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Three different profiles of the straight fin that has a temperature-dependent thermal conductivity
are investigated by differential transformation method (DTM) and compared with numerical
solution. Fin profiles are rectangular, convex, and exponential. For validation of the DTM, the
heat equation is solved numerically by the fourth-order Runge-Kutta method. The temperature
distribution, fin efficiency, and fin heat transfer rate are presented for three fin profiles and a
range of values of heat transfer parameters. DTM results indicate that series converge rapidly
with high accuracy. The efficiency and base temperature of the exponential profile are higher than
the rectangular and the convex profiles. The results indicate that the numerical data and analytical
method are in agreement with each other.

1. Introduction

Heat transfer through fin surfaces is widely used in many industrial applications. The
majority of the physical phenomena in the real world are described by nonlinear differential
equations, whereas large class of these equations do not have an analytical solution. The
numerical methods are widely used in solving nonlinear equations. There are some analytic
methods for solving differential equations, such as Adomian decomposition method (ADM),
HAM (homotopy analysis method), sinh-cosh method, homotopy perturbation method
(HPM), DTM, and variational iteration method (VIM).

An analytical solution for straight fin with combined heat and mass transfer is applied
by Sharqawy and Zubair [1]. They used the four different profiles for the fin and compared
the temperature profile and fin efficiency for them. Sharqawy and Zubair [2] applied
the analytical method for the annular fin with combined heat and mass transfer as well.
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The nonlinear similarity solution in fin equation is applied by Bokharie et al. [3]. Abbasbandy
and Shivanian [4] obtained the exact analytical solution of a nonlinear equation arising in
heat transfer. HAM is used by Khani et al. [5] to evaluate the analytical approximate solution
and the nonlinear problem efficiency with temperature-dependent thermal conductivity
and variable heat transfer coefficient. Arslanturk [6] and Rajabi [7] obtained efficiency and
fin temperature distribution by ADM and the HPM with temperature-dependent thermal
conductivity. An analytical method for determining of the optimum thermal design of
convective longitudinal fin arrays is presented by Franco [8]. Lin and Lee [9] investigated
boiling on a straight fin with linearly varying thermal conductivity.

The concept of differential transformation method was first introduced by Zhou [10]
in 1986, and it was used in solving both the linear and nonlinear initial value problems
in electric circuit analysis. The main advantage of this method is its direct applicability to
the linear and nonlinear differential equations without requiring linearization, discretization
or perturbation. Rashidi and Erfani [11] used DTM to find the fin efficiency of convective
straight fins with temperature-dependent thermal conductivity. They compared the DTM
results with HAM. S.-H. Chang and I.-L. Chang [12, 13] used a new algorithm for
computation of one- and two-dimensional differential transform of nonlinear functions. The
reduced differential transformation method for solving gas dynamic problem was used by
Keskin and Oturanç [14]. Chen and Ju [15] used the differential transformation to transient
advective-dispersive transport equation. Linear and nonlinear initial value problems are
solved by Jang [16] with the projected differential transform method. This method can be
easily applied to the initial value problem by less computational work. Hassan [17] used
DTM for solving eigenvalue problems such as vibration problems.

The differential transformation method is used to solve a wide range of physical
problems. This method provides a direct scheme for solving linear and nonlinear
deterministic and stochastic equations without linearization and yield convergent series
solution rapidly.

In this paper, we extend the application of the differential transformation method,
which is based on the Taylor series expansion, to construct analytical approximate solutions
of the governing equations of the straight fins with three different profiles and temperature-
dependent thermal conductivity. In the previous researches, the conduction heat transfer in
the rectangular fin has been studied, while the exponential and convex profiles have not been
studied so far. In this paper the conduction heat transfer in these two profiles is studied and
their results are compared with rectangular profile results. The temperature profile and the
fin efficiency are obtained for different parameters that appear in the governing equations.
Some numerical examples are presented here to illustrate the efficiency and reliability of the
DTM.

2. Fundamentals of Differential Transformation Method

Consider the analytic function y(t) in a domain D, where t = ti represent any point in it.
The function y(t) is represented by a power series at center ti. The Taylor series expansion
function of y(t) is in the following form [18]:

y(t) =
∞∑

j=0

(t − ti)j

j!

[
djy(t)
dtj

]

t=ti

, ∀t ∈ D. (2.1)
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Table 1: The fundamental operations of differential transform method.

Original function Transformed function
f(x) = αg(x) ± βh(x) F(k) = αG(k) ± βH(k)

f(x) = g(x)h(x) F(k) =
∑k

i=0 G(i)H(k − i)

f(x) = g(x)(n) F(k) = (k + 1)(k + 2) · · · (k + n)G(k + n)

f(x) = xn F(k) = δ(k − n) =
{

1 k=n
0 k /= n

}

f(x) = exp(αx) F(k) = αk/k!

f(x) = (1 + x)n F(k) = k(k − 1) · · · (k −m − 1)/k!

The particular case of (2.1) is when ti = 0 and is referred to as the Maclaurin series of y(t)
expressed as

y(t) =
∞∑

j=0

tj

j!

[
djy(t)
dtj

]

t=0

, ∀t ∈ D. (2.2)

As explained by Franco [8], differential transformation of the function y(t) is defined as

Y
(
j
)
=

∞∑

j=0

Hj

j!

[
djy(t)
dtj

]

t=0

, (2.3)

where y(t) is the original function and Y(j) is the transformed function. The differential
spectrum of Y(j) is confined within the interval t ∈ [0,H], where H is a constant. The
differential inverse transform of Y(j) is defined as

y(t) =
∞∑

j=0

(
t

H

)j

Y
(
j
)
. (2.4)

Some of the original functions and transformed functions are shown in Table 1. It is
clear that the concept of differential transformation is the Taylor series expansion. For the
solution with higher accuracy, more terms in the series in (2.4) should be retained.

3. Description of the Problem

Consider a straight fin of the length L, with a cross-section area A(x). Fin surface is exposed
to a convective environment at temperature T∞. The local heat transfer coefficient h along the
fin surface is constant, and the thermal conductivity varies with the temperature linearly. The
one-dimensional energy equation can be expressed as:

d

dx

[
k(T)A(x)

dT

dx

]
− ph(T − T∞) = 0, (3.1)



4 Mathematical Problems in Engineering

where p is the periphery of the fin, T∞ is the ambient temperature and k(T) is defined as

k(T) = kb[1 + λ(T − T∞)], (3.2)

where kb is the fin thermal conductivity at ambient temperature and λ is a constant.
Straight fin can be classified according to its profile as shown in Figure 1. The fin profile

is defined according to variation of the fin thickness along its extended length. For example,
the cross-section area of the fin may vary as

A(x) = bt(x), (3.3)

where b is the width of the fin, t(x) is the fin thickness along the length. The t(x) for different
profiles can be defined as follows

(a) for rectangular profile

t(x) = tb, (3.4)

(b) for exponential profile

t(x) = tbe
a(x/L), (3.5)

(c) for convex profile

t(x) = tb
(x
L

)1/2
. (3.6)

by employing the following dimensionless parameters:

θ =
T − T∞
T − Tb

, X =
x

L
, N =

(
hpL2

KbAb

)1/2

, (3.7)

where, Ab is the base area. Thus, the energy equation for three profiles are reduced to

(
1 + βθ

) d2θ

dX2 + β

(
dθ

dX

)2

−N2θ = 0, rectangular profile, (3.8)

(
1 + βθ

)
eaX

d2θ

dX2 + a
(
1 + βθ

)
eaX

dθ

dX
+ βeaX

(
dθ

dX

)2

−N2θ = 0, exponential profile,

(3.9)

(
1 + βθ

)
X1/2 d

2θ

dX2
+

(
1 + βθ

)

2
X−1/2 dθ

dX
+ βX1/2

(
dθ

dX

)2

−N2θ = 0, convex profile,

(3.10)
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Figure 1: Schematic of different straight fin profiles.

where, β = λ(Tb − T∞) in which Tb is the base temperature and fin tip is insulated. Therefore,
boundary conditions for this problem are defined as follows:

X = 0,
dθ

dX
= 0,

X = 1, θ = 1.
(3.11)

4. Solution with Differential Transformation Method

By one-dimensional transform of (3.8)-(3.9) considered by using the related definition in
Table 1, we have the following:

(a) rectangular profile

(
j + 1

)(
j + 2

)
Θ
(
j + 2

)
+ β

j∑

i=0

Θ(i)
(
j − i + 1

)(
j − i + 2

)
Θ
(
j − i + 2

)

+ β
j∑

i=0
(i + 1)Θ(i + 1)

(
j − i + 1

)
Θ
(
j − i + 1

) −N2Θ
(
j
)

= 0,

(4.1)

(b) exponential profile

j∑

i=0

ai

i!
(
j − i + 1

)(
j − i + 2

)
Θ
(
j − i + 2

)

+ β
j∑

s=0

j−s∑

i=0

as

s!
(
j − i − s + 1

)(
j − i − s + 2

)
Θ(i)Θ

(
j − i − s + 2

)

+ a
j∑

i=0

ai

i!
(
j − i + 1

)
Θ
(
j − i + 1

)
+ aβ

j∑

s=0

j−s∑

i=0

as

s!
(
j − i − s + 1

)
Θ(i)Θ

(
j − i − s + 1

)

+ β
j∑

s=0

j−s∑

i=0

as

s!
(i + 1)

(
j − i − s + 1

)
Θ(i + 1)Θ

(
j − i − s + 1

) −N2Θ
(
j
)

= 0,

(4.2)
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For convex profile, with definition y = X1/2 and a substitution in (3.10), we obtain:

(
1 + βθ

)d2θ

dy2 + β

(
dθ

dy

)2

− 4N2yθ = 0. (4.3)

Taking the one dimensional transform of (4.3), gives

(c) convex profile

(
j + 1

)(
j + 2

)
Θ
(
j + 2

)
+ β

j∑

i=0

Θ(i)
(
j − i + 1

)(
j − i + 2

)
Θ
(
j − i + 2

)

+ β
j∑

i=0

(i + 1)Θ(i + 1)
(
j − i + 1

)
Θ
(
j − i + 1

) − 4N2
j∑

i=0

δ(i − 1)Θ
(
j − i

)

= 0.

(4.4)

In the above equations Θ(j) is transformed function of Θ(X). The transformed boundary
condition takes the form:

Θ(1) = 0, (4.5)

∞∑

i=0

Θ(i) = 1. (4.6)

Supposing that Θ(0) = α and using (4.5) and (4.6), another value of Θ(i) for three profiles
can be calculated. The value of α can be calculated using (4.6). Thus, we end up having the
following:

(a) rectangular profile

Θ(2) =
N2α

2
(
1 + αβ

) ,

Θ(3) = 0

Θ(4) =
N4α

(
1 − 2αβ

)

24
(
1 + αβ

)3 ,

Θ(5) = 0

Θ(6) =
N6α

(
1 − 16αβ + 28α2β2

)

720
(
1 + αβ

)5 ,

Θ(7) = 0,

...

(4.7)
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(b) exponential profile

Θ(2) =
N2α

2
(
1 + αβ

) ,

Θ(3) =
−aN2α

3
(
1 + αβ

) ,

Θ(4) =

((
N4α

(
2 − 4αβ

)
/
(
2 + 2αβ

)2) +
(
a2N2α

(
18 + 36αβ + 18α2β2

)
/
(
2 + 2αβ

)(
6 + 6αβ

)))

12
(
1 + αβ

)

...
(4.8)

(c) convex profile

Θ(2) = 0,

Θ(3) =
2N2α

3
(
1 + αβ

) ,

Θ(4) = 0,

Θ(5) = 0,

Θ(6) =
N4α

(
0.8 − 1.2αβ

)

9
(
1 + αβ

)3 ,

...

(4.9)

From the above continuing process, substituting (4.7) in (2.4) forH = 1, we can obtain
the closed form of the solution:

(a) Rectangular profile

θ(X) = α +
N2α

2
(
1 + αβ

)X2 +
N4α

(
1 − 2αβ

)

24
(
1 + αβ

)3 X4 +
N6α

(
1 − 16αβ + 28α2β2

)

720
(
1 + αβ

)5 X6 + · · · . (4.10)

In order to obtain the value α, we used (4.6). Then, we will have

θ(1) = α +
N2α

2
(
1 + αβ

) +
N4α

(
1 − 2αβ

)

24
(
1 + αβ

)3 +
N6α

(
1 − 16αβ + 28α2β2

)

720
(
1 + αβ

)5 + · · · = 1. (4.11)

Solving (4.11) by mathematica software gives the value of α. For the other two profiles
the same process is used to obtain the value of α and temperature distribution.
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Figure 2: Temperature distribution of rectangular profile at different values of β at N = 1.

5. Results and Discussion

For assigned DTM results, we used 40 terms of the final power series. Temperature
distribution for different values of β for N = 1 is presented for rectangular, exponential and
convex profiles in Figures 2, 3, and 4, respectively. Here, the DTM results are compared to
numerical datawhile showing a good agreement between twomethods. Fourth-order Runge-
Kutta method is applied to obtain the numerical solution. These results show that the fin
tip temperature for exponential profile is greater than that of the other profiles. The exact
analytical solution for fin with constant thermal conductivity (β = 0) for three profiles is
calculated as follows:

(a) rectangular profile

θ(X) =
eNX + e−NX

eN + e−N
. (5.1)

(b) exponential profile

θ(X) =

√
e−aX

(
I1
[
2
√
e−aXN/a

]
K0[2N/a] + I0[2N/a]K1

[
2
√
e−aXN/a

])

√
e−a

(
I1
[
2
√
e−aN/a

]
K0[2N/a] + I0[2N/a]K1

[
2
√
e−aN/a

]) , (5.2)
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Figure 3: Temperature distribution of exponential profile (a = 1) for different values of β at N = 1.

(c) convex profile

θ[X] =
((2/3)N)1/3X1/4I−1/3

[
(4/3)NX3/4]

0F̃1[2/3, 4N2/9]
, (5.3)

where In(x) is the modified Bessel function of the first kind that is closely related to the
Bessel function of the first kind Jn(x) andKn(x) is the modified Bessel function of the second
kind that is closely related to the modified Bessel function of the first kind In(x) and Hankel
function Hn(x). 0F̃1 is the regularized confluent hypergeometric function. In(x), Kn(x) and
0F̃1 are defined as

In(x) = i−nJn(ix) = e−nπi/2Jn
(
xeiπ/2

)
,

Kn(x) =
1
2
π in+1Hn(ix) =

π

2
I−n(x) − In(x)

sin(nπ)
,

0F̃1(b;x) =
∞∑

k=0

xk

Γ(b + k)k!
,

(5.4)

where Γ is the Gamma function.
The comparison between the exact and DTM results for three profiles at β = 0 and

N = 1 is shown in Table 2. This comparison shows that DTM results are very close to the exact
analytical solution, so that we can conclude that DTM is a proper method for solving linear
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Figure 4: Temperature distribution of convex profile for different values of β at N = 1.

and nonlinear equations. The comparison between present results and other reported results
for rectangular profile for β = 0 andN = 1 is shown in Table 3. There exists an indirect relation
between the tip temperatureΘ(0) = α rise and the values ofN, becausewhenN increases, the
convective heat transfer rate increases, so that fin tip temperature decreases. For investigating
the effect of the different profiles on the straight fin performance, the temperature profile is
presented for different values of N at β = 1 for three profiles, see Figure 5. From the results it
can be concluded that, with decreasing β, the fin base temperature decreases for any profile
in the straight fin.

The most important characteristics of the fins that are studied in the engineering heat
transfer problems are the fin efficiency and fin effectiveness. If we define the fin efficiency η
in a usual way as the ratio of the actual heat transfer rate through the base of a fin to the ideal
heat flow rate if the whole fin was the same temperature as the base of the fins, therefore, the
fin efficiency can be expressed as

η =

∫L
0 Ph(T − T∞)dx
PLh(Tb − T∞)

=
∫1

0
θ dX. (5.5)

Fin efficiency for several assigned values of β is shown in Figure 6. The results show
that, for positive values of β, the efficiency is greater with respect to negative values of β.
Likewise the efficiency for exponential profile is greater than for other profiles, because at
the exponential profile, the fin base temperature is greater than that of the other profiles. Of
course it should be mentioned that the exponential profile with positive power (a > 0) has
a higher efficiency. The temperature distribution for the different values of a (exponential
parameter) is shown atN = 1 and compared with other results in Figure 7.
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Table 2: Comparison between exact and DTM results for three profiles at β = 0 and N = 1.

X Convex profile Exponential profile (a = 1) Rectangular profile
Exact DTM Exact DTM Exact DTM

0 0.56797321 0.56797323 0.78267175 0.78267175 0.648054274 0.648054274
0.1 0.5799982 0.579997732 0.78633664 0.786336641 0.651297246 0.651297246
0.2 0.60224731 0.602246515 0.796427754 0.796427754 0.66105862 0.66105862
0.3 0.63156711 0.631567222 0.81176631 0.81176631 0.677436092 0.677436091
0.4 0.66704223 0.667041545 0.831369483 0.831369483 0.700593571 0.700593571
0.5 0.70828235 0.708281911 0.85441111 0.854411111 0.730762826 0.730762826
0.6 0.75514423 0.755143954 0.880191752 0.880191753 0.768245801 0.768245801
0.7 0.80762463 0.807623882 0.908115721 0.908115721 0.813417638 0.813417638
0.8 0.86581241 0.865811512 0.937673304 0.937673304 0.866730433 0.866730433
0.9 0.92986609 0.929865636 0.968426886 0.968426886 0.928717757 0.928717757
1 1 1 1 1 1 1
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0 0.2 0.4 0.6 0.8 1

θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

For exponential profile a = 1

ConvexN = 1
ConvexN = 2
ConvexN = 1.4
ExponentialN = 1
ExponentialN = 1.4

Exponential N = 2
RectangularN = 1
RectangularN = 1.4
RectangularN = 2

Figure 5: Temperature profile for different values ofN at β = 1 and three profiles of the straight fin.

One of the other characteristics of the fins studied in engineering problems is the fin
base heat transfer rate which can be expressed as Qb = dθ(1)/dX. The variation of the Qb

with N for the two assigned values of β is shown in Figure 8. The results show that for,
smaller values of β, the value of Qb is greater than for larger values of β.

The results show that the straight fins with exponential profile have higher
performance and efficiency in comparison with other profiles. However, in most industrial
applications the rectangular profile is used due to its easy construction of rectangular
fins. The fin with convex profile has a minimum efficiency and performance for industrial
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Table 3: Comparison between present and other reported results for rectangular fin for β = 0 and N = 0.5.

X DTM ADM [6] HPM [7]
0 0.886818884 0.886819 0.886819
0.1 0.887927639 0.887928 0.887928
0.2 0.891256675 0.891257 0.891257
0.3 0.896814317 0.896815 0.896814
0.4 0.904614462 0.904615 0.904614
0.5 0.914676614 0.914677 0.914677
0.6 0.927025935 0.927026 0.927026
0.7 0.941693303 0.941694 0.941693
0.8 0.958715394 0.958716 0.958715
0.9 0.978134774 0.978135 0.978135
1 1 1 1

N

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rectangular profile
Exponential profile (a = 1)
Convex profile

η

β = 1

β = 1

β = 1

0.5

0.5

0.5

Figure 6: The variation of η versusN for two assigned values of β.

and engineering applications. In the previous researches, the exponential profile is not
investigated since Sharqawy and Zubair [1] presented an analytical solution for the
rectangular, triangular, concave and convex profile for the straight semiwet fin with constant
thermal conductivity. They showed that the rectangular profile has a higher performance
than other profiles. But, in the present research it is shown that the efficiency for exponential
profile (with positive power) is even greater than that for rectangular profile.

Results show that the variable thickness at the straight fin is very important
characteristic in heat conduction problems. Also, the thermal conductivity variation has
direct effect on the temperature distribution and characteristics of the fin such as fin efficiency,
fin base heat transfer rate, and fin effectiveness.
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Figure 7: Temperature distribution of exponential profile with different parameter a at N = 1.
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Figure 8: The variations of Qb withN for several assigned values of β.
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6. Conclusion

The differential transformation method (DTM) was applied for solving heat conduction
problem in the fin with different profiles and temperature-dependent thermal conductivity.
This method has been applied for the linear and nonlinear differential equations. This method
is an infinite power series form and has high accuracy and fast convergence. To validate the
analytical results, DTM results are compared with numerical data obtained using the fourth-
order Runge-Kutta method. The fin efficiency and heat transfer rate can be easily obtained
from the explicit form of the temperature profile. It is shown that differential transformation
method has a very fast convergency, as well as being a precise and cost-efficient tool
for solving the efficiency of the fin with variable thermal conductivity. Results show that
exponential profile (with positive power) has a higher performance than other profiles in any
thermal conductivity condition. In general, DTM has a good approximate analytical solution
for the linear and nonlinear engineering problems without any assumption and linearization.

Nomenclature

A: Fin cross-section (m2)
a: Exponential parameter
b: Width of the fin
H : Constant
h: Heat transfer coefficient (Wm−2 K−1)
k: Thermal conductivity (Wm−1 K−1)
L: Fin length (m)
N: Dimensionless fin parameter
p: Periphery of the fin cross-section (m)
Q: Heat transfer rate (W)
T : Temperature (K)
t: Fin thickness (m)
X: Nondimensional space coordinate
x: Dimensional space coordinate (m)
Y : Transformed function
y(t): Original analytic function

Greek Symbols

α: Fin base temperature
β: Thermal expansion coefficient (K−1)
η: Fin efficiency
λ: Dimensional constant (K−1)
Θ: Transformed temperature
θ: Dimensionless temperature

Subscripts

b: Fin base
∞: Ambient property.
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