k ≤ i2 ≤ i1

} ⋃

k≤l≤m

⋃

1≤j≤tl

{
xi1yi1+j | i1 = l

}
.

(3.13)

By some rather complex calculations, we obtain that

s1 =
m(m + 1)(m + 2)

3
+ a

m(m + 1)(2m + 1)
6

,

s2 =
m(m + 1)(m + 2)

6
+ a2m(m + 1)(2m + 1)

12

+ a
m(m + 1)

4
+ a

m(m + 1)(2m + 1)
6

,

sN =
m(m − 1)(m + 1)

6
+ a

m(m + 1)(2m + 1)
6

,

(3.14)

where a = (2 − α − β − γ)/γ. The inequality (3.9) leads to

−2α + 2β + α2 − β2 + αγ < 0. (3.15)

From Lemma 2.1 and the estimations of (3.8), it is easy to see that if

−2α + 2β + α2 − β2 + αγ < 0, (3.16)
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we are guaranteed to find two vectors in L that are shorter than the bound em/
√
dim(L). The

vectors are the coefficient vectors of two bivariate polynomials h1(xX, yY ) and h2(xX, yY ).
By Howgrave-Graham’s theorem, h1(x, y) and h2(x, y) have the same root (k,U) over the
integers. By taking resultant of h1(x, y) and h2(x, y) with respect to y, we get g(x) with root
k. We can easily extract k from g(x)with standard root finding algorithms. Therefore, we can
find U from h1(x, y) or h2(x, y). This completes the description of the attack. The heuristic
fact that we have in our approach is as follows.

Fact 1. The probability that the construction described above yields zero polynomial that is,
g(x) is a zero polynomial is neglectable.

In practice, we can assume that g(x) is a nonzero polynomial. The following lemma
shows that Fact 1 holds.

Lemma 3.1. Let h1(x, y), h2(x, y), and g(x) be defined as above. Then g(x) is a zero polynomial if
and only if gcd(h1(x, y), h2(x, y))/= 1.

Proof. Lemma 3.1 follows from Lemma8.2 in [9].

In fact, if the polynomials h1, h2 are random chosen, then the probability that g(x) is
a zero polynomial is neglectable. From the above discussion, we get the following result.

Theorem 3.2. Let e, d be defined as above and U < Nγ . If

−2α + 2β + α2 − β2 + αγ < 0, (3.17)

then we can factor N with polynomial time.

We note that when α = 1, γ = 1/2, the inequality in Theorem 3.2 becomes

β2 − 2β +
1
2
> 0, (3.18)

which is the result in [4]

4. The Case for Small Exponent e

In this section, we suppose that α is smaller than 1. Rewriting

p =
√
[N] − x0, q =

√
[N] + y0,

A = 1 − 2
√
[N], U = y0 − x0,

(4.1)

by (3.1), we have

ed + k(A −U) ≡ 1(modN). (4.2)
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Let

fN
(
x, y, z

)
= yz − ex −Ay + 1. (4.3)

It is easy to see that fN(x, y, z) has (d, k,U) as a root moduloN. The similar method in section
3 can be applied to three variants polynomial fN . Here the leading monomial of fN is yz and
the coefficient is 1. Let ε > 0 be an arbitrarily small constant. According to the size of 1/ε, we
fix an integer m. For k ∈ {0, . . . , m + 1}, let

tk = ak − bm, t0 = max{t1, . . . , tm}, (4.4)

and c = b/a, where a = (2 − α − γ)/γ, b = β/γ. Define the sets Mk of monomials as follows

M0 :=
{
xi1yi2zi3 | xi1yi2zi3 is a monomial of fm

}

⋃

1≤j≤t0

{
xi1zj | 0 ≤ i1 ≤ m − cm

} ⋃

cm≤k≤m

⋃

1≤j≤tk

{
xi1ykzk+j | 1 ≤ i1 ≤ m − k

}
,

Mk :=

{

xi1yi2zi3 | xi1yi2zi3 is a monomial of fm and
xi1yi2zi3

lk
is a monomial of fm−k

}

⋃

cm≤k≤m

⋃

k≤l≤m

⋃

1≤j≤tl

{
xi1ylzl+j | 1 ≤ i1 ≤ m − k

}
.

(4.5)

We define the following shift polynomials:

gi1i2i3
(
x, y, z

)
=

xi1yi2zi3

lk
f
(
x, y, z

)k
Nm−k, (4.6)

for k = 0, . . . , m, and xi1yi2zi3 ∈ Mk \Mk+1.
All the polynomials gi1i2i3 have the root (d, k,U) modulo Nm. We define a lattice L

by taking the coefficient vectors of gi1i2i3(xX, yY, zZ) as a basis. We can force the matrix
describing L to be lower triangular. The sets Mk can be rewritten as follows:

M0 =
{
xi1yi2zi3 | 0 ≤ i1 + i2 ≤ m, and 0 ≤ i3 ≤ i2

}

⋃

1≤j≤t0

{
xi1zj | 0 ≤ i1 ≤ m − cm

} ⋃

cm≤k≤m

⋃

1≤j≤tk

{
xi1ykzk+j | 1 ≤ i1 ≤ m − k

}
,

Mk =
{
xi1yi2zi3 | k ≤ i1 + i2 ≤ m, and k ≤ i3 ≤ i2

}

⋃

cm≤k≤m

⋃

k≤l≤m

⋃

1≤j≤tl

{
xi1ylzl+j | 1 ≤ i1 ≤ m − k

}
.

(4.7)
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Table 2

1 x y x2 y2 xy yz xyz y2z y2z2

N2 N2

xN2 ∗ XN2

yN2 ∗ ∗ YN2

x2N
2 ∗ ∗ ∗ X2N

2

y2N
2 ∗ ∗ ∗ ∗ Y 2N

2

xyN2 ∗ ∗ ∗ ∗ ∗ XYN2

fN ∗ ∗ ∗ ∗ ∗ ∗ YZN2

xfN ∗ ∗ ∗ ∗ ∗ ∗ ∗ XYZN2

yfN ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Y 2ZN
2

f2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Y 2Z2N
2

For example, we consider the case m = 2. From the definition of Mk, we have

M0 =
{
y2z2, y2z, xyz, yz, y2, xy, x2, x, y, 1

}
,

M1 =
{
y2z2, y2z, xyz, yz

}
, M2 =

{
y2z2

}
.

(4.8)

The matrix of the lattice form = 2 is shown in Table 2.
In general, we find that det(L) < Nm(ω+1−n), derived from Lemmas 2.1 and 2.2, can be

reduced to

Xs1Ys2Zs3 < NsN , for

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

st =
∑

xi1yi2zi3∈M0

it, t = 1, 2, 3,

sN =
m∑

k=1

|Mk|.
(4.9)

Let |U| ≤ Nγ . Hence, the inequality (4.9) is equivalent to

βs1 +
(
α + β − 1

)
s2 + γs3 ≤ sN. (4.10)

By calculation, we obtain that

s1 =
m4

24
+
(a − b)4

24a3
m4 +O

(
m3

)
,

s2 =
m4

12
+
a4 − 2a3b + 2ab3 − b4

12a3
m4 +O

(
m3

)
,

sN =
m4

24
+
(a − b)4

24a2
m4 +

a4 − 2a3b + 2ab3 − b4

12a3
m4 +O

(
m3

)
.

(4.11)
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Plugging these value into (4.10) and omitting the neglect terms, we get that

β
(
3a3 + (a − b)3(3a + b)

)
+ α

(
2a3 + 2(a + b)(a − b)3

)

+ γ
(
a3 + (a − b)3

(
a2 − ab + 2a + 2b

))
−
(
3a3 + (a − b)3(7a − 3b)

)
< 0,

(4.12)

which guarantees that we can find three vectors in L that are shorter than the bound
Nm/

√
dim(L). These vectors are the coefficient vectors of three trivariate polynomi-

als f1(xX, yY, zZ), f2(xX, yY, zZ), and f3(xX, yY, zZ). By Howgrave-Graham’s theorem,
f1(x, y, z), f2(x, y, z), and f3(x, y, z) have the root (d, k,U) over the integers. Afterward, we
take the resultant of these integral polynomials with respect to the variable z and obtain two
bivariate polynomials g1(x, y) and g2(x, y)with root (d, k). By taking resultant of g1(x, y) and
g2(x, y) with respect to y, we get g(x) with root d. d can be easily extracted from g(x) with
standard root finding algorithms. Therefore, we can find k from g1(x, y) or g2(x, y). Similarly,
we can getU. ByU = x0−y0 andN = (

√
[N])2+

√
[N](y0−x0)−x0y0, thenN can be factored

with polynomial time. This completes the description of the attack. The heuristic fact that we
have in our approach is as follows.

Fact 2. The probability that the construction described above yields zero polynomial that is,
g(x) is a zero polynomial is neglectable.

A similar discussion as Fact 1, we have that for random choice f1(x, y, z), f2(x, y, z),
and f3(x, y, z), the probability that g(x) is a zero polynomial is neglectable. Therefore, in
practice, we can assume that g(x) is a nonzero polynomial.

Theorem 4.1. Let e, d be defined as above and U < Nγ . If

β
(
3a3 + (a − b)3(3a + b)

)
+ α

(
2a3 + 2(a + b)(a − b)3

)

+ γ
(
a3 + (a − b)3

(
a2 − ab + 2a + 2b

))
−
(
3a3 + (a − b)3(7a − 3b)

)
< 0,

(4.13)

then we can factor N with polynomial time, where a = (2 − α − γ)/γ, b = β/γ .

As a special case of Theorem 4.1, one can see that when 2α + γ ≤ 1.5 and d ≤ N1/2,
there exists an algorithm that factors N with polynomial time.

5. Conclusion

In this paper, we obtained our results by taking advantage of lattice reduction technique. By
improving the Jochemsz and May [7] strategy of constructing a lattice basis, we throw the
bad rows in the lattice and obtain an optimal lattice. Applying the method of constructing
an optimal lattice to cryptanalyse short exponent RSA, we get the main results which extend
those of Boneh and Durfee in [4].
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