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The new problem about the stress concentration around a spherical crack inside of an elastic cone
is solved for the point tensile force enclosed to a cone’s edge. The constructed discontinuous
solutions of the equilibrium equations have allowed to express the displacements and stress in
a cone through their jumps and the jumps of their normal derivatives across the crack’s surface.
The application of the integral transformation method under the generalized scheme has reduced
the problem solving to the solving of the integrodifferential equation system with regard to
the displacements’ jumps. This system was solved approximately by the orthogonal polynomial
method. The use of this method has allowed to take into consideration the order of the solution’s
singularities at the ends of an integral interval. The correlation between the crack’s geometrical
parameters, its distance from an edge, and the SIF values is established after the numerical analysis.
The limit of the proposed method applicability is specified.

1. Introduction

The problems of the fracture mechanics and the non-destructive material testing demand
the estimation of the stress intensity factor (SIF) around a crack located in an elastic body is
important, as it is well known, because of it various applicatious in such engineering sciences
as the fracture mechanics and the non-destructive material testing. The cracks’ researching
in the unbounded elastic matrix can not reflect all the complicity of the crack’s phenomena
in the real elastic body with boundaries. The mathematical complexity of the problems is
caused by the necessity of the satisfaction to boundary conditions not only on the crack’s
branches, but also on the boundaries of an elastic body. The topological form of a crack is also
concerned with a number of factors complicating the problem’s solving. The big number of
works, both in static and in dynamic statements, is devoted to the researching of the plane
cracks with the different configurations of the contours [1–5]. The influence of the surface
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curvature, the variable curvature of a crack’s contour, the interference of the applied loading
and geometrical parameters of a crack are investigated in these papers. In three-dimensional
statement the nonplanar cracks in the unlimited elastic bodies were considered in [6–14]. In
comparison with this, the number of the works investigating the nonplanar cracks, located in
an elastic body with boundaries, is limited.

The problems on the cracks’ investigation in a finite elastic body are more often
considered at the coincidence of a crack’s and bodies topology, because that allows to choose
the same coordinate system for their description. So, the behavior of the penny-shaped cracks
in the finite elastic cylinders is investigated in [15–17]. The dynamic SIF around the spherical
crack in a finite elastic shaft of the variable section is analyzed in [18]. The influence of an
elastic cone boundaries on the SIF values around the spherical crack is shown in [19] in
the assumption that at an cone’s edge the compressing force is applied. In the proposed
paper the loading at the cone’s edge is the point tensile force, that essentially complicates
the problem’s solving and allows to establish more general laws of the SIF correlation with
the crack’s topology and the edge’s influence on its values.

2. Formulation of the Boundary Value Problem and the Discontinuous
Solution Method

Let us consider the infinite elastic cone 0 < r < ∞, 0 ≤ θ ≤ ω, −π ≤ ϕ ≤ π (Poison’s
coefficient is μ, the shear module is G, r, θ, ϕ is the spherical coordinate system) at the vertex
of which the concentrated force P is applied (Figure 1).

On the cone surface the stress is given:

τrθ (r, θ)|θ=ω = 0, σθ (r, θ)|θ=ω = 0. (2.1)

The spherical crack is situated inside the cone at the distance from the vertex, its surface is
described by the following relations:

r = R, 0 ≤ θ ≤ ω0, −π ≤ ϕ ≤ π(ω0 < ω). (2.2)

The crack’s branches are free from the stress

τrθ (r, θ)|r=R±0 = 0, σr (r, θ)|r=R±0 = 0. (2.3)

It is necessary to determine the SIF around the crack and to investigate the correlation
between the SIF and the crack’s location and geometrical parameters.

The searched solution is constructed as the superposition of the continuous solution
(in the assumption of the crack’s absence in the cone) and the discontinuous one (that one
takes into consideration the existence of the crack). The first solution is marked by zero in the
upper index and the second one by prim in the upper index:

ur(r, θ) = u0
r(r, θ) + u

1
r(r, θ), σθ(r, θ) = σ0

θ(r, θ) + σ
1
θ(r, θ),

uθ(r, θ) = u0
θ(r, θ) + u

1
θ(r, θ), τrθ(r, θ) = τ0

rθ(r, θ) + τ
1
rθ(r, θ).

(2.4)

The continuous components are obtained in [20].
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The method of the discontinuous solutions has been proved in Popov’s works, and
developed in the further in the papers [2, 12, 19]. The kernel of it lays in the construction of
such solutions of Lame’s equations [21]

(
r2u′

)
′ − 2u − μ∗∗

μ∗

(ν sin θ)•

sin θ
+
(sin θu•)•

sin θ
1
μ∗

+
r(ν′ sin θ)•

sin θ
μ0

μ∗
= 0,

(
r2ν′

)
′ + μ∗

(
(ν• sin θ)•

sin θ
− ν

sin2θ

)
+ μ0ru

′• + 2μ∗u• = 0,

μ∗ = 1 + μ0, μ∗∗ = μ0 + 2, μ0 =
(
1 − 2μ

)−1
, u = u(r, θ) = u1

r(r, θ), ν = ν(r, θ) = u1
θ(r, θ).

(2.5)

(here the prime marks derivative with regard to the variable r, the point represents derivative
with regard to the variable θ), which satisfy to these equations everywhere in the medium,
except for the points of a defect. As a defect it can be understood both a crack, and an
inclusion. At the transition across the defect’s surface the mechanical characteristics have
the discontinuities of a continuity of the first kind. The jumps of the displacements and
stress are assumed set. They are determined further in the problem’s statement and from
the satisfaction of the boundary conditions. The constructed solutions allow to calculate the
displacements and stress in any point of the medium with taking into consideration the
discontinuity inside it.

We construct such solutions of (2.5) for a case of the crack defect of the spherical
form. We will set jumps of the displacements and stress χ(θ) = 〈u(R, θ)〉, ψ(θ) =
〈ν(R, θ)〉, 〈f(R, θ)〉 = f(R− 0, θ)− f(R+ 0, θ). To (2.5) the Mellin’s integral transformation is
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applied under the generalized scheme [2]

fs(θ) =

(∫R−0

0
+

∫∞

R+0

)
f(r, θ) rs−1dr, f(r, θ) =

1
2πi

∫ γ+i∞

γ−i∞
fs(θ)r−sds, (2.6)

(see Appendix A), and then the integral transformation with respect to the variable θ is used

uks =
∫ω0

0
us(θ)P 0

νk(cos θ) sin θ dθ, us(θ) =
∞∑
k=0

uskP
0
νk(cos θ)

∥∥P 0
νk(cos θ)

∥∥2
, (2.7a)

νks =
∫ω0

0
νs(θ)P 1

νk(cos θ) sin θ dθ, νs(θ) =
∞∑
k=0

νskP
1
νk(cos θ)

∥∥P 1
νk(cos θ)

∥∥2 (2.7b)

νk are the roots of the transcendental equation P 1
νk(cosω) = 0, k = 0, 1, 2, . . ..

The equation system (2.5) is reduced by all of these transformations to the system of
the linear algebraic equations in regard to the transformations of the displacements’ jumps.

(s(s − 1) − 2)usk +
1
μ∗
νk(νk + 1)usk +

μ∗∗
μ∗

νsk +
μ0

μ∗
sνsk

= Rs(s − 1)χk − Rs+1〈u′k(R)
〉 − sinω

μ∗
u•s(ω)P

0
νk(cosω)

+
μ∗∗
μ∗

νs(ω) sinωP 0
νk(cosω) +

μ0

μ∗
s sinωP 0

νk(cosω)νs(ω) +
μ0

μ∗∗
Rsψk,

s(s − 1)νsk − μ∗νk(νk + 1)νsk − μ∗sνk(νk + 1)usk + 2μ∗usk

= Rs(s − 1)ψk − Rs+1〈ν′k(R)
〉
+ μ∗ sinω

(
P 1
νk(cosω)

)•
νs(ω) − μ0R

sνk(νk + 1)χk.

(2.8)

Let us resolve (2.8) and receive the transformations of the equilibrium equations’
discontinuous solutions which allow to express the displacements in any point of a medium
through the jumps of the displacements and their normal derivatives across the crack’s
surface.

To reduce the quantity of the unknown functions in the right parts (2.8) χk, ψk,
νs(ω), u•s(ω), 〈u′k(R)〉, 〈ν′k(R)〉, we use conditions on the crack, having written them down
in terms of the displacements:

1
2r

[
r2

(
ν

r

)′
+ u•

]∣∣∣∣
r=R±0

= 0,
[
μμ0θ + u′

]∣∣
r=R±0 = 0, (2.9)

where

θ =

(
r2u

)′
r2

+
(v sin θ)•

r sin θ
. (2.10)
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One must satisfy to each condition on each crack’s branch. The integral transformation (2.7b)
is applied to the first condition, and the integral transformation (2.7a) to the second one. After
deducting the equalities when r = R ± 0, one must obtain the following relations:

〈
u′k(R)

〉
=

μ

R
(
1 − μ)ψk −

3μ
R
(
1 − μ) χk,

〈
ν′k(R)

〉
=
ψk
R

− νk(νk + 1)
R

χk.

(2.11)

For the further shortening of the unknown functions in the right-hand parts of the
equation system, one must satisfy to the first condition on the conical surface (2.1). They
must write them in the displacements and apply Mellin’s integral transformation to it. After
all these conversions the boundary condition will be as follows:

u•s(ω) = (s + 1)νs(ω). (2.12)

Now one must substitute the equalities (2.11), (2.12) to the equation system (2.8), and solve
it in regard to the unknown displacements’ transforms usk and νsk:

usk =
χkR

sα(s, k) + ψkRsβ(s, k) + νs(ω)γ(s, k)
Δsk

,

νsk =
χkR

sq(s, k) + ψkRsl(s, k) + νs(ω)p(s, k)
Δsk

.

(2.13)

All coefficients are given in Appendix B. For obtaining of the discontinuous solution originals
we apply the inverse Mellin’s transformation to (2.13).

One must use the residue theorem for the integral calculation with the following notes:

(1) The roots of equation Δsk = 0, s = sj , and j = 1, 4 are simple.

(2) For the Jordan lemma satisfaction it is necessary to close the contour or if on the
left (then one must take into consideration the simple roots s = s1 and s = s2)—the
case r < R, or if on the right (then one must take into consideration the simple roots
s = s3, s4) the case r > R.

After the calculations we obtain the transformations of the displacements existing in the
cone because of the crack’s presence (see Appendix C). To get the displacements’ originals,
the inverse transformations (2.7a), (2.7b) should be applied to the solutions (2.13) with the
equalities:

χk =
∫ω0

0
χ
(
η
)
P 0
νk

(
cosη

)
sinη dη, ψk =

∫ω0

0
ψ
(
η
)
P 1
νk

(
cosη

)
sinη dη. (2.14)
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Finally, the discontinuous solutions of the equilibrium equations are obtained
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∫ω0
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η
) ∞∑
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⎨
⎩
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∥∥2
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⎫
⎬
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+
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0
ψ
(
η
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⎧
⎨
⎩
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β
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χ
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η
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(2.15)
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Let us note, that the specified procedure allows to receive the discontinuous solutions
as for a crack case, so for a case of an inclusion, and under various conditions on a defect’s
surface.

3. The Problem Reducing to the System of
the Integral-Differential Equations

With the aim to satisfy to the conditions on the crack, one must finally demand the stress on
the any of crack’s branches, for example, on the branch r = R − 0, will equal to zero. After
substitution of the found discontinuous displacements in the boundary conditions when r =
R − 0 with the expression of solution in the form (2.4), the system of the integral equations
with regard to the unknown displacement jumps is obtained:

∫ω0

0
χ
(
η
)
F1

(
θ, η

)
dη +

∫ω0

0
ψ
(
η
)
F2

(
θ, η

)
+

∫ω0

0
ν(ξ, ω)α1(ξ, θ)dξ +

∫∞

0
ν′(ξ, ω)α2(ξ, θ)dξ

= −τ◦(θ, R),
∫ω0

0
χ
(
η
)
F3

(
θ, η

)
dη +

∫ω0

0
ψ
(
η
)
F4

(
θ, η

)
dη +

∫∈

0
ν(ξ, ω)α3(ξ, θ)dξ +

∫∞

0
ν′(ξ, ω)α4(ξ, θ)dξ

= −σ0
2(θ, R).

(3.1)

All taken notifications are written in Appendix D.
We must estimate the singularity order of the unknown functions in (3.1). As it

is known, on the ends of the integration interval, η = ω0 the stress has the singularity
of order: −(1/2). In the integral equations (3.1) the unknown functions χ(η), ψ(η) are
the displacements’ jumps, and hence, with the formulas of the displacements and stress
correlation, one can make the conclusion that these functions have on the ends of
the integration interval the singularity of order (1/2). For the estimation of function
ν(r, ω) singularity let us use the Williams’s method [22]. As it shown in Appendix E the
searched order of the displacement’s singularity is ν(r, ω) ∼ rλ∗−1. The further researching
of the integral equations’ kernels Fj(θ, η), j = 1, 4 consists in the obtaining of their
asymptotical expressions for k → ∞. Therefore, they need to know the asymptotics
of the functions α(sj,k), β(sj,k), l(sj,k), q(sj,k), yk(ξ), gk(ξ), and of the pairwise products, like
P 0
vk
(cos θ)P 0

vk
(cosη), P 0

vk
(cos θ)P 1

vk
(cosη), P 1

vk
(cos θ)P 1

vk
(cosη); the last is possible because of

well known formula [23], describing the asymptotic of Legandre’s functions with the large
values of the order. Also one needs the formulas that were obtained in [24] for the asymptotics
of the eigenvalues and of the functions’ norms:

νk ∼ kπ

ω
with k −→ ∞,

∥∥∥P {q}
νk (cos θ)

∥∥∥
2 ∼ k, q = 0, 1 with k −→ ∞. (3.2)

After using of all these relations, the following asymptotics of the pairwise products were
derived and substituted in the kernels Fj(θ, η), j = 1, 4. The changing of the functions
α(sj,k), β(sj,k), l(sj,k), q(sj,k), yk(ξ), gk(ξ), was done with the asymptotical relations. It is
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necessary to sum the series in the kernels Fj(θ, η), j = 1, 4. The general scheme of this
procedure is the following: the series

∑∞
k=1 ak(θ, η) is divided on the sum

∑N
k=1 ak(θ, η) +∑∞

k=N+1 ak(θ, η), in the second addend the general series term is changed by its asymptotical
expression ãk(θ, η) with the large values of k. The next step is the adding and deduction of the
sum

∑N
k=1 ãk(θ, η). The initial series is written as the sum of the two addends

∑∞
k=1 ak(θ, η) =∑∞

k=1 ãk(θ, η) +
∑N

k=1(ak(θ, η)− ãk(θ, η)). The series in this formula is the well-known one and
could be found at the tables of the series.

After all these operations with the kernels Fj(θ, η), j = 1, 4, the table series where
obtained [25]. The system of the integral equations (3.1) is reduced to the system of the
two integro-differential equations (the derivation operator is exported from the integral sign
with the aim of avoiding the divergent integrals in the kernels Fj(θ, η), j = 1, 4. F̂j(θ, η) are
the regular kernels that were obtained by the scheme described earlier). In the last addends
of both equations, the integration in parts was done. Finally the expression of the equation
system (3.1) is

d2

dθ2

[∫ω0

0

(
χ
(
η
)
+ ψ

(
η
))

ln
1∣∣η − θ∣∣dη

]
+

∫ω0

0
χ
(
η
)
F̃1

(
θ, η

)
dη

+
∫ω0

0
ψ
(
η
)
F̃2

(
θ, η

)
dη +

∫∞

0
ν(ξ, ω)B1(ξ, θ)dξ = −τ◦(θ),

d2

dθ2

[∫ω0

0

(
χ
(
η
)
+ ψ

(
η
))

ln
1∣∣η − θ∣∣dη

]
+

∫ω0

0
χ
(
η
)�
F3

(
θ, η

)
dη +

∫ω0

0
ψ
(
η
)
F̃3

(
θ, η

)
dη

+
∫∞

0
ν(ξ, ω)B2(ξ, θ)dξ = −σ◦

r (θ).

(3.3)

4. The Solving of the Integro-Differential Equation System

One must realize the standard scheme of the orthogonal polynomial method [2]. The spectral
relation

d2

dx2

∫1

−1
ln

1∣∣x − y∣∣
√

1 − y2Un

(
y
)
dy = −π(n + 1)Un(x) (4.1)

is needed for it (here Un(x)—Chebyshev’s polynomial of the second order). The variable
changing is done for the passing to the interval (0, 1)—x = 2η − 1, y = 2ξ − 1,

d2

dη2

∫1

0
ln

1∣∣ξ − η∣∣
√

1 − ξ2Un(2ξ − 1)dξ = −π
4
(n + 1)Un

(
2η − 1

)
. (4.2)

In accordance with the singularity orders of the searched function χ(η), ψ(η), and the
spectral relation (4.2), the unknown functions will be searched as the following expansions:

χ
(
η
)
=

∞∑
k=0

χk

√
η − η2Un

(
2η − 1

)
, ψ

(
η
)
=

∞∑
k=0

ψk

√
η − η2Un

(
2η − 1

)
. (4.3)
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The infinite integral in the both integro-differential equations is changed by the finite
one, and then the quadrature Sympson formula is applied with regard to the exponential
character of function Bj(ξ, θ) decreasing

∫T

0
V (ξ)Bj(ξ, θ)dξ =

N∑
n=1

VnA
j
n − Bjn(θ), j = 1, 2, (4.4)

where A
j
n are the quadrature Simpson formula coefficients, and Vn are the unknown

coefficients of the expansion.
The realization of the orthogonal polynomial method standard scheme leads to the

system of the two-linear algebraic infinite equation system with regard to the following
expansion coefficients:

χl + ψl +
∞∑
k=1

χkF̃
1
kl +

∞∑
k=1

ψkF̃
2
kl = f

1
l +

N∑
n=1

VnA
1
nB

1
nl,

χl + ψl +
∞∑
k=1

χkF̃
3
kl +

∞∑
k=1

ψkF̃
4
kl = f

2
l +

N∑
n=1

VnA
2
nB

2
nl.

(4.5)

(In Appendix F one could see the linear algebraic equation system coefficients.) Taking into
consideration the linearity of the SLAE solution, one must perform the unknown coefficients
χk, ψk (k = 1,∞) as the superposition of the N + 1 unknown set of the constants:

χk =
N+1∑
l=1

χlk, ψk =
N+1∑
l=1

ψlk, k = 1,∞. (4.6)

Thus, it is necessary to solve the N + 1 systems of the sort (4.5), differentiating one
from another only by their right-hand parts:

(
f1
l , f

2
l

)
,
(
B1

1lA
1
1, B

2
1lA

2
1

)
, . . . ,

(
B1
NlA

1
N, B

2
NlA

2
N

)
. (4.7)

Each of these systems is solved by the reduction method. The argumentation of its availability
could be done by the method proposed in [26].

After the solving of the equation system (4.5), the coefficients of the expansion (4.3)
are obtained, and this would be the final step of the displacement jumps searching. For the
estimation of the cone’s stress state, all that is left is to define the displacements along the
conical surface.
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5. The Calculation of the Displacements on the Conical Surface
v = (r, ω) and SIF Values

It is needed to use the second condition (2.1) to find the displacement v(r, ω). For the
condition’s satisfaction, one must demand that

σθ(r, θ)|θ=ω = 0 when r < R, σθ(r, θ)|θ=ω = 0 r > R. (5.1)

These conditions are written with the displacements’ expression

ν(r, ω) −
∫∞

0
ν(ξ, ω)G(ξ, r)dξ = −

∫σ0

0
χ
(
η
)
ϕ1

(
η, r

)
dη −

∫ω0

0
ψ
(
η
)
ϕ2

(
η, r

)
dη, r < R,

ν(r, ω) −
∫∞

0
ν(ξ, ω)G(ξ, r)dξ = −

∫ω0

0
χ
(
η
)
ϕ3

(
η, r

)
dη −

∫ω0

0
ψ
(
η
)
ϕ4

(
η, r

)
dη, r > R,

G(ξ, r) =
∞∑
k=0

[
gk

(
r

ξ

)
+ g ′

k

(
r

ξ

)]
P 1
νk(cosω)

∥∥P 1
νk(cosω)

∥∥2
+

∞∑
k=0

yk

(
r

ξ

) (
P 1
νk(cosω)

)•
∥∥P 1

νk(cosω)
∥∥2
.

(5.2)

The functions ϕj(η, r) are defined by the discontinuous solutions’ kernels. Mellin’s
transformation is applied to the relations (5.2)

νs(ω) = −
∫ω0

0

∫∞

0

ϕ1
(
η, r

)
rs−1dr

1 −G(s)
χ
(
η
)
dη

ω0
−

∫ω0

0
ψ
(
η
) ∫∞

0
ϕ2

(
η, r

)
rs−1dr dη, (5.3a)

νs(ω) =
− ∫ω0

0 χ
(
η
) ∫∞

0 ϕ3
(
η, r

)
rs−1dr − ∫ω0

0 ψ
(
η
) ∫∞

0 ϕ4
(
η, r

)
rs−1dr dη

1 −G(s) . (5.3b)

One must show that the transformation νs(ω), which is searched by the formula (5.3a)
and by the formula (5.3b) is the same one. Really after the deduction from the right-hand
part of (5.3a) of the right-hand part of (5.3b), zero will be the answer, so the coinciding of the
left-hand parts is also proved. The fact of Mellin’s transformation νs(ω) equality in the both
parts gives the result, that the originals of this transformations are also equal on the intervals
0 < r < R and R < r < +∞. That is why it is enough to solve the integral equation (5.2) on any
of these intervals, for example, when r < R. The solving is done by the method which was
first used in [21]. It is important to use the fact that the singularity of the function ν(r, ω) in
the vicinity of zero is equal to −λ∗, as it is shown earlier. On the base of this fact the solution
of the equation is constructed as the following expansion:

ν(r, ω) = χ̃(r) =
∞∑
n=0

χne
rr−λ∗L(−λ∗)

n (2r), (5.4)

where L
(−α)
n (r) is Chebyshev-Lager polynomials. The series (5.4) are substituted to the

equation. The obtained expression is multiplied by r2−λL(2−λ)
m (2r)er (m = 0, 1, 2, . . .), and each
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member of it is integrated on the interval (0;+∞). As a result, the infinite system of linear
equations is obtained:

Xm +
∞∑
n=0

AmnXn = Cm(λ), m, n = 0, 1, 2, . . . , (5.5)

where

Amn =
∫∞

0
r2−λerL(2−λ)

m (2r)K(r, λ)dr, K(r, λ) =
1

2π

∫∞

−∞
eξL

(−λ)
n (2ξ)eξG(r, ξ)dξ,

Cm(λ) =
∫∞

0
r2−λe−rL(2−λ)

m (2r)F(r)dr.

(5.6)

This system is solved approximately by the reduction method. For the proof of the method’s
convergence, the method proposed in [2] could be used.

The destruction criterion for the space case is Cherepanov’s formula [1] KI + KII +
KIII = C, where C is the material’s constant.

In the stated problem, we have KIII ≡ 0, and KI , KII are the coefficients at the stress
σr and τrθ singularities correspondently:

KI = lim
θ→ω0+0

√
2π

√
θ −ω0τrθ(R, θ),

KII = lim
θ→σ0+0

√
2π

√
θ −ω0σr(R, θ).

(5.7)

The stress in the formulas (5.7) is defined by the equalities

τrθ(R, θ) =
d2

dθ2

∫ω0

0
χ
(
η
)

ln
1∣∣η − θ∣∣dη +

d2

dθ2

∫ω0

0
ψ
(
η
)

ln
1∣∣η − θ∣∣dη + R1(θ) + τ0(θ, R),

σr(R, θ)=
(
μμ0 + 1

) d2

dθ2

∫ω0

0
ln

1∣∣η − θ∣∣dη +
(
μμ0 + 1

) ∫ω0

0
ψ
(
η
)

ln
1∣∣η − θ∣∣dη + R2(θ) + σ0

r (θ, R).

(5.8)

For the limit calculation in (5.7), it is necessary to use the continuation of the spectral
relation (4.2) on the interval |η| > 1. The following equation is used [25]

d2

dx2

1
π

∫1

−1
ln

1
|x − s|

√
1 − s2Vm(s)ds =

(m + 1)22m+2

(x − 1)m+2

×
⎡
⎣F

(
3
2
+m,m + 2;

3
2

;
x + 1
x − 1

)
− m + 1

2

√
1 − x
−1 − xΓ

(
3
2
+m,m + 1;

1
2

;
x + 1
x − 1

)⎤
⎦.

(5.9)
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Taking into consideration the variable change (4.2) and expressions (4.3), the result is
obtained:

KI =
√
π

2

( ∞∑
m=1

(−1)m+1√mXm +
∞∑
m=1

(−1)m+1√mψm
)
,

KII =
√
π

2

(
μμ0 + 1
μ∗

)( ∞∑
m=1

(−1)m+1√mXm +
∞∑
m=1

(−1)m+1√mψm
)
.

(5.10)

6. Numerical Results and Discussion

The dependence of the mode I SIF values KI and of the mode II SIF KII from the distance of
a crack up to an edge is investigated at various values of a crack’s angle ω0.

On Figure 2 values of K̃I = (KI/P
√
R), K̃II = (KII/P

√
R)

, calculated for a steel cone, which angle is ω = 75◦, are resulted. The dotted curves
correspond to the crack’s radius R = R1, and continuous to the radius R = 2R1. The analysis
has shown that the angle of a crack, at which the mode I SIF reaches a maximum, almost
twice is less than the value of the crack’s angle at which the mode II SIF reaches its one. The
distance to the cone’s edge, as it is appreciable, influences the SIF absolute values, which
are noticeably larger for the normal stress. The change of the crack’s distance up to an edge
insignificantly influences the value of a crack’s angle at which maximum of SIF is reached.

The increase in loading essentially increases absolute SIF values though the cracks’
angle at which SIF reach the maxima vary insignificantly. The maximum of mode I SIF is
reached by the smaller values of the crack’s angle than the values of the crack’s angle at
which the mode II SIF reaches its peak.

Comparison has been lead and gave enough good concurrence with numerical results
of SIF values K∞

I , K
∞
II calculation for the case of a spherical crack, located in the unlimited

elastic medium at its stretching [13]. It is necessary to specify, that at ratio of the cone’s angle
to the crack’s angle l = ω/ω0, smaller than 1, 2, calculations lost stability that testifies that the
proposed approach to the problem solving in this case is inapplicable, and it is necessary to
use, for example, a method of a small parameter.

On Figures 3 and 4 the curves show the dependences of K∗
I = KI/K

∞
I and K∗

II =
KII/K

∞
II on the ratio l = ω/ω0 correspondently.
From the analysis of the curves, notice that the crack’s distance from the cone’s surface

essentially influences the SIF absolute values. Noticeably, already at values l ≥ 8 for the mode
I SIF results coincide with a case of the infinite medium with a spherical crack, that is, the
influence of the boundaries becomes insignificant. For the mode II SIF, the edge ceases to
influence at l ≥ 6.

7. Conclusions

(1) The approach proposed in the paper allows to solve the new axisymmetrical problem
about stress concentration near the spherical crack located in an elastic cone at conditions of
the first main elasticity problem on the cone’s surface at the point tensile force enclosed to
edge.
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(2) It is established that values of the mode I SIF are larger on absolute values than the
mode II SIF. The maximal crack’s angle, at which the mode I SIF reaches the peak, almost is
twice less than the crack’s angle at which reaches the maximum the mode II SIF.

(3) The crack’s distance to a cone’s surface renders more essential influence on size of
absolute values of SIF than the distance on which the crack is located from an edge.

(4) The proposed approach to the problem solving is available when the ratio of a
cone’s angle to the crack’s angle is not less than 1, 2.

(5) The method that was used in the paper allows to solve a similar problem for a
defect of the inclusion type, and also to solve the more complicate problem for a compound
elastic cone in which the crack settles down on a surface of an elastic constants changing, that
is, interphase crack. Moreover, the proposed approach will allow to solve a problem for a case
of the arbitrary oriented force enclosed to a cone’s edge for which it is necessary to construct
the discontinuous solutions of the equilibrium equations for such case.
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Appendices

A. The Equilibrium Equations’ Representation in
the Space of Mellin’s Integral Transformation Which
was Applied by the Generalized Scheme

Rs+1〈u′(R, θ)〉 + Rs(s − 1)χ(θ) + (s(s − 1) − 2)us(θ) +
1
μ∗

(sin θu•s(θ))
•

sin θ

− μ∗∗
μ∗

(νs sin θ)•

sin θ
+
μ0

μ∗

(
sin θ

(
Rsψ(θ) − sνs(θ)

))•
sin θ

= 0,

Rs+1〈ν′(R, θ)〉 − Rs(s − 1)ψ(θ) + s(s − 1)νs(θ) + μ∗

(
(ν•s(θ) sin θ)•

sin θ
− νs(θ)

sin2θ

)

+ μ0
(
Rsχ•(θ) − su•s(θ)

)
+ 2μ∗u•s(θ) = 0.

(A.1)

B. The Representation of the Transformations’ Coefficients of
the Equilibrium Equations’ Discontinuous Solution

Δsk = s4 − 2s3 + (−2Nk − 1)s2 + (2Nk + 2)s +N2
k − 2Nk =

4∏
j=1

(
s − sj

)
,

s1 = −νk − 2, s2 = −νk, s3 = νk − 1, s4 = νk + 1, Nk = νk(νk + 1),

α(s, k) = s3 + a1ks
2 + a2ks + a3k, q(s, k) = s2b1k + sb1k + b3k,

β(s, k) = s2a4k + sa5k + a6k, l(s, k) = s3 − 3s2 + sb4k + b5k,

γ(s, k) = s3a7k + s2a8k + sa9k + a10k, p(s, k) = s2b6k + sb7k + b8k,
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a1k =
5μ − 2
1 − μ , a2k =

(
1 − 4μ
1 − μ +Nk

(
2μμ2

0 − μ∗
))

, a3k =

(
2μμ0N∗∗ −

μ∗
(
4μ − 1

)

1 − μ

)
Nk,

a4k =
1

2μ0
(
1 − μ) − μ0, a5k = μ0 − 2 − 1

2μ0
(
1 − μ) , a6k = 2μ∗∗ −

μ∗Nk

2μ0
(
1 − μ) ,

a7k =
sinωP 1

νk(cosω)
μ∗

2μμ0, a8k = sinωP 1
νk(cosω) − sinω

P 1
νk(cosω)
μ∗

2μμ0,

a9k = sinωP 1
νk(cosω)

(−1 −Nk2μμ0
) − sinω

(
P 1
νk(cosω)

)•
μ∗μ0,

a10k = − sinωP 1
νk(cosω)μ∗Nk − sinω

(
P 1
νk(cosω)

)•
μ∗μ∗∗,

b1k =
(
1 − 2ημ0

)
Nk, b2k = 2Nk

(
μμ0 − 1

)
+

4μ − 1
1 − μ , b3k =Nk

(
2μμ0

(
2 +

Nk

μ∗

)
− 8μ − 2

1 − μ
)
,

b4k =
Nk

2μ0
(
1 − μ) −

(
2 +

Nk

μ∗

)
, b5k = 2

(
2 +

Nk

μ∗

)
− Nk

μ0
(
1 − μ) ,

b6k = sinω
(
μ∗

(
P 1
νk(cosω)

)•
+

2μμ0

μ∗
NkP

1
νk(cosω)

)
,

b7k = −μ∗ sinω
(
P 1
νk(cosω)

)•
+ P 1

νk(cosω) sinω
(

1 − 4μμ0

μ∗

)
Nk,

b8k = −μ∗

(
2 +

Nk

μ∗

)
sinω

(
P 1
νk(cosω)

)• − 2Nk sinωP 1
νk(cosω).

(B.1)

C. The Discontinuous Solutions in the Space of
the Integral Transformation with Regard to the Variable θ

uk(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2∑
j=1

(
R

r

)sj
[
α
(
sj,k

)

Δj,k
χk +

β
(
sj,k

)

Δj,k
ψk

]
+

∫∞

0
ν(ξ, ω)gk

(
r

ξ

)
dξ

ξ
, r < R,

4∑
j=3

(
R

r

)sj
[
α
(
sj,k

)

Δj,k
χk +

β
(
sj,k

)

Δj,k
ψk

]
+

∫∞

0
ν(ξ, ω)gk

(
r

ξ

)
dξ

ξ
, r > R,

Δj,k =
4∏
i=1
i /= j

(
sj − si

)
, gk(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2∑
j=1

(
R

z

)sj
[
γ
(
sj,k

)

Δj,k

]
, z < R,

4∑
j=3

(
R

z

)sj
[
γ
(
sj,k

)

Δj,k

]
, z > R,
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νk(r) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2∑
j=1

(
R

r

)sj
[
g
(
sj,k

)

Δj,k
χk +

l
(
sj,k

)

Δj,k
ψk

]
+

∫∞

0
ν(ξ, ω)hk

(
r

ξ

)
dξ

ξ
, r < R,

4∑
j=3

(
R

r

)sj
[
g
(
sj,k

)

Δj,k
χk +

l
(
sj,k

)

Δj,k
ψk

]
+

∫∞

0
ν(ξ, ω)hk

(
r

ξ

)
dξ

ξ
, r > R,

Δj,k =
4∏
i=1
i /= j

(
sj − si

)
, hk(z) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2∑
j=1

(
R

z

)sj
[
p
(
sj,k

)

Δj,k

]
, z < R,

4∑
j=3

(
R

z

)sj
[
p
(
sj,k

)

Δj,k

]
, z > R.

(C.1)

D. The Kernels and the Right-Hand Parts of the Integral Equations for
the Unknown Jumps Searching

F1
(
θ, η

)
=

∞∑
k=0

2∑
j=1

(−1 − sj
)
q
(
sj,k

)

Δj,k

P 1
νk(cos θ)

∥∥P 1
νk(cos θ)

∥∥2
P 0
νk

(
cosη

)
sinη

+
∞∑
k=0

2∑
j=1

α
(
sj,k

)

Δj,k

P 1
νk(cos θ)

∥∥P 0
νk(cos θ)

∥∥2
P 0
νk

(
cosη

)
sinη,

F2
(
θ, η

)
=

∞∑
k=0

2∑
j=1

(−1 − sj
)
l
(
sj,k

)

Δj,k

P 1
vk(cos θ)

∥∥P 1
vk(cos θ)

∥∥2
P 1
vk

(
cosη

)
sinη

+
∞∑
k=0

2∑
j=1

β
(
sj,k

)

Δj,k

P 1
vk(cos θ)

∥∥P 0
vk(cos θ)

∥∥2
P 1
vk

(
cosη

)
sinη,

α1(ξ, θ) = −
∞∑
k=0

P 1
vk(cos θ)

∥∥P 1
vk(cos θ)

∥∥2
yk(ξ) +

∞∑
k=0

P 1
vk(cos θ)

∥∥P 0
vk(cos θ)

∥∥2
gk(ξ),

α2(ξ, θ) = R
∞∑
k=0

P 1
vk(cos θ)

∥∥P 1
vk(cos θ)

∥∥2
yk(ξ),

F3
(
θ, η

)
=

∞∑
k=0

2∑
j=1

α
(
sj,k

)

R

(
2μμ0 −

(
ημ0 + 1

)
sj

)

Δj,k

P 0
vk(cos θ)P 0

vk

(
cosη

)
∥∥P 0

vk(cos θ)
∥∥2

sinη

+
∞∑
k=0

2∑
j=1

μμ0

R

g
(
sj,k

)

Δj,k

((
P 1
vk(cos θ)

)• + ctgθP 1
vk(cos θ)

)

∥∥P 1
vk(cos θ)

∥∥2
P 0
vk

(
cosη

)
sinη,

F4
(
θ, η

)
=

∞∑
k=0

2∑
j=1

β
(
sj,k

)

Δj,k

(
2μμ0 −

(
ημ0 + 1

)
sj

)P 0
vk(cos θ)P 1

vk

(
cosη

)
∥∥P 0

vk(cos θ)
∥∥2

sinη
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+
∞∑
k=0

2∑
j=1

μμ0

R

l
(
sj,k

)

Δj,k

((
P 1
vk(cos θ)

)• + ctgθP 1
vk(cos θ)

)

∥∥P 1
vk(cos θ)

∥∥2
P 1
vk

(
cosη

)
sinη,

α3(ξ, θ) =
2μμ0

R

∞∑
k=0

P 0
vk(cos θ)

∥∥P 0
vk(cos θ)

∥∥2
gk(ξ)

+
μμ0

R

∞∑
k=0

yk(ξ)∥∥P 1
vk(cos θ)

∥∥2

((
P 1
vk(cos θ)

)•
+ ctgθP 1

vk(cos θ)
)
,

α4(ξ, θ) =
μμ0 + 1
R

∞∑
k=0

P 0
vk(cos θ)

∥∥P 0
vk(cos θ)

∥∥2
gk(ξ).

(D.1)

E. The Order of the Displacement’s Singularity

Guttmann’s representation of the equilibrium equation solutions [26] was used to obtain the
order of the displacement’s singularity:

u(ν, θ) = Φ′(ν, θ) − 2
(
1 − μ)rΔF(ν, θ), ν(r, θ) =

Φ•(ν, θ)
r

, (E.1)

where

u(r, θ) = 2Guν(r, θ), ν(r, θ) = 2Guθ(r, θ), Δ2F(r, θ) = 0, (E.2)

Φ(r, θ) = rF ′(r, θ) + κF(r, θ), (E.3)

The operators Δ and ∇ are defined by the equalities ΔF = (r2F ′)′/r2 − ∇F/r2,∇ − ∇F =
−(sin θF•)•/ sin θ.

Correspondently to [22], the function F(r, θ) is represented in the form F(r, θ) =
rλg(θ), where λ is the searched order of the singularity. This representation is substituted
in (E.2), and operator Δ2 is applied to it. It leads to the solving of the differential equation:

λ(λ + 1)g(θ) +

(
sin θg•(θ)

)•
sin θ

= C0Pλ−2(cos θ) + C1Qλ−2(cos θ), (E.4)

where C0, C1 are the unknown constants. The solution of this equation is

g(θ) = C0Pλ(cos θ) + C1Pλ−2(cos θ) + C2Qλ(cos θ) + C3Qλ−2(cos θ). (E.5)
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Taking into consideration the regularity of the solution of variable θ, one must demand
that C2 = C3 = 0. It allows one to write:

F(r, θ) = rλ(C0Pλ(cos θ) + C1Pλ−2(cos θ)),

Φ(r, θ) = rλ(λ + κ)(C0Pλ(cos θ) + C1Pλ−2(cos θ)).
(E.6)

The final expression for the displacements will be acquired after the substitution of the
solutions (E.6) into the formulas (E.1)

u(r, θ) = rλ−1
[
λ(λ + κ)C0Pλ(cos θ) +

(
λ2 + λκ + 2

(
1 − μ)

)
C1Pλ−2(cos θ)

]
,

ν(r, θ) = rλ−1(λ + κ)
[
C0P

•
λ(cos θ) + C1P

•
λ−2(cos θ)

]
,

(E.7)

when it follows that ur(r, θ) = (1/2G)u(r, θ), uθ(r, θ) = (1/2G)ν(r, θ).
The conditions of the problem (2.1) should be satisfied on the conical surface θ = ω

in order for the stress to be found from the known relations of the displacements and stress
connections:

τrθ =
1

2G
rλ−2

[
(λ − 1)(λ + κ)C0P

•
λ(cos θ) +

(
λ2 + λ(κ − 1) − κ + 1 − μ

)
C1P

•
λ−2(cos θ)

]
,

νθ(r, θ) =
1

2G
rλ−2[(μμ0(λ + 1) + 1

)
g1(θ) + (λ + κ)

(
μμ0 + 1

)
g2(θ)

]
,

g1(θ) = λ(λ + κ)C0Pλ(cos θ) +
(
λ(λ + κ) + 2

(
1 − μ))C1Pλ−2(cos θ),

g2(θ) = C0P
••
λ (cos θ) + C1P

••
λ−2(cos θ).

(E.8)

One must substitute the equalities (E.6) in the conditions (2.13) and pass to θ = ω.
With that, the homogenous system of equations with regard to the unknown constants
C0, C1 is obtained. Its determinant should be equal to zero for its unique solution. It yields
the transcendental equation for λ obtaining:

(
λ2 + λ(κ − 1) − κ

)(
λμμ0 + μμ0 + 1

)(
λ2 + λκ + 2

(
1 − μ)

)
P •
λ(cosω)Pλ−2(cosω)

+
(
λ2 + λ(κ − 1) − κ

)(
λ
(
μμ0 + 1

)
+ κ

(
ημ0 + 1

))
P •
λ(cosω)P ••

λ−2(cosω)

− λ(λ + κ)
(
λ2 + λ(κ − 1) + 1 − μ − κ

)(
λμμ0 + μμ0 + 1

)
P •
λ−2(cosω)Pλ(cosω)

− (λ + κ)
(
μμ0 + 1

)(
λ2 + λ(κ − 1) − κ + 1 − μ

)(
λμμ0 + κ

(
ημ0 + 1

))
P •
λ−2(cosω)P ••

λ (cosω)

= 0.
(E.9)

Equation (E.9) is solved numerically with MAPLE. By results of the roots’ analysis
that root, which brings the strongest singularity in the solution, gets out. The searched value
is λ = λ∗, hence the searched order of the displacement’s singularity is ν(r, ω) ∼ rλ∗−1.
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F. The Coefficients of the Linear Algebraic Equation System with
Regard to the Expansion Coefficients (4.5)

F̃
j

kl =
∫∫1

0

√
η − η2

√
θ − θ2Vk

(
2η − 1

)
Vl(2θ − 1)F̃j

(
θ, η

)
dη dθ, j = 1, 4,

f1
l = −

∫1

0

√
θ − θ2τθ2θ(θ)Vl(2θ − 1)dθ, f2

l = −
∫1

0

√
θ − θ2σ0

r (θ)Vl(2θ − 1)dθ,

B
ji
nl =

∫1

0
B
j
n(θ)

√
θ − θ2Vl(2θ − 1)dθ, i = 1, 2.

(F.1)
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