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Criteria are established for existence of three solutions to the boundary value problems Lx =
f(t, x), w1x(0) − w2x

′(0) = 0 = w3x(1) + w4x
′(1), where Lx := −(px′)′ + qx. Here, p ∈ C1[0, 1],

p > 0, q ∈ C[0, 1], q ≥ 0.

1. Introduction

In this paper, we are concerned with the existence of three positive solutions for the boundary
value problem (BVP)

Lx = f(t, x), 0 < t < 1, (1.1)

w1x(0) −w2x
′(0) = 0,

w3x(1) +w4x
′(1) = 0,

(1.2)

where f ∈ C([0, 1] × [0,+∞)), [0,+∞),wi ≥ 0 (i = 1, . . . , 4)with ρ := w2w3 +w1w3 +w1w4 > 0
and Lx := −(p(t)x′)′ + q(t)x. Here p ∈ C1([0, 1], (0,∞)), q ∈ C([0, 1], [0,∞)). We shall
also assume that λ = 0 is not an eigenvalue of Lx = λx subject to conditions (1.2). As a
consequence, it follows that the the smallest eigenvalue λ1 of the problem Lx = λx subject
to (1.2) satisfies λ1 > 0 and the corresponding eigenfunction ϕ1(t) does not vanish on (0, 1).
Without loss of generality, we may assume ϕ1(t) > 0 on (0, 1) and ‖ϕ1‖ = max0≤t≤1|ϕ1(t)|
= 1.
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Let G(t, s) denote Green’s function for the problem Lx = 0 subject to condition (1.2). It
is well known that G(t, s)may be written as

G(t, s) =
1
d

⎧
⎨

⎩

φ(t)ψ(s), 0 ≤ t ≤ s ≤ 1,

φ(s)ψ(t), 0 ≤ s ≤ t ≤ 1,
(1.3)

where φ(t) and ψ(t) satisfy

Lφ = 0, φ(0) = w2, φ′(0) = w1,

Lψ = 0, ψ(1) = w4, ψ ′(1) = −w3,
(1.4)

and where

p(t)
(
φ(t)ψ ′(t) − φ′(t)ψ(t)

) ≡ −d. (1.5)

It may be shown that φ(t) ≥ 0 and is increasing on [0, 1] while ψ(t) ≥ 0 and is decreasing on
[0, 1]. As a consequence, it follows that d > 0 and, furthermore, we have

0 ≤ G(t, s) ≤ G(s, s), 0 ≤ t, s ≤ 1. (1.6)

We define the positive number η, μ by

η−1 := max
0≤t≤1

(∫1

0
G(t, s)ds

)

, μ−1 :=
∫3/4

1/4
G(s, s)ds. (1.7)

For the case Lx = −x′′ (i.e, p(t) ≡ 1, q(t) ≡ 0), the corresponding BVP

−x′′ = f(t, x), 0 < t < 1 (1.8)

subject to (1.2) has attracted considerable attention over the last number of years. Under
certain condition, positive solutions of (1.8) and (1.2) are obtained in [1, 2]. In a recent paper,
Erbe [3] investigated the existence of multiple positive solutions to (1.1)-(1.2) by applying
the fixed point index.

The aim of this paper is to establish criteria for the existence of three positive solutions
to (1.1) and (1.2), which improve the corresponding result of [3]. Our tool in this paper will
be well-known Five Functionals Fixed Point Theorem [4–7].

2. Preliminaries

Definition 2.1. Suppose P is a cone in a Banach. The map α is a nonnegative continuous
concave functional on P provided α : P → [0,∞) is continuous and

α
(
tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y) (2.1)



Mathematical Problems in Engineering 3

for all x, y ∈ P and t ∈ [0, 1]. Similarly, the map β is a nonnegative continuous convex
functional on P provided β : P → [0,∞) is continuous and

β
(
tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y) (2.2)

for all x, y ∈ P and t ∈ [0, 1].
Let γ, β, θ be nonnegative, continuous, convex functionals on P and α, ψ be

nonnegative, continuous, concave functionals on P . Then, for nonnegative real numbers
h, a, b, d and c, we define the convex sets

P
(
γ, c
)
=
{
x ∈ P : γ(x) < c

}
,

P
(
γ, α, a, c

)
=
{
x ∈ P : a ≤ α(x), γ(x) ≤ c},

Q
(
γ, β, d, c

)
=
{
x ∈ P : β(x) ≤ d, γ(x) ≤ c},

P
(
γ, θ, α, a, b, c

)
=
{
x ∈ P : a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c},

Q
(
γ, β, ψ, h, d, c

)
=
{
x ∈ P : h ≤ ψ(x), β(x) ≤ d, γ(x) ≤ c}.

(2.3)

To prove our main results, we need the following theorem, which is the Five Functionals
Fixed Point Theorem [4].

Theorem 2.2. Let P be a cone in a real Banach space E. Suppose there exist positive numbers c and
M, nonnegative, continuous, concave functionals α and ψ on P , and nonnegative, continuous, convex
functionals γ, β and θ on P , with

α(x) ≤ β(x), ‖x‖ ≤Mγ(x) (2.4)

for all x ∈ P(γ, c). Suppose

Φ : P
(
γ, c
) −→ P

(
γ, c
)

(2.5)

is completely continuous and there exist nonnegative numbers h, a, k, b, with 0 < a < b such that

(i) {x ∈ P(γ, θ, α, b, k, c) : α(x) > b}/= ∅ and α(Φx) > b for x ∈ P(γ, θ, α, b, k, c);
(ii) {x ∈ Q(γ, β, ψ, h, a, c) : β(x) < a}/= ∅ and β(Φx) < a for x ∈ Q(γ, β, ψ, h, a, c);

(iii) α(Φx) > b for x ∈ P(γ, α, b, c) with θ(Φx) > k;
(iv) β(Φx) < a for x ∈ Q(γ, β, a, c) with ψ(Φx) < h.

Then Φ has at least three fixed points x1, x2, x3 ∈ P(γ, c) such that

β(x1) < a,

b < α(x2),

a < β(x3) with α(x3) < b.

(2.6)
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3. Main Result

In this section, we shall obtain existence results for BVP (1.1) and (1.2) by using the Five
Functional Fixed Point Theorem.

By [3], it is well known that BVP associated with (1.1), (1.2) is equivalent to the
operator equation

x = Ax, x ∈ C[0, 1], (3.1)

where

(Ax)(t) =
∫1

0
G(t, s)f(s, x(s))ds. (3.2)

Now with X = C[0, 1], ‖x‖ = max0≤t≤1|x(t)|, it is easy to see that A : X → X is completely
continuous. We define a cone P ⊂ X by

P :=
{

x ∈ X : x(t) ≥ 0, min
1/4≤t≤3/4

x(t) ≥ σ‖x‖
}

, (3.3)

where σ is defined by

σ := min
{
G(t, s)
G(s, s)

:
1
4
≤ t ≤ 3

4
, 0 ≤ s ≤ 1

}

. (3.4)

By (1.3) and the properties of ϕ(t), ψ(t), we have

σ := min
{
φ(1/4)
φ(1)

,
ψ(3/4)
ψ(0)

}

. (3.5)

Clearly, 0 < σ < 1 and G(t, s) ≥ σG(s, s) for 1/4 ≤ t ≤ 3/4, 0 ≤ s ≤ 1.

Lemma 3.1. The operator A maps P into P .

Proof. Let x ∈ P . From (1.6) and the condition of f , we see that Ax ≥ 0. Next, for x ∈ P , we
have

|(Ax)(t)| = (Ax)(t) =
∫1

0
G(t, s)f(s, x(s))ds ≤

∫1

0
G(s, s)f(s, x(s))ds. (3.6)

Hence,

‖Ax‖ ≤
∫1

0
G(s, s)f(s, x(s))ds. (3.7)
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Now, from G(t, s) ≥ σG(s, s) for 1/4 ≤ t ≤ 3/4, 0 ≤ s ≤ 1, we have

min
t∈[1/4,3/4]

(Ax)(t) = min
t∈[1/4,3/4]

∫1

0
G(t, s)f(s, x(s))ds

≥ σ
∫1

0
G(s, s)f(s, x(s))ds ≥ σ‖Ax‖.

(3.8)

This show that Ax ∈ P , which completes this proof.

Theorem 3.2. Let 0 < a < b and μb < ησc, and suppose f(t, x) satisfies the following conditions:

(H1) f(t, x) < ηa for 0 ≤ t ≤ 1 and 0 ≤ x ≤ a,
(H2) f(t, x) ≥ (μb)/σ for 1/4 ≤ t ≤ 3/4 and b ≤ x ≤ b/σ,
(H3) f(t, x) ≤ ηc for 0 ≤ t ≤ 1 and 0 ≤ x ≤ c.

Then the BVP (1.1)-(1.2) has at least three positive solutions.

Proof. Theorem 2.2 will be applied.We begin by defining the nonnegative continuous concave
functional α, ψ and the nonnegative continuous convex functional β, θ, γ on P

ψ(x) = min
t∈[0,1]

x(t),

β(x) = θ(x) = max
t∈[0,1]

x(t),

α(x) = min
t∈[1/4,3/4]

x(t), γ(x) = ‖x‖.

(3.9)

It is clear that α(x) ≤ β(x) for all x ∈ P .
First, we shall show that the operatorAmaps P(γ, c) into P(γ, c). Let x ∈ P(γ, c). Thus

we have 0 ≤ x(t) ≤ c for 0 ≤ t ≤ 1. Using (H3), we have

|(Ax)(t)| = (Ax)(t) =
∫1

0
G(t, s)f(s, x(s))ds ≤ ηc

∫1

0
G(t, s)ds ≤ c. (3.10)

Hence

γ(Ax) = ‖Ax‖ ≤ c. (3.11)

Therefore, we have shown that A : P(γ, c) → P(γ, c).
We next prove that Condition (i) of Theorem 2.2 holds. Let x ≡ (1/2)(b + k), k = b/σ.

Then

α(x) =
1
2
(b + k) > b, θ(x) =

1
2
(b + k) < k, γ(x) =

1
2
(b + k) < c, (3.12)
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which shows that {x ∈ P(γ, θ, α, b, k, c), α(x) > b}/= ∅. Let x ∈ P(γ, θ, α, b, k, c). Then α(x) >
b, θ(x) < k = b/σ imply that

b < x(t) <
b

σ
, for t ∈

[
1
4
,
3
4

]

. (3.13)

By (H2) we can obtain

α(Ax) = min
t∈[1/4,3/4]

(Ax)(t) = min
t∈[1/4,3/4]

∫1

0
G(t, s)f(s, x(s))ds

≥ σ
∫1

0
G(s, s)f(s, x(s))ds > σ

∫3/4

1/4
G(s, s)f(s, x(s))ds

≥ μb
∫3/4

1/4
G(s, s)ds = b.

(3.14)

Hence, α(Ax) > b for all x ∈ P(γ, θ, α, b, k, c) and so Condition (i) of Theorem 2.2 holds.
Next, we verify that Condition (ii) of Theorem 2.2 is satisfied. Take x ≡ σa, h = σa,

then

γ(x) = σa < c, ψ(x) = σa = h, β(x) = σa < a. (3.15)

From this we know that {x ∈ Q(γ, β, ψ, h, a, c), β(x) < a}/= ∅. Let x ∈ Q(γ, β, ψ, h, a, c). Then
we have β(x) ≤ a, which lead to 0 ≤ x(t) ≤ a, for t ∈ [0, 1]. In view of (H1), we have

β(Ax) = max
t∈[0,1]

(Ax)(t) = max
t∈[0,1]

∫1

0
G(t, s)f(s, x(s))ds

≤ ηa · max
t∈[0,1]

∫1

0
G(t, s)ds = a.

(3.16)

Hence, β(Ax) < a for all x ∈ Q(γ, β, ψ, h, a, c). Thus, Condition (ii) of Theorem 2.2 is fulfilled.
We shall next show that Condition (iii) of Theorem 2.2 is met. Observe that for x ∈ P

θ(Ax) = max
t∈[0,1]

(Ax)(t) = max
t∈[0,1]

∫1

0
G(t, s)f(s, x(s))ds

≤
∫1

0
G(s, s)f(s, x(s))ds.

(3.17)
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On the other hand,

α(Ax) = min
t∈[1/4,3/4]

(Ax)(t) = min
t∈[1/4,3/4]

∫1

0
G(t, s)f(s, x(s))ds

≥ σ
∫1

0
G(s, s)f(s, x(s))ds.

(3.18)

(3.17) together (3.18) implies that

α(Ax) ≥ σθ(Ax), x ∈ P. (3.19)

Let x ∈ P(γ, α, b, c)with θ(Ax) > k = b/σ. Then, it follows from (3.19) that

α(Ax) ≥ σθ(Ax) > b. (3.20)

Thus, α(Ax) > b for all x ∈ P(γ, α, b, c) with θ(Ax) > b/σ. Hence, Condition (iii) of
Theorem 2.2 holds.

Finally, we shall prove that Condition (iv) of Theorem 2.2 is fulfilled. Let x ∈
Q(γ, β, a, c) and ψ(Ax) < h = σa. Then 0 ≤ x(t) ≤ a, t ∈ [0, 1]. By (H1), we have

β(Ax) = max
t∈[0,1]

(Ax)(t) = max
t∈[0,1]

∫1

0
G(t, s)f(s, x(s))ds

< ηa · max
t∈[0,1]

∫1

0
G(t, s)ds = a.

(3.21)

Thus, Condition (iv) of Theorem 2.2 is satisfied.
Now, an application of Theorem 2.2 ensures that the BVP (1.1) and (1.2) has at least

three positive solutions x1, x2, x3 such that

β(x1) < a, b < α(x2), a < β(x3) with α(x3) < b. (3.22)

This proof is complete.

Remark 3.3. This Theorem improves the Corollary 2.5 in [3].

Example 3.4. For simplicity, we consider the boundary value problem

−x′′ = f(t, x), 0 < t < 1,

x(0) = x′(1) = 0,
(3.23)
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where

f(t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
10

|sin t| + 20x5, x ≤ 1,

1
10

|sin t| + 20, x ≥ 1.

(3.24)

By direct calculation we can obtain that η = 2, μ = 4, σ = 1/4. Set a = 1/2, b = 1, c = 12, so
the nonlinear term f satisfies

f(t, x) ≤ 0.1 + 20 ×
(
1
2

)5

< 1 = ηa, (t, x) ∈ [0, 1] ×
[

0,
1
2

]

,

f(t, x) > 20 > 16 =

(
μb
)

σ
, (t, x) ∈

[
1
4
,
3
4

]

× [1, 4],

f(t, x) < 21 < 24 = ηc, (t, x) ∈ [0, 1] × [0, 12].

(3.25)

Then the conditions in Theorem 3.2 are all satisfied, so the boundary value problem (3.23)
has at least three positive solutions x1, x2, x3 such that

max
0≤t≤1

x1(t) <
1
2
, 1 < min

1/4≤t≤3/4
x2(t), 1 < max

0≤t≤1
x3(t) with min

1/4≤t≤3/4
x3(t) < 1. (3.26)
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