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This study presents the application of dynamical equations able to generate alternating
deformations with increasing amplitude and delayed pulses in a certain material medium. It is
considered that an external force acts at certain time interval (similar to a time series) upon the
material medium in the same area. Using a specific differential equation (considering nonzero
initial values and using a function similar to the coherence function between the external force
and the deformations inside the material), it results that modulated amplitude oscillations appear
inside the material. If the order of the differential dynamical equation is higher, supplementary
aspects as different delayed pulses and multiscale behaviour can be noticed. These features are
similar to non-Markov aspects of quantum transitions, and for this reason the mathematical
model is suitable for describing both quantum phenomena and macroscopic aspects generated by
sequence of pulses. An example of a quantum system, namely, the Hydrogen atom, is discussed.

1. Introduction

For simulating the generation of specific deformations inside a material medium under the
action of external forces it can be considered that some short wavelength vibrations appear
in the area where the force acts. The corresponding deformation is generated inside the
material medium, using linear differential equations or equations with partial derivatives
(similar to the wave equation or to the equation of diffusion). Yet such linear equations cannot
explain the distance between the space area where the external force acts and the space area
where fracture phenomena appear. Using differential equations of higher order, some slow
variations of deformation along a certain direction could be obtained. Due to the fact that
the mathematical model should explain the sharp deformations at a certain distance of the
point of space where the force acts (leading to fracture phenomena), some different types
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of differential equations had been investigated. An analysis of oscillations generated by step
functions acting upon second-order systems working at limt of stability was presented in [1].

Better qualitative results were obtained using dynamical equations able to generate
practical test functions (similar to wavelets) and delayed pulses (when a free term which
corresponds to an external force is added) [2] for justifying fracture phenomena appearing
in a certain material medium [3]. It has been considered that an external force (described
by a short wavelength sine function multiplied by a gaussian function) acts upon the
material medium in a certain area. Using a specific differential equation (able to generate
symmetrical functions for a null free term) for describing the generation of the corresponding
deformation along an axis inside the material medium, it has been shown that a significant
deformation could appear at a certain distance. This significant deformation justifies the
fracture phenomena, while the inner structure of the material cannot allow significant sharp
deformations without breaking.

However, this mathematical model cannot explain the breaking effect of a sequence
of external pulses (e.g., applied as transverse force upon a beam fixed at both ends), when
the time interval between these pulses is large enough so as the final effect not to be
considered a superposition of individual effects of each pulse. It is well known from practice
that workers using traditional tools have to apply some medium-power shocks at certain
intervals upon a beam fixed at both ends, before a final great-power shock to be applied
for breaking the material. Each medium-power shock generates specific damping vibrations
inside the material medium, and the subsequent shock has to be applied right before the
annihilation of these damping vibrations by the fluctuations of the external medium (the
noise). Thus a certain degree of coherence for the effects of external pulses can be achieved,
for the maximum possible value of the amplitude of fundamental harmonic corresponding
to envelope of generated vibrations (if the time interval between external pulses is shortened,
the final value of envelope function at the end of this interval is no more equal to zero and
the difference between extreme values of envelope function decreases—thus the amplitude of
fundamental harmonic component decreases also). This implies the use of some non-Markov
aspects, while the memory of the previous similar events should be involved (similar to [4]).

For this reason, some specific differential equations based on the coherence function
between the generated deformation and the alternating input should be taken into
consideration. Since this coherence function vanishes if the output equals zero, the initial
condition should be set at a small nonzero value.

2. Mathematical Model for Generating Amplitude-Modulated
Deformations

As was shown in the previous paragraph, a differential equation modelling aspects similar to
quantum phenomena should be based on the use of coherence function as free term. For the
beginning, the external command (corresponding to the sequence of external pulses) should
be considered as a superposition of cosine functions and we will analyze just the output
generated by a certain cosine function (with the period set to the value T = 1). The free term
of the differential equation is represented by the coherence function

Ch(x) =
∫x

xin

y(t) cosωtdt =
∫x

xin

y(t) cos 2πt dt, (2.1)
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Figure 1: Output generated for second-order system by cosine function.

where variable x corresponds to time. The initial value y0 of the output function y(x) is set to
a small nonzero value y0 = 0.3 at the initial time moment x0 = 0. By choosing an undamped
second-order system with time constant T0 = 1 (the period being 2π ≈ 6T so as very weak
resonance aspects to appear) it results the equation

y′′ = − 1
T2

0

y +
∫x

0
y(t) cosωtdt = −y +

∫x

0
y(t) cos 2πt dt. (2.2)

Using simulation in MATLAB (based on Runge-Kutta functions) it results for the derivative
of the output y′(x) (denoted as z(x)) the function represented in Figure 1. The continuous
line corresponds to function z(x) = y′(x); the discontinuous line corresponds to the function
f(x) = −0.1 cos 2πx necessary for studying the correlation between z(x) and f(x).

It can be easily noticed that z(x) and f(x) exhibit in-phase oscillations. However,
the oscillations corresponding to z(x) present a supplementary aspect: the local maximum
values and the local minimum values of each oscillation (the envelopes) are both amplitude-
modulated by a periodical signal with a time period six times greater than the period T of
the external command. This means that for three successive oscillations the local maximum
values increase, and for next three successive oscillations the local maximum values decrease
(the peak-to-peak value for each oscillations being the same). This aspect can be put in
correspondence with an increasing velocity of particles vibrating in a bar under the influence
of an external alternating force, generating fracture phenomena after a few oscillations
(when the velocity becomes higher than a certain threshold value). It can be also put in
correspondence with quantum aspects, where a transition can appear just after a certain
number of oscillations for the wave-trains of particles involved in interaction. Supplementary
simulations performed for greater time periods of the proper oscillations of the second order
system show that the local maximum values and the local minimum values of each oscillation
(the envelopes) are in fact amplitude-modulated by a periodical signal corresponding to the
proper oscillations of the second order system, so the number of successive oscillations for
which the local maximum increases can vary from 2–3 to some higher values.
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Figure 2: Output generated for second-order system by sequence of alternating pulses.

At next step, the external command should be considered as a sequence of rectangular
pulses similar to δ′(x − k). Let us consider that the same second order system has the same
initial conditions at the initial moment of time xin = −1.2 and that the command function is
represented by a sequence of step pulses s(x) with amplitude A = 5 for short time before
xk = −1, 0, 1, 2, 3 . . . and with amplitude A = −5 short time after these time moments xk =
−1, 0, 1, 2, 3 . . . . This means

s = 5 for x ∈ [−1.2,−1] ∪ [−0.2, 0] ∪ [0.8, 1] ∪ [1.8, 2] ∪ [2.8, 3] . . . ,

s = −5 for x ∈ [−1,−0.8] ∪ [0, 0.2] ∪ [1, 1.2] ∪ [2, 2.2] ∪ [3, 3.2] . . . .
(2.3)

Using simulation in MATLAB (based on Runge-Kutta functions) it results for the derivative
of the output y′(x) (denoted as z(x)) the function represented in Figure 2. The continuous
line corresponds to function z(x) = y′(x); the discontinuous line corresponds to the function
f(x) = 0.02s(x) necessary for studying the correlation between z(x) and f(x). It can be
noticed that z(t) is a saw-tooth function. The external command s(x) and z(x) are no
more in-phase functions, but the main feature of Figure 1 is still present: an alternance
of three increasing local maximum values and of three decreasing local maximum values
of z(t) can be noticed, with the period of these alternances being six time greater than
the period of the external command s(x) (represented by a sequence of pulses similar to
δ′(x−k), k ∈ −1, 0, 1 . . . . It should be emphasized the fact that these aspects cannot be noticed
if the maximum and minimum values of external command s(x) are close to unity.

If the time period of the proper oscillations of the second order system decreases
so as T0 ≈ T the well-known phenomena of beat (interference between two oscillations of
slightly different frequencies generating amplitude-modulated oscillations with a frequency
corresponding to the difference between the two frequencies) or resonance (oscillations with
amplitude A → ∞) appear. For T0 < T, some proper oscillations of the second order system
modulated by the external cosine function can be noticed. While none of these mathematical
models can generate oscillations with increasing local maximum values for a few oscillations
of the external command function, they are not useful for modeling transitions.
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Figure 3: First positive alternance of z(x) generated for six-order system by cosine function.

3. Mathematical Model for Generating Multiscale
Delayed Deformations

The analysis can be extended by investigating differential equations able to generate delayed
phenomena, similar to non-Markov aspects of transitions in quantum physics (where the
intutive model requires a certain interaction time between the wave-trains corresponding
to interacting particles before a suddenly emerging transition phenomenon to occur). For
this purpose, the order of the differential equation should be increased, while a higher order
implies usually a greater transient time. So as new aspects to be revealed accurately, the order
of the differential equation is increased three times and the time constant T0 is increased

√
10

times from unity value for avoiding any resonance effect. It results the differential equation

y(6) = − 1
T2

0

y(4) +
∫x

0
y(t) cosωtdt = −0.1y(4) +

∫x

0
y(t) cos 2πt dt (3.1)

for an external command represented by the same oscillating function cos 2πt (the period
T equals 1). The initial moment of time is set to xin = 0 and the initial value of y(x) is set
to y0 = 0.3 (as in te case of second order differential equation presented at the beginning of
previous paragraph).

The simulation performed in Matlab for z(x) = y′(x) reveals new aspects. On the time
interval x ∈ (0, 40) it can be noticed a positive value for x ∈ (0, 37) with a maximum value
Mv1 ≈ 1.6 units for x1 ≈ 30 (the delay time being td1 ≈ 5) as shown in Figure 3.

On the time interval x ∈ (0, 100) it can be noticed at first sight (due to the scale of
vertical axis) a negative value for x ∈ (0, 85) (the positive values for x ∈ (0, 37) being hard
to be noticed) with a minimum value Mv2 ≈ −40 units for x2 ≈ 75 (the delay time can be
approximated as td2 ≈ 50) as shown in Figure 4.

On the time interval x ∈ (0, 150) it can be noticed at first sight (due to the scale of
vertical axis) a positive value for x ∈ (0, 130) (the negative values for x ∈ (37, 85) being hard
to be noticed) with a maximum value Mv3 ≈ 1000 units for x3 ≈ 120 (the delay time can be
approximated as td3 ≈ 100) as shown in Figure 5.
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Figure 4: First negative alternance of z(x) generated for six-order system by cosine function.
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Figure 5: Second positive alternance of z(x) generated for six-order system by cosine function.

On the time interval x ∈ (0, 200) it can be noticed at first sight (due to the scale of
vertical axis) a negative value for x ∈ (0, 185) (the positive values for x ∈ (0, 37) and x ∈
(85, 130) being hard to be noticed) with a minimum value Mv4 ≈ 30000 units for x4 ≈ 170
(the delay time can be approximated as td4 ≈ 140) as shown in Figure 6.

On the time interval x ∈ (0, 250) it can be noticed at first sight (due to the scale of
vertical axis) a positive value for x ∈ (0, 230) (the negative values for x ∈ (37, 85) and x ∈
(130, 185) being hard to be noticed) with a maximum value Mv5 ≈ 800000 units for x5 ≈ 220
(the delay time can be approximated as td5 ≈ 180) as shown in Figure 7.

And so on, it can be noticed that different alternances of z(t) can be noticed, depending
on the time interval selected for analysis. The ratio between peak values corresponding
to consecutive alternances is about |Mvk+1/Mvk| ≈ 25–30 and the time interval between
moments corresponding to peak values for consecutive alternances is about tk+1 − tk ≈ 45–50
(approximately two times greater than the period 2πT0 = 2

√
10π of the proper oscillations).

A similar value can be noticed for the difference between delay times for two consecutive
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Figure 6: Second negative alternance of z(x) generated for six-order system by cosine function.
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Figure 7: Third positive alternance of z(x) generated for six-order system by cosine function.

alternances (tdk+1 − tdk ≈ 40–50). As a consequence, a higher-order differential equation with
a free term corresponding to the coherence function between an external cosine command
and the output y(x) generates for z(x) = y′(x) alternances with the same temporal pattern
and with an increasing amplitude according to a geometrical progression. For this reason, the
higher-order differential equation previously presented is suitable for modeling multiscale
phenomena and for explaining multiscale threshold transitions—see also [5, 6].

4. Quantum-Mechanical Case Study: The Hydrogen Atom

Aspects mentioned in the previous paragraphs have shown that both macroscopic and
quantum transitions require a certain set of events (similar to a time series events) or a certain
repetitive phenomenon for generating the coherence function which drives the dynamics of
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internal oscillations. When the peak values of these internal oscillations are above a certain
threshold, a possible transition to another state could appear.

However, these aspects should be valid also for standing waves corresponding to
stable quantum or macroscopic states. This means that a certain wavefunction corresponding
to a noninteracting particle should be described in an intuitive manner by a zero energy state
and should be noticed by an external observer as a term of a quantum series (each term of
such a series representing a quantum noninteracting state). For this purpose, the well-known
case of the hydrogen atom should be analyzed at first.

The principle of mass-energy equivalence normally never comes to mind when the
quantum-mechanical analysis of the hydrogen atom is undertaken. It is well known that by
applying Schrödinger’s equation to the problem of the electron in the hydrogen atom, the
Balmer energy levels are obtained by means of a purely classical (i.e., nonrelativistic) analysis
[7, 8]. There is, however, a very interesting connection between the problem of the hydrogen
atom and the principle of mass-energy equivalence that was previously unexplored. If we
write the time-dependent Schrödinger equation

i�
∂ψ

∂t
= Hψ (4.1)

and its solution

ψ = ψ0 exp
(
− i

�

∫
Hdt

)
, (4.2)

where H is the total energy of the moving particle, namely, the electron, we must ask what
conclusion can we make if we assume that the electron is in a stable orbit around the nucleus?
Obviously, we must assume that the wave function ψ = ψ0 (i.e., a constant, or stable wave
function that does not evolve over time; even though it is dependent on the radius and the
spherical harmonics). This, of course, is well known, since the electron’s wave function in
the hydrogen atom represents a standing wave and has no time dependence. Hence, the
conclusion that inevitably emerges in this case is that the total energy of the electron H must
be equal to zero everywhere along the path of the electron. In view of some fundamental
research on the principle of mass-energy equivalence that was previously published by the
author [9, 10], this conclusion, as a matter of fact, is not surprising.

In the earlier publications by the author, it was demonstrated that a number of
fundamental problems in quantum mechanics cannot be understood on the basis of the
relativistic law of mass-energy equivalence, H = mc2. The problem of the hydrogen atom
is one such problem. It was further demonstrated that H = mc2 can be regarded as a special
case of a more general law of mass-energy equivalence that does in fact explain that category
of problems that the relativistic law fails to explain. That general law is H = mv2, where
the relativistic constant c2 has been replaced by v2, with v being the velocity of the moving
particle (see [9–11] for a complete historical accounting of the origin and the applications of
that law). We will now proceed to solve the problem of the total energy of the electron in
the hydrogen atom and demonstrate that the general mass-energy equivalence law H = mv2

correlates with and explains the result predicted by Schrödinger’s equation. We will further
demonstrate that a new “zero-energy wavefunction” that will be obtained under that law is
actually a quantized version of the classical wavefunction that has been known for decades.
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4.1. The Law of Mass-Energy Equivalence and the “Zero-Energy”
Wave Equation

It is not difficult to see how the general mass-energy equivalence law H = mv2 (which,
admittedly, may seem strange to the readers who are not familiar with it) correlates with
the result predicted by Schrödinger’s equation. In the hydrogen atom, the electron is in
equilibrium due to the equality of the two forces

e2

r2
=
mv2

r
, (4.3)

where e2/r2 is the Coulomb electrostatic force (here, e2 = q2/4πε0, where q is the electron’s
charge), and where mv2/r is the centrifugal force. But the electrostatic potential V acting on
the electron is equal to −e2/r, by definition. From the above equation, it is therefore clear that
V = −mv2. If we now assume that the total energy of the free electron is given by the quantity
+mv2, then it must be further clear that the total energy of the bound electron must be equal
to zero (due to the addition of the electrostatic potential V ). (It is to be pointed out that this
conclusion concerns the TOTAL ENERGY of the electron. In practice, the atom is observed to
emit and absorb energy during bound-state transitions because such transitions involve only
kinetic energy and potential energy changes. Mass-energy equivalence obviously does not
play a role in electronic bound-state transitions. That is why the present conclusions are not
in disagreement with the classical theory or with experimental results). This is the classical
view according to Bohr’s theory. Let us now examine the view according to the Schrödinger
Hamiltonian theory.

The classical Schrödinger Hamiltonian is given by

H = − �
2

2m
∇2 + V. (4.4)

This Hamiltonian represents the sum Kinetic Energy + Potential Energy, and it is the
Hamiltonian used to derive the Balmer energy levels and the classical wave function of the
electron. If we want to write the Hamiltonian in a manner that takes mass-energy equivalence
into account, the Hamiltonian will be written as follows:

H = −�
2

m
∇2 + V, (4.5)

where we have replaced the kinetic energy 1/2mv2 by the total energy mv2. But since the
total energy must be equal to zero, then we have the following wave equation:

−�
2

m
∇2ψ0 + Vψ0 = 0. (4.6)

We will now demonstrate that the wave function ψ0 that satisfies this zero-energy wave
equation is the same as the wave function derived through the classical analysis, with the
surprising restriction that the wave function itself must be radially quantized!
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4.2. The Connection between the Zero-Energy Wave Equation and the
Classical Wave Equation

For the purpose of comparison, we write the classical equation that is based on the
Schrödinger Hamiltonian together with the new wave equation that incorporates mass-
energy equivalence:

−
(

�
2

2m

)
∇2ψ0 + Vψ0 =Wψ0 (classical),

−
(

�
2

m

)
∇2ψ0 + Vψ0 = 0

(
total energy

)
,

(4.7)

where W represents the Balmer energy levels and where V = −e2/r is the potential of the
nucleus. While the two equations obviously seem to be two very different equations, we
will now demonstrate that the second equation does indeed revert to the first equation if ψ0

is restricted to be a radially quantized function, rather than a continuous function! We first
write the zero-energy equation as follows:

(
�

2

m

)
∇2ψ0 = Vψ0 = −e

2

r
ψ0. (4.8)

Since the radial distance r takes only quantized values as multiples of the Bohr radius, a =
�

2/me2, we substitute for r in the equation by using this quantity, getting

(
�

2

m

)
∇2ψ0 = −e2me

2

�2
ψ0 = −me

4

�2
ψ0. (4.9)

Dividing both sides of the equation by 2 gives

(
�

2

2m

)
∇2ψ0 = −me

4

2�2
ψ0. (4.10)

It is not difficult to verify that the coefficient of ψ0 on the r.h.s. of the equation is the Balmer
energy W . That is, we have the result that

(
�

2

2m

)
∇2ψ0 =Wψ0. (4.11)

Now, by virtue of (4.11), the zero-energy wave equation in (4.7) can be finally written as

−
(

�
2

2m

)
∇2ψ0 + Vψ0 = +

(
�

2

2m

)
∇2ψ0 =Wψ0. (4.12)

This last equation is of course the classical wave equation.
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Figure 8: The classical wave function ψ0 and the quantized solution of the zero-energy wave equation. The
latter exists only at integer multiples of the Bohr radius and inhabits the space defined by the former.

If we decompose the zero-energy wave equation into its radial and spherical-harmonic
components, it becomes a simple matter to verify that the classical unnormalized wave
function

ψ0(r) = exp

(
−me

2

�2
r

)
(4.13)

will indeed satisfy the radial wave equation at r = na, or integer multiples of the Bohr
radius (see the proof in the appendix). The fact that the classical wave function satisfies the
zero-energy wave equation at multiples of the Bohr radius can be understood physically as
follows: the classical wave function is a continuous, differentiable function that defines the
boundary of a space that theoretically extends from r = 0 to r = ∞ (see the plot in Figure 8).
The solution of the zero-energy wave equation, on the other hand, is a discrete, sparse set
in r that is defined only at integer multiples of the Bohr radius (see Figure 8). This discrete
function therefore inhabits the space defined by the classical wave function (a simple analogy
might be a wave in a plastic sheet on top of which tiny droplets of mercury always flow to
the minimum of that wave, as if the wave was a “potential well”). This is not a surprise,
since, as was concluded earlier, the total energy of the electron is equal to zero at multiples of
the Bohr radius. The discrete solution, therefore, is indeed a solution in which the minimum
energy principle is manifested; as opposed to the classical solution in which only the kinetic
and potential energies are accounted for.

5. Conclusions

This study has presented the application of dynamical equations able to generate alternating
deformations with increasing amplitude and delayed pulses in a certain material medium.
It has been considered that an external force acts at certain time interval (similar to a
time series) upon the material medium in the same area. Using a specific differential
equation (considering nonzero initial values and using a function similar to the coherence
function between the external force and the deformations inside the material), certain
modulated amplitude oscillations were generated. For a higher order of the differential
dynamical, some delayed pulses and a specific multiscale behaviour could be noticed.
These features are similar to non-Markov aspects of quantum transitions, and for this
reason the mathematical model is suitable for describing both quantum phenomena and
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macroscopic aspects generated by sequence of pulses. The amplitude modulation of local
maximum/minimum values can be put in correspondence with PDE equations (see [12]) and
with propagating wavelets through dispersive media [13]. The multiscale analysis of delayed
pulses is similar to multiscale analysis of wave propagation [14] and breaking phenomena
can be put in correspondence with studies upon localized fractals (as in [15]) and could
be extended for solving natural integral equations (as in [16]). A time-series application
considering the Hydrogen atom as a case study was presented.

Appendix

Solution of the Zero-Energy Wave Equation and the
Quantization Condition

To solve (4.6) for ψ0,we must replace the operator ∇2 by its equivalent expression in spherical
coordinates and substitute the potential V by the traditional quantity −e2/r. The process of
replacing ∇2 in (4.6) by its equivalent expression in spherical coordinates is well known in
the literature [7, 8], and we simply write the result

(
−�

2

m

d2

dr2
+
l(l + 1)�2

mr2
− e2

r

)(
rψ0(r)

)
= 0. (A.1)

Here, ψ0(r) is the radial component of ψ0 and l is the orbital quantum number. Typically, a
second equation is needed to solve for the spherical-harmonic component of ψ0, but since
this solution is well known in the literature it will not be discussed here. The usual approach
for solving (A.1) is to let the product rψ0(r) be equal to another function, say Γ(r). Equation
(A.1) is then rewritten as

−Γ′′(r) +
(
l(l + 1)
r2

− me2

�2
· 1
r

)
Γ(r) = 0. (A.2)

In the classical solution, the Balmer series for hydrogen is obtained by simply setting l = 0.
While the above equation cannot be solved for the Balmer energy, setting l = 0 results in

Γ′′(r) +
me2

�2
· 1
r
Γ(r) = 0. (A.3)

We now note that the quantity �
2/me2 represents the Bohr radius, a. We will follow however

the standard procedure of replacing a by na, where n is the principal quantum number. We
therefore rewrite the above equation as follows:

Γ′′(r) +
1
na

· 1
r
Γ(r) = 0. (A.4)
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Solving this simple differential equation is a simple but rather lengthy and uninformative
mathematical exercise. It can be quickly verified, however, that the classical wave function

Γ(r) = rψ0(r) = r exp
(
− r

na

)
(A.5)

does in fact satisfy (A.4), provided that the radial distance r in the final expression is replaced
by an integer multiple of the Bohr radius, or na.
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