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The nonlinear free vibration for viscoelastic cross-ply moderately thick laminated composite
plates under considering transverse shear deformation and damage effect is investigated. Based
on the Timoshenko-Mindlin theory, strain-equivalence hypothesis, and Boltzmann superposition
principle, the nonlinear free vibration governing equations for viscoelastic moderately thick
laminated plates with damage are established and solved by the Galerkin method, Simpson
integration, Newton-Cotes, Newmark, and iterative methods. In the numerical results, the effects
of transverse shear, material viscoelasticity, span-thickness ratio, aspect ratio, and damage effect
on the nonlinear free vibrating frequency of the viscoelastic cross-ply moderately thick laminated
plates are discussed.

1. Introduction

The structure will present the resonance phenomenon when the external excitation frequency
is near to a certain natural frequency of the structure during the service life of the structures.
Structure destructions caused by the resonance are prevalent in the practical engineering. The
damage will emerge in the viscoelastic composite structures during the process of vibration
and lead to the change of the dynamic behavior. When the damage develops, the structure
will probably enter into the resonant state. As soon as the resonance appears, the stress values
in the structure will increase, which will cause the development of the damage accelerate.
Therefore, it is a very important research field to investigate the nonlinear dynamic behavior
of viscoelastic laminated plates with damage effect.

Extensive studies have been made in dynamics of viscoelastic homogeneous struc-
tures. On the basis of the linear theory and the concept of the Lyapunov exponents, Aboudi
and Cederbaum [1] investigated the dynamic stability of viscoelastic rectangular plates.



2 Mathematical Problems in Engineering

Librescu and Chandiramani [2] analyzed the dynamic stability of transversely isotropic
viscoelastic plates. Sun and Zhang [3] investigated the chaotic behaviors of viscoelastic
rectangular plates subjected to an in-plane periodic load and pointed out that the stability of
the structure could be increased by adjusting the material parameters. Chen et al. [4] analyzed
the steady-state response of the parametrically excited axially moving string constituted by
the Boltzmann superposition principle. T. W. Kim and J. H. Kim [5] applied finite element
analysis and the method of multiple scales to investigate the nonlinear vibrating frequency
of viscoelastic laminated plates. Yu and Huang [6] presented a mathematical model for the
vibration of a three-layered sandwich circular plate with viscoelastic core and discussed the
effect of viscoelasticity on the frequency and amplitude. Relatively, few works have been
devoted to study the effects of local damage and defects on the static and dynamic behavior
of plates. Prabhakara and Datta [7, 8] analyzed the effect of the structural flaw on the natural
frequency and buckling load of elastic plates subjected to a uniform in-plane load. Laura
and Gutierrez [9] presented the linear fundamental frequency of transverse vibration for a
damaged circular annular plate. However, the materials of the composite laminated plates
have the property of viscoelasticity with the apparent creep phenomenon and relaxation
characteristic, so it is very necessary to examine the influences of the damage effect on the
nonlinear dynamics of viscoelastic laminated plates. Sheng and Cheng [10] used the history
curve, phase trajectory diagram, Poincare map, bifurcation figure, and power spectrum to
analyze the nonlinear dynamical properties of viscoelastic thick plate with damage. Fu et
al. [11, 12] studied the nonlinear dynamic response of viscoelastic composite plate with
transverse matrix cracks based on Schapery’s 3D constitutive relationship. To author’s work,
Zheng and Fu [13] have studied the effect of local damage on the bifurcation and chaos of
viscoelastic isotropic plates, and the nonlinear dynamic properties of viscoelastic isotropic
plates and laminated plates with considering damage evolution [14–16].

In the present study, the nonlinear free vibration equations of the viscoelastic cross-ply
moderately thick laminated composite plates with damage effect are established by applying
Timoshenko-Mindlin theory, strain equivalence hypothesis, and Boltzmann superposition
principle. By employing the standard linear solid model to express the viscoelastic material
properties, Kachanov’s approach to describe the damage evolution, and using the Galerkin
method, Simpson integration, Newton-Cotes, Newmark method, and iterative procedure,
the solutions of the problem are obtained. Numerical results are presented for different
parameters.

2. Basic Equations

Consider a viscoelastic cross-ply rectangular plate having length a in the x direction, width
b in the y direction, and thickness h in the z direction. The middle plane of the undeformed
plate contains the x, y axes and the origin of the coordinate system is taken at the upper left
corner of the plate. Based on Timoshenko-Mindlin kinematic hypotheses taking into account
the transverse normal deformation, the displacement components u1, u2, and u3 that include
the effect of transverse shear deformation may be described by the following expressions
[17]:

u1
(
x, y, z, t

)
= u
(
x, y, t

)
+ zϕ

(
x, y, t

)
,

u2
(
x, y, z, t

)
= v
(
x, y, t

)
+ zψ

(
x, y, t

)
,

u3
(
x, y, z, t

)
= w

(
x, y, t

)
,

(2.1)
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where t is the time, u, v, andw are the values of u1, u2, and u3 at the middle surface, and ϕ and
ψ are rotation angles of the normal to the middle surface in the xz and yz planes, respectively.
The nonlinear strain-displacement relationship can be written as

εx = ε0
x + zκx, εy = ε0

y + zκy, εxy = ε0
xy + zκxy,

εxz = ϕ +w,x, εyz = ψ +w,y,
(2.2)

where a comma denotes partial differentiation with respect to the corresponding coordinates
and where

ε0
x = u,x +

1
2
w2
,x, κx = ϕ,x,

ε0
y = v,y +

1
2
w2
,y, κy = ψ,y,

ε0
xy = u,y + v,x +w,xw,y, κxy = ϕ,y + ψ,x.

(2.3)

By applying the loading equivalent principle and assuming that the internal forces
acting on any damaged section are the same as the ones before damage, the relationship
between the effective stresses σ̃ij and the Cauchy stresses σij is given as [18]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

σ̃x

σ̃y

σ̃xy

σ̃xz

σ̃yz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
1 −D1

0 0 0 0

0
1

1 −D2
0 0 0

0 0
1

√
(1 −D1)(1 −D2)

0 0

0 0 0
1

√
1 −D1

0

0 0 0 0
1

√
1 −D2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

σx

σy

σxy

σxz

σyz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.4)

where the anisotropic damage variables D1 and D2 are similarly defined as in [15, 16].
The above relation is expressed as follows:

σ̃ = Λσ. (2.5)

Employing the strain energy equivalence principle [19] and Boltzmann superposition
principle [20], the stress-strain constitutive equations of the coupled viscoelastic/damage
cross-ply laminated plates for the kth layer can be obtained in the following form:

σ(k)(t) = T (k)T
Λ(k)−1

Q(k)(0)Λ(k)−1
T (k)ε(k)(t) + T (k)T

Λ(k)−1
∫ t

0
Q̇(k)(t − τ)Λ(k)−1

T (k)ε(k)(τ)dτ

(2.6)

in which Q(k)(t) is the time-dependent relaxation function and Q(k)(0) is the initial Young’s
modulus of materials for the kth layer. For orthotropic viscoelastic materials and considering
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that Poisson ratio contains constant, T (k) is the strain transformation relation for the kth layer,
having

Q(k)(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E
(k)
1 (t)

1 − ν(k)12 ν
(k)
21

ν
(k)
12 E

(k)
2 (t)

1 − ν(k)12 ν
(k)
21

0 0 0

ν
(k)
12 E

(k)
2 (t)

1 − ν(k)12 ν
(k)
21

E
(k)
2 (t)

1 − ν(k)12 ν
(k)
21

0 0 0

0 0 G
(k)
12 (t) 0 0

0 0 0 G
(k)
13 (t) 0

0 0 0 0 G
(k)
23 (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

T(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

cos2θk sin2θk sin θk cos θk 0 0

sin2θk cos2θk − sin θk cos θk 0 0

−2 sin θk cos θk 2 sin θk cos θk cos 2θk 0 0

0 0 0 cos θk sin θk

0 0 0 − sin θk cos θk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(2.7)

where c = cos θk and s = sin θk. θk is the angle measured from the fibre direction to coordinate
axis ox for the kth layer; here θk = 0 or 90◦

For simplification, (2.6) is rewritten as

σ(k)
1 = Qd(k) ⊗ ε(k)1 ,

σ(k)
2 = Qd(k)

∗ ⊗ ε(k)2 ,
(2.8)

where the symbol (⊗) is the Stieltjes convolution operation symbol, which is defined as

f ⊗ g =
∫ t

−∞
f(t − τ)dg(τ) = f(0)g(t) +

∫ t

0
ḟ(t − τ)g(τ)dτ,

σ(k)
1 =

{
σ
(k)
x , σ

(k)
y , σ

(k)
xy

}T
, σ(k)

2 =
{
σ
(k)
xz , σ

(k)
yz

}T
,

ε1
(k) =

{
R

(k)
1 εx, R

(k)
2 εx, R

(k)
3 εx, R

(k)
1 εy, R

(k)
2 εy, R

(k)
3 εy, R

(k)
1 εxy, R

(k)
2 εxy, R

(k)
3 εxy

}T
,

ε
(k)
2 =

{
R

(k)
4 εxz, R

(k)
5 εxz, R

(k)
4 εyz, R

(k)
5 εyz

}T
,

Qd(k) =
[
Q
d(k)
ij

]
,
(
i = 1, 2, 3, j = 1, 2, . . . , 9

)
, Qd(k)

∗ =
[
Q
d(k)
ij

]
,
(
i = 4, 5, j = 1, 2, 3, 4

)
,

R
(k)
1 = 1 −D(k)

1 , R
(k)
2 = 1 −D(k)

2 , R
(k)
3 =

√(
1 −D(k)

1

)(
1 −D(k)

2

)
,

R
(k)
4 =

√(
1 −D(k)

1

)
, R

(k)
5 =

√(
1 −D(k)

2

)
.

(2.9)
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The nonzero elements in Qd(k) and Qd(k)
∗ are given as

Q
d(k)
11 = c4R

(k)
1 Q

(k)
11 , Q

d(k)
12 = s4R

(k)
2 Q

(k)
22 , Q

d(k)
14 = s4R

(k)
2 Q

(k)
12 , Q

d(k)
15 = c4R

(k)
1 Q

(k)
12 ,

Q
d(k)
21 = c4R

(k)
2 Q

(k)
12 , Q

d(k)
22 = s4R

(k)
1 Q

(k)
12 , Q

d(k)
24 = s4R

(k)
1 Q

(k)
11 , Q

d(k)
25 = c4R

(k)
2 Q

(k)
22 ,

Q
d(k)
39 =

(
c2 − s2

)2
R

(k)
3 Q

(k)
66 , Q

d(k)
41 = c2R

(k)
4 Q

(k)
44 , Q

d(k)
42 = s2R

(k)
5 Q

(k)
55 ,

Q
d(k)
53 = s2R

(k)
4 Q

(k)
44 , Q

d(k)
54 = c2R

(k)
5 Q

(k)
55 .

(2.10)

As the classical plate theory, the stress resultants and couples are defined by

[
Nx,Ny,Nxy

]
=
∫h/2

−h/2

[
σ
(k)
x , σ

(k)
y , σ

(k)
xy

]
dz,

[
Qx,Qy

]
=
∫h/2

−h/2

[
ksσ

(k)
xz , ksσ

(k)
yz

]
dz,

[
Mx,My,Mxy

]
=
∫h/2

−h/2

[
σ
(k)
x , σ

(k)
y , σ

(k)
xy

]
zd,

(2.11)

where, Nx,Ny, and Nxy are the membrane stress resultants per unit length, Qx and Qy are
the transverse shear stress resultants per unit length, Mx,My, and Mxy are the bending and
twisting moments per unit length, and ks is the shear correction factor taking ks = 5/6.
Substituting (2.8) into (2.11), we can obtain

{
N

M

}

=
n∑

k=1

[
A(k) B(k)

B(k) D(k)

]

⊗
{
ε0(k)

κ0(k)

}

,

{
Qx

Qy

}

=
n∑

k=1

ksC(k) ⊗ ε(k)2 ,

(2.12)

where

N =
{
Nx,Ny,Nxy

}T
, M =

{
Mx,My,Mxy

}T
,

ε0(k) =
{
R

(k)
1 ε0

x, R
(k)
2 ε0

x, R
(k)
3 ε0

x, R
(k)
1 ε0

y, R
(k)
2 ε0

y, R
(k)
3 ε0

y, R
(k)
1 ε0

xy, R
(k)
2 ε0

xy, R
(k)
3 ε0

xy

}T
,

κ0(k) =
{
R

(k)
1 κx, R

(k)
2 κx, R

(k)
3 κx, R

(k)
1 κy, R

(k)
2 κy, R

(k)
3 κy, R

(k)
1 κxy, R

(k)
2 κxy, R

(k)
3 κxy

}T
,

(2.13)
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and the elements in the coupled damaged stiffness tensors A(k), B(k), D(k), and C(k) are
determined as

(
A

(k)
ij , B

(k)
ij , D

(k)
ij

)
=
∫zk

zk−1

Q
d(k)
ij

(
1, z, z2

)
dz

(
i = 1, 2, 3, j = 1, 2, . . . , 9

)
,

C
(k)
ij =

∫zk

zk−1

Q
d(k)
ij dz

(
i = 4, 5, j = 1, 2, 3, 4

)
.

(2.14)

Neglecting the effects of in-plane inertia, rotary inertia, and coupled normal-rotary
inertia, the nonlinear equilibrium equations for moderately thick laminated plates are [21]

Nx,x +Nxy,y = 0,

Nxy,x +Ny,y = 0,

Qx,x +Qy,y +
[
Nxw,x +Nxyw,y

]
,x
+
[
Nxyw,x +Nyw,y

]
,y
= ρ0hẅ,

Mx,x +Mxy,y −Qx = 0,

My,y +Mxy,x −Qy = 0,

(2.15)

where ρ0 is the mass of unit volume. By substituting (2.12) into (2.15), and introducing the
following dimensionless parameters:

ξ =
x

a
, η =

y

b
, λ =

a

b
, ρ =

ρ0a
2

t21E
, H =

a

h
, τ =

t

t1
, U =

au

h2
,

V =
av

h2
, W =

w

h
, Λ = Hϕ, Ψ = Hψ, A

(k)
ij =

A
(k)
ij

Eh
, B

(k)
ij =

B
(k)
ij

Eh2
,

D
(k)
ij =

D
(k)
ij

Eh3s
(
i = 1, 2, 3, j = 1, 2, . . . , 9

)
, C

(k)
ij =

C
(k)
ij

Eh

(
i = 4, 5, j = 1, 2, 3, 4

)
,

e
(k)
1 =

E
(k)
1 (τ)
E

, e
(k)
2 =

E
(k)
2 (τ)
E

, e
(k)
12 =

G
(k)
12 (τ)
E

, e
(k)
13 =

G
(k)
13 (τ)
E

, e
(k)
23 =

G
(k)
23 (τ)
E

,

(2.16)
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then, the dimensionless equilibrium equations of cross-ply laminated plates with the coupled
effects of viscoelasticity and damage can be expressed as

n∑

k=1

{
2∑

i=1

A
(k)
1i ⊗ R

(k)
i

(
U,ξξ +W,ξW,ξξ

)
+

5∑

i=4

λA
(k)
1i ⊗ R

(k)
i−3

(
V,ξη + λW,ηW,ξη

)
+

2∑

i=1

B
(k)
1i ⊗ R

(k)
i Λ,ξξ

+ λ
5∑

i=4

B
(k)
1i ⊗ R

(k)
i−3Ψ,ξη + λA

(k)
39 ⊗ R

(k)
3

(
λU,ηη + V,ξη + λW,ηW,ξη + λW,ξW,ηη

)

+ λB
(k)
39 ⊗ R

(k)
3

(
λΛ,ηη + Ψ,ξη

)
}

= 0,

n∑

k=1

{

A
(k)
39 ⊗ R

(k)
3

(

λU,ξη + V,ξξ + λW,ηW,ξξ + λW,ξW,ξη

)

+ B
(k)
39 ⊗ R

(k)
3

(
λΛ,ξη + Ψ,ξξ

)

+ λ
2∑

i=1

A
(k)
2i ⊗ R

(k)
i

(
U,ξη +W,ξW,ξη

)
+ λ2

5∑

i=4

A
(k)
2i ⊗ R

(k)
i−3

(
V,ηη + λW,ηW,ηη

)

+λ
2∑

i=1

B
(k)
2i ⊗ R

(k)
i Λ,ξη + λ2

5∑

i=4

B
(k)
2i ⊗ R

(k)
i−3Ψ,ηη

}

= 0,

n∑

k=1

{

H2ks
2∑

i=1

C
(k)
4i ⊗ R

(k)
i+3

(
Λ,ξ +W,ξξ

)
+H2λks

4∑

i=3

C
(k)
5i ⊗ R

(k)
i+1

(
Ψ,η + λW,ηη

)

+

[
2∑

i=1

A
(k)
1i ⊗ R

(k)
i

(
U,ξ +

1
2
W2

,ξ

)
+

5∑

i=4

A
(k)
1i ⊗ R

(k)
i−3

(

λV,η +
λ2

2
W2

,η

)

+
2∑

i=1

B
(k)
1i ⊗ R

(k)
i Λ,ξ + λ

5∑

i=4

B
(k)
1i ⊗ R

(k)
i−3Ψ,η

]

W,ξξ

+ 2λ
[
A

(k)
39 ⊗ R

(k)
3

(
λU,η + V,ξ + λW,ξW,η

)
+ B

(k)
39 ⊗ R

(k)
3

(
λΛ,η + Ψ,ξ

)
]
W,ξη

+ λ2

[
2∑

i=1

A
(k)
2i ⊗ R

(k)
i

(
U,ξ +

1
2
W2

,ξ

)
+

5∑

i=4

λA
(k)
2i ⊗ R

(k)
i−3

(
V,η +

λ

2
W2

,η

)

+
2∑

i=1

B
(k)
2i ⊗ R

(k)
i Λ,ξ + λ

5∑

i=4

B
(k)
2i ⊗ R

(k)
i−3Ψ,η

]

W,ηη

}

− ρH2Ẅ = 0,

n∑

k=1

{
2∑

i=1

B
(k)
1i ⊗ R

(k)
i

(
U,ξξ +W,ξW,ξξ

)
+

5∑

i=4

λB
(k)
1i ⊗ R

(k)
i−3

(
V,ξη + λW,ηW,ξη

)

+
2∑

i=1

D
(k)
1i ⊗ R

(k)
i Λ,ξξ + λ

5∑

i=4

D
(k)
1i ⊗ R

(k)
i−3Ψ,ξη

+ λB
(k)
39 ⊗ R

(k)
3

(
λU,ηη + V,ξη + λW,ηW,ξη + λW,ξW,ηη

)

+λD
(k)
39 ⊗ R

(k)
3

(
λΛ,ηη + Ψ,ξη

)
−H2ks

2∑

i=1

C
(k)
4i ⊗ R

(k)
i+3

(
Λ +W,ξ

)
}

= 0,
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n∑

k=1

{

B
(k)
39 ⊗ R

(k)
3

(
λU,ξη + V,ξξ + λW,ηW,ξξ + λW,ξW,ξη

)
+D

(k)
39 ⊗ R

(k)
3

(
λΛ,ξη + Ψ,ξξ

)

+ λ
2∑

i=1

B
(k)
2i ⊗ R

(k)
i

(
U,ξη +W,ξW,ξη

)
+ λ2

5∑

i=4

B
(k)
2i ⊗ R

(k)
i−3

(
V,ηη + λW,ηW,ηη

)

+λ
2∑

i=1

D
(k)
2i ⊗ R

(k)
i Λ,ξη + λ2

5∑

i=4

D
(k)
2i ⊗ R

(k)
i−3Ψ,ηη −H2ks

4∑

i=3

C
∗(k)
5i ⊗ R

(k)
i+1

(
Ψ + λW,η

)
}

= 0.

(2.17)

Suppose that all of the boundary conditions of the plate are simply supported. In such
case, the dimensionless boundary conditions can be written as

ξ = 0, 1: U = V =W = Ψ =Mξξ = 0,

η = 0, 1: U = V =W = Λ =Mηη = 0.
(2.18)

3. Solution Methodology

A solution for (2.17) in conjunction with the boundary condition (2.18) is sought in the
following separable form:

U =
∞∑

m=1

∞∑

n=1,3,...

fu(τ) sin(2πmξ) sin
(
πnη

)
,

V =
∞∑

m=1,3,...

∞∑

n=1

fv(τ) sin(πmξ) sin
(
2πnη

)
,

W =
∞∑

m=1,3,...

∞∑

n=1,3,...

fw(τ) sin(πmξ) sin
(
πnη

)
, (3.1)

Λ =
∞∑

m=1,3,...

∞∑

n=1,3,...

fϕ(τ) cos(πmξ) sin
(
πnη

)
,

Ψ =
∞∑

m=1,3,...

∞∑

n=1,3,...

fψ(τ) sin(πmξ) cos
(
πnη

)
.

Substituting (3.1) into the governing equations (2.17) and making use of the one-
term approximation of the Galerkin method, we can transform the nonlinear integral-partial
differential equations into the nonlinear integral-ordinary differential equations in terms of
fu(τ), fv(τ), fw(τ), fϕ(τ), and fψ(τ). The domain is divided by square mesh into M ×M
divisions and the time τ is equally divided into small time segments Δτ . The Simpson integral
formula is used to compute the integrations with respect to the spatial coordinates and the
Newton-Cotes trapezoidal rule is used to compute the integrations with respect to time.
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Moreover, using the Newmark scheme, the acceleration item f̈w and velocity item ḟw can
be expressed as follows:

f̈
(N)
w =

4
(
f
(N)
w − f (N−1)

w

)

(Δτ)2
−

4ḟ (N−1)
w

Δτ
− f̈ (N−1)

w ,

ḟ
(N)
w = ḟ (N−1)

w +
1
2

[
f̈
(N−1)
w + f̈ (N)

w

]
Δτ,

(3.2)

where f (N)
w denotes the value of fw(τ) at the timeNΔτ . Through these treatings, (2.17) can be

transformed into the nonlinear algebraic equations only with time. And the whole equations
are iterated to seek solutions. At each step of the iteration, the nonlinear items are linearized.
For example, at the step J , the nonlinear items may be transformed to

(X · Y )J = (X)J · (Y )JP , (3.3)

where (Y )JP is the average value of those obtained in the preceding two iterations. For the
initial step of the iteration, it can be determined by using the quadratic extrapolation, that is,

(Y )JP = AA(Y )J−1 + BB(Y )J−2 + CC(Y )J−3. (3.4)

And for the different step of the iteration, the coefficients AA,BB, and CC can be expressed
as follow:

J = 1: AA = 1, BB = 0, CC = 0,

J = 2: AA = 2, BB = −1, CC = 0,

J ≥ 3: AA = 3, BB = −3, CC = 1.

(3.5)

For every time step, the iteration lasts until the difference of the present value and the former
is smaller than 0.1%; then continue the calculation of the next step.

4. Damage Evolution Equation

In the present research, the following damage evolution equation is employed [19, 22]:

dD(k)
i

dτ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bi

(
σ
(k)
i

1 −D(k)
i

)mi

, σ
(k)
i ≥ σ(k)

Di
,

0, σ
(k)
i < σ

(k)
Di
.

(i = 1, 2) (4.1)
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Table 1: Comparison of fundamental linear frequencies of laminated elastic plates (a/h = 10).

Reference [23] Reference [24] Present
SOT CPT FOT TOT FOT
12.527 15.104 12.163 11.958 12.2233

Here Bi and mi are the material constants. σ(k)
Di

is the stress threshold value in the i direction

at which the damage D(k)
i begins to grow, and

σ
(k)
1 =

1
h(k)

∫zk

zk−1

σ̃
(k)
x dz, σ

(k)
2 =

1
h(k)

∫zk

zk−1

σ̃
(k)
y dz. (4.2)

Assume that there is no damage at initial time; thus, the damage values of all points are
D

(k)
1 (0) = 0 and D

(k)
2 (0) = 0. When stopping iterative step J , we can obtain the five function

values fu(τ), fv(τ), fw(τ), fϕ(τ), and fψ(τ). Before continuing the next iterative step, it must
determine whether the damage values of an arbitrary point of the plate develop. Therefore,
firstly, the displacements of an arbitrary point of the plate can be obtained by using (3.1).
Calculate the strains of an arbitrary point of the plate by using (2.2) and (2.3). Then, using
(2.5), (2.8) and (4.2), σ(k)

1 and σ
(k)
2 can be obtained. Finally, use (4.1) to determine whether the

damage grows. Suppose that D(k)
i (J) is the damage value of an arbitrary point for the kth

layer in the i direction at the time JΔτ . If σ(k)
i ≥ σ(k)

Di
, then the damage value at the time JΔτ

is

D
(k)
i (J) = D(k)

i (J − 1) + Ḋ(k)
i

(
D

(k)
i (J − 1), σ(k)

i

)
Δτ. (4.3)

and if σi(k) < σ
(k)
Di

, then

D
(k)
i (J) = D(k)

i (J − 1). (4.4)

5. Numerical Results

To ensure the accuracy and effectiveness of the present method, the fundamental frequencies
of a three-layer symmetric cross-ply [0◦/90◦/0◦] laminated elastic plate without considering
damage effect are solved firstly and the materials properties [23, 24] are given as E1 = 25E2,
G12 = G13 = 0.5E2, G23 = 0.2E2, and ν12 = 0.25. Define ω0 = (ω0a

2/h)
√
ρ0/E2, in which ω0

and ω0 are the dimensionless and dimensional linear frequencies of laminated elastic plates
without damage, respectively. The fundamental frequencies are calculated and compared in
Table 1 with those of [23, 24]. Table 1 shows that the present result approximately agrees with
the result in [24] by the first-order shear-deformation theory (FOT). And for the moderately
thick laminated plates, the FOT solution has small difference compared with the second-order
shear-deformation theory (SOT) solution and third-order shear-deformation theory (TOT)
solution, but large difference is compared with the classical plate theory (CPT). It is noted
that the effect of the transverse shear deformation cannot be neglected for the moderately
thick laminated plates.
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Table 2: Effect of transverse shear on the nonlinear vibrating frequency Ω∗ of laminated plates.

wmax/h Case a/h

5 10 15 20

1

Ts = 0, Td = 0 2.73182 1.33970 0.883711 0.677714
Ts = 0, Td = 1 2.38090 1.30900 0.872317 0.670063
Ts = 1, Td = 0 2.15917 1.21767 0.847933 0.649089
Ts = 1, Td = 1 1.90400 1.20830 0.840535 0.64502

2

Ts = 0, Td = 0 3.92699 2.02683 1.36591 0.998917
Ts = 0, Td = 1 2.84119 1.74745 1.30736 0.991473
Ts = 1, Td = 0 3.69599 1.92329 1.32000 0.987922
Ts = 1, Td = 1 2.68778 1.65347 1.27967 0.981748

Consider the amplitudes and the frequencies varying with time and the viscoelasticity
and damage developing with the increase of time, so we must elect the later vibrating period
to be analyzed. Hence, the relationship of the average frequency and the maximum amplitude
in the 20th period are presented. Also, assume that every layer has the same material and the
identical thickness. The parameters used in numerical calculation are taken as

e1 = 9.75 + 0.25e−α1τ , α1 = 0.022,

e2 = 0.32 + 0.68e−α2τ , α2 = 0.024, ν12 = 0.4,

e12 = 0.07 + 0.16e−α12τ , α12 = 0.026,

e13 = 0.07 + 0.16e−α13τ , α13 = 0.026,

e23 = 0.05 + 0.12e−α23τ , α23 = 0.026,

B1 = 3.7 × 10−12 MPa−m1 , B2 = 4.8 × 10−11 MPa−m2 , m1 = m2 = 3.

(5.1)

Define

Ω∗ = Ω

√
ρ0a

2

E
, (5.2)

where Ω∗ and Ω are the dimensionless and dimensional nonlinear free vibrating frequency
of viscoelastic plates with damage, respectively.

Table 2 shows the effect of transverse shear deformation on the nonlinear free vibrating
frequency of the viscoelastic cross-ply [0◦/90◦/0◦] laminated square plate with considering
damage effect or without considering damage effect, in which wmax/h is the dimensionless
maximum vibration amplitude of the center point of the plate (similarly below), Ts is the
tracing constant which represents the influence of transverse shear when Ts = 1 and the effect
is neglected when Ts = 0, as well as Td is the tracing constant which represents the influence
of damage when Td = 1 and the effect is neglected when Td = 0. From Table 2 it may be
observed that the thicker the thickness of the laminated plate, the more significant the effect
of transverse shear on the nonlinear free vibrating frequency of the laminated plate. And in
all cases transverse shear results in a decrease of the vibrating frequency. Therefore, the effect
of transverse shear deformation is considered in the following calculated examples.
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Figure 1: Effect of span-thickness ratio on the nonlinear amplitude-frequency curves of viscoelastic
laminated plate.

Figure 1 shows the effect of span-thickness ratio a/h on the nonlinear free vibrating
amplitude-frequency response curves of the viscoelastic cross-ply [0◦/90◦/0◦] laminated
square plate. In Figure 1, the solid line denotes the undamaged condition, while the dashed
line denotes the condition with damage evolution. It can be observed that with the decrease
of the span-thickness ratio, namely, the increase of thickness of the plate, the nonlinear
free vibrating frequency of the plate becomes bigger under a given vibration amplitude.
Meanwhile, the frequency increases with increase of the vibration amplitude under a fixed
span-thickness ratio. It can be also seen that the two curves with/without damage agree very
well where the vibration amplitude is small. But with the increase of the vibration amplitude,
the damage begins to appear and the accumulation velocity of the damage increases, which
results in the stiffness of the plate becoming smaller. Accordingly, the nonlinear vibration
frequency considering damage reduces remarkably than the result neglecting damage.
Moreover, the less the span-thickness ratio of the plate is, the more the damage becomes,
then the more the frequency descends.

Figure 2 displays the effect of aspect ratio λ on the nonlinear free vibrating amplitude-
frequency response curves of the viscoelastic cross-ply [0◦/90◦/0◦] laminated plate. With
the increase of the aspect ratio, that is, the width decreases under the condition that the
length remains constant, the nonlinear free vibrating frequency of the plate becomes bigger.
Similarly, under the given aspect ratio λ, the increase of the amplitude will expedite the
accumulation velocity of the damage which will cause the more reduction in the stiffness
of the plate. Consequently, the reduction of frequency caused by the damage will be more
remarkable. The more the aspect ratio is, the more the frequency reduces.

The effect of material viscoelasticity parameter α(= α1 = α2 = α12 = α13 = α23) on
the nonlinear free vibrating frequency of the viscoelastic cross-ply [0◦/90◦/0◦] laminated
square plate is listed in Table 3. The nonlinear free vibrating frequency of the laminated
plate decreases with the higher value of the material viscoelasticity parameter. Due to the
fact that viscoelastic material possesses dissipative nature and it acts as damping in the
dynamic problems, it can improve the stability of the structure. Therefore, at the same
condition, the higher viscoelasticity parameter can suppress the emergence of damage and
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Figure 2: Effect of aspect ratio on the nonlinear amplitude-frequency curves of viscoelastic laminated plate
(a/h = 10).

Table 3: Effect of viscoelasticity parameter on the nonlinear vibrating frequency Ω∗ of laminated plates
(a/h = 15).

α Case wmax/h

1 1.5 2 2.5 3

0 Td = 0 0.850871 1.07477 1.35062 1.61494 1.85181
Td = 1 0.837562 1.04704 1.28289 1.46316 1.49701

0.5 Td = 0 0.846744 1.06551 1.31475 1.56880 1.84306
Td = 1 0.838762 1.05061 1.25715 1.42693 1.49761

2 Td = 0 0.820509 1.04718 1.28120 1.53075 1.79590
Td = 1 0.820229 1.04668 1.25565 1.42815 1.47021

cause the difference of the vibrating frequency between the damaged plate and undamaged
plate decrease.

6. Conclusions

The nonlinear free vibration for viscoelastic cross-ply laminated composite plates under
considering transverse shear deformation and damage effect has been investigated. The
effects of transverse shear, material viscoelasticity, span-thickness ratio, aspect ratio, and
damage effect on the nonlinear vibration of laminated plates have been discussed. In
summary, the transverse shear effect on the nonlinear vibration of the viscoelastic laminated
plates with damage is significant, especially, for the laminates with large thickness. This effect
decreases the nonlinear frequency but does not change the general behavior of the nonlinear
vibration in all cases. With the decrease of span-thickness ratio or increase of aspect ratio,
the vibrating frequency increases, as well as the difference of vibration frequency between
considering damage and neglecting damage becomes bigger. In addition, with the increase
of the vibration amplitude, the damage begins to appear, the accumulation velocity of the
damage increases, and the reduction of the vibrating frequency becomes more significant.
The larger the material viscoelasticity, the smaller the reduction of the vibrating frequency.
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