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A Leontief-type input-output inclusion problem based on a set-valued consuming map is studied.
By applying nonlinear analysis approach, in particular using the surjection and continuity
technique with respect to set-valued maps, solvability and stability results with and without
continuity assumption concerning this inclusion are obtained.

1. Introduction

In this paper, we study the solvability and stability of the following input-output inclusion:

x ∈ X ⊂ Rn
+,

c ∈ (I −A)x = x −Ax,
(1.1)

where Rn
+ is the set of nonnegative vectors of the n-dimensional Euclidean space Rn,

X ⊂ Rn
+ is a nonempty convex compact subset, c ∈ Rn

+ is a net output vector,

I is the identity map from Rn to itself, and A : X −→ 2R
n
+ is a set-valued map

from X to Rn
+ with nonempty convex compact values (i.e., for each x ∈ X,

Ax is a nonempty and convex compact subset of Rn
+
)
.

(1.2)
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The present study is essentially a continuation of the investigation initiated in [1–5]
where the classical Leontief input-output model was briefly reviewed, several generalized
Leontief input-output models were introduced, numerous key references were cited, and
some arguments about the assumptions on X and A were made. For the necessary
backgroundmaterial and preliminaries, the reader is referred to [1–5]. Here we will make use
of the Rogalski-Cornet Theorem in [6] and the Rogalski-Cornet-type Theorem proved in [5]
to prove several solvability and stability theorems with and without continuous conditions
concerning A for model (1.1). Obviously, for some c ∈ Rn

+, inclusion (1.1) may not have
solutions. Specifically, if c makes (1.1) solvable, then

c ∈ C(A) =̂ Rn
+
⋂
(I −A)X, where (I −A)X =

⋃

x∈X
(x −Ax). (1.3)

WhileC(A) gives us an expression for all possible c for which (1.1) has solutions, it is required
that all the information regarding A is available. It is our intention in this paper to discover
some conditions under which (1.1) has solutions for the situation that the information of A
is only available near the boundary of X. We also provide a stability analysis for the solution
set in terms of closeness, upper semicontinuity and, upper hemicontinuity of certain related
set-valued maps.

The paper is organized as follows. In the rest of this section, we review some necessary
concepts and several useful results, which are used throughout this paper. In Section 2, we
study (1.1) under the assumption that A is upper semicontinuous. In Section 3, we recall
a Rogalski-Cornet-type theorem appearing in [5], and use it to obtain three solvability and
stability results. We give our concluding remarks in Section 4.

In the sequel, we use several classes of maps, including upper and lower semicon-
tinuous (in short, u.s.c. and l.s.c.), upper hemicontinuous (in short, u.h.c.), continuous, and
closed set-valued maps between Hausdorff topological (or Hausdorff locally convex) spaces,
whose definitions and some other related concepts are given below and can also be found in
[6–9].

Definition 1.1. LetU and V be twoHausdorff topological spaces and F : U → 2V a set-valued
map from U to V . The domain of F is the set {x ∈ U : Fx /= ∅} denoted by domF, and the
graph of F is the set {(x, y) ∈ U × V : x ∈ U, y ∈ Fx} denoted by graphF.

(1) We say that F is strict if domF = U, and F is closed if graphF is closed inU × V .

(2) We say that F is u.s.c. at x0 ∈ U if for any neighborhoodN(Fx0) of Fx0, there exists
a neighborhoodN(x0) of x0 such that F(N(x0)) ⊆ N(Fx0). F is said to be u.s.c. if F
is u.s.c. at every point x ∈ U.

(3) We say that F is l.s.c. at x0 ∈ U if for any y0 ∈ Fx0 and any neighborhood N(y0)
of y0, there exists a neighborhood N(x0) of x0 such that Fx

⋂
N(y0)/= ∅ for any

x ∈ N(x0). F is said to be l.s.c. if F is l.s.c. at every point x ∈ U.

(4) If V is a Hausdorff locally convex vector space, V ∗ is its dual and 〈·, ·〉 is the duality
paring on V ∗ ×V . We say that F is u.h.c. at x0 ∈ domF if for any p ∈ V ∗, the function
x 
→ σ#(Fx, p) = supy∈Fx〈p, y〉 is upper semicontinuous (in short, u.s.c.) at x0. F is
said to be u.h.c. if it is u.h.c. at every point of domF.

We now recall a number of auxiliary results that will be needed in proving our main
theorems. They are stated below as lemmas.
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Lemma 1.2 (see [8]). Let F be an u.s.c. set-valued map from a Hausdorff topological space U to a
Hausdorff topological space V with closed values. Then F is closed.

Lemma 1.3 (see [8]). Let F be a closed set-valued map from a Hausdorff topological space U to a
compact Hausdorff topological space V . Then F is u.s.c..

Lemma 1.4 (see [8]). Suppose thatU is a Hausdorff topological space, V a Hausdorff locally convex
vector space equipped with the weak topology σ(V, V ∗), and F : U → 2(V,σ(V,V

∗)) a set-valued map
that is u.s.c. at x0 ∈ U. Then F is u.h.c. at x0 ∈ U.

Remark 1.5. If V = Rn, then the weak topology σ(Rn, Rn∗) on Rn coincides with the norm
topology.

Lemma 1.6 (see [8]). Suppose that U is a complete metric space, and V a compact metric space. If
F : U → 2V is a closed and strict set-valued map, then the subset of points at which F is continuous
is residual, that is, the interior of the discontinuous point set of F is empty.

In order to use the Rogalski-Cornet Theorem and Rogalski-Cornet type Theorem to
discuss the solvability and stability of (1.1), we need some further concepts.

Let U be a Hausdorff locally convex vector space (U∗ its dual, 〈·, ·〉 the duality paring
on 〈U∗, U〉), X a subset of U, intX the interior of X, ∂X = X \ intX the boundary of X, and
S : X → 2U a set-valued map fromX toU. Let p ∈ U∗. The normal coneNX(x) toX at x ∈ X,
the supporting set ∂(X, p) of X, and the upper and lower supporting functions x 
→ σ#(Sx, p)
and x 
→ σ�(Sx, p) on X are defined by

NX(x) =

{

p ∈ U∗ :
〈
p, x

〉
= σ#(X, p

)
=̂ sup

y∈X

〈
p, y

〉
}

,

∂
(
X, p

)
=
{
x ∈ X :

〈
p, x

〉
= σ�(X, p

)
=̂ inf

y∈X
〈
p, y

〉
}
,

σ#(Sx, p
)
= sup

y∈Sx

〈
p, y

〉
, σ�(Sx, p

)
= inf

y∈Sx
〈
p, y

〉
for x ∈ X.

(1.4)

We say that

S is outward if ∀p ∈ U∗, ∀x ∈ ∂
(
X, p

)
, 〈p, x〉 ≥ σb(Sx, p

)
,

S is inward if ∀p ∈ U∗, ∀x ∈ ∂
(
X, p

)
, 〈p, x〉 ≤ σ#(Sx, p

)
,

S is strongly inward if ∀p ∈ U∗, ∀x ∈ ∂
(
X, p

)
, σ#(Sx, p

) ≥ σ#(X, p
)
.

(1.5)

With the help of these concepts, the Rogalski-Cornet theorem can be stated as follows.

Theorem 1.7 (see [6] Rogalski-Cornet). Suppose that X is a convex compact subset of U supplied
with the weak topology, and S is an u.h.c. set-valued map from X to U with nonempty closed convex
values. If S is either outward or strongly inward, then for any y ∈ X, there exists a solution x ∈ X to
y ∈ Sx, that is, SX =

⋃
x∈X Sx ⊇ X.
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We use the following notations throughout this paper:

|Ax|∞ = sup
z∈Ax

‖z‖, μ∞ = sup
x∈∂X

|Ax|∞,

d(x, F) = inf
z∈F

‖x − z‖ for each x ∈ Rn, F ⊆ Rn with F /= ∅.
(1.6)

2. Theorems With u.h.c. Condition

In this section, we assume that A of (1.1) is u.s.c. on X.
Associating this assumption with (1.2), we can show thatAX =

⋃
x∈X Ax andA(∂X) =⋃

x∈∂X Ax are compact. Therefore, A is a strict and u.s.c. set-valued map from X (a convex
compact subset of Rn

+) to AX (a compact subset of Rn
+) with convex compact values, and μ∞

defined by (1.6) is finite. Moreover, by Lemmas 1.2 and 1.4 and Remark 1.5, A is also closed
and u.h.c. on X. Suppose that GA is a set-valued map from C(A) to X defined by

C(A) = Rn
+

⋂
(I −A)X,

GAc = {x ∈ X : c ∈ x −Ax} for c ∈ C(A).
(2.1)

Then we have the following results.

Theorem 2.1. If C(A)/= ∅, then C(A) is compact and GA is closed, u.s.c., and u.h.c., and the subset
of points at which GA is continuous is residual.

Proof. Since X and AX are compact, we know that (I −A)X is bounded, so is C(A). Suppose
that {ck : k ≥ 1} ⊆ C(A) and ck → c0 ∈ Rn

+ as k → ∞. Then there exist {xk : k ≥ 1} ⊂ X
such that ck ∈ xk − Axk. Since {xk : k ≥ 1} has a convergent subsequence, we may assume
that xk → x0 ∈ X as k → ∞. As A is closed, we then obtain c0 ∈ x0 −Ax0, which shows that
C(A) is closed, and hence, also compact.

For the continuity results ofGA, according to Lemmas 1.3–1.6 and Remark 1.5, we only
need to prove that GA is closed because C(A) and X are compact. Suppose that {(ck, xk) : k ≥
1} ⊆ graphGA such that (ck, xk) → (c, x) as k → ∞. Then ck ∈ xk − Axk(k ≥ 1). Since A is
closed, ck → c ∈ C(A) and xk → x ∈ X, we get c ∈ x −Ax. Hence, GA is closed and has all
the continuity results stated in the theorem.

Next, we use Theorem 1.7 to obtain two solvability and stability results bymeans of the
interior and exterior approximation methods used in [2] (three approximation methods have
been used to study the single-valued input-output equation in [2]). Besides the assumptions
that X is convex compact and A is strict and u.s.c. with convex compact values, we
further assume that intX /= ∅ in this section. We have the following lemma. The proof is
straightforward and hence omitted.

Lemma 2.2. Let Y ⊆ Rn be a nonempty convex set, y ∈ Y , and ∂Y = Y \ intY the boundary of Y . If
p /= 0 and y ∈ ∂(Y, p) (or p ∈ NY (y)), then y ∈ ∂Y .
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2.1. Interior Approximation Method

Define a subset X∞ of X and a set-valued map F1 from X∞ to X by

X∞ = X
⋂[

μ∞,+∞
)n
, where

[
μ∞,+∞

)n =
{
(x1, x2, . . . , xn) ∈ Rn

+ : xi ≥ μ∞
}
,

F1c =
{
x ∈ X : ∃Δc ∈ Rn s.t. c + Δc ∈ x −Ax, ‖Δc‖ ≤ μ∞

}
, for c ∈ X∞.

(2.2)

Then we have the first solvability and stability result for (1.1) as follows.

Theorem 2.3. Suppose that X∞ /= ∅ and c ∈ X∞. Then there exist x ∈ X, Δc ∈ Rn such that
c + Δc ∈ x −Ax and ‖Δc‖ ≤ μ∞. Moreover, F1 defined by (2.2) is closed, u.s.c., and u.h.c., and the
subset of points at which F1 is continuous is residual.

Proof. Since Ax is compact for x ∈ X and A is u.s.c., it is easy to see that for ε > 0, B(Ax, ε) =
{y ∈ Rn : d(y,Ax) < ε} is an open neighborhood of Ax, and that for each k ≥ 1 and x ∈ ∂X,
there exists a neighborhoodU(x) of xwithA(U(x)∩X) ⊆ B(Ax, 1/k). As ∂X is compact and
∂X ⊆ ⋃

x∈∂X U(x), there exist {zi : 1 ≤ i ≤ m} ⊆ ∂X such that

∂X ⊆
m⋃

i=1
Ui, A(Ui ∩X) ⊆ B

(
Azi,

1
k

)
, for i = 1, 2, . . . , m, (2.3)

where Ui =̂ U(zi). Let Y = X \ (
⋃m

i=1 Ui). Then it is a closed subset of X with ∂X ∩ Y = ∅.
Let d = d(∂X, Y ) = infx∈∂X,y∈Yd(x, y). Then we have d > 0. Otherwise, there exist sequences
{xj : j ≥ 1} ⊆ ∂X and {yj : j ≥ 1} ⊆ Y , such that d(xj, yj) → 0 as j → ∞. Since X is compact,
so are ∂X and Y , which imply that there exist convergent subsequences of {xj : j ≥ 1} and
{yj : j ≥ 1}. Without loss of generality, we may assume that {xj : j ≥ 1} and {yj : j ≥ 1} are
convergent to the same point x as j → ∞. Since ∂X and Y are closed, we obtain x ∈ ∂X ∩ Y ,
a contradiction. Therefore, d > 0. Let U0 =

⋃
y∈Y B(y, d/2). Then it is easy to see that U0 is an

open subset of X, X \U0 ⊆
⋃m

i=1 Ui and

A(X \U0) ⊆
m⋃

i=1
B

(
Azi,

1
k

)
. (2.4)

For each k ≥ 1, by the truncation technique of generalized functions in partial
differential equations [10], there is a continuous function gk from X to R+ such that 0 ≤
gk(x) ≤ 1 (x ∈ X), gk|U0

= 1, supp gk ≡ {x ∈ X : gk(x)/= 0} ⊆ intX, and hence gk|∂X = 0.
HereM denotes the closure of M. Define Ak : X → 2R

n
by

Akx = gk(x)Ax, for x ∈ X. (2.5)

We claim that for each k ≥ 1, Ak is a closed, u.s.c., and u.h.c. set-valued map with
nonempty convex compact values. Indeed, Akx is clearly a convex compact subset of Rn for
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each x ∈ X. Assume that (xj, yj) ∈ graphAk (i.e., yj ∈ gk(xj)Axj) such that (xj , yj) →
(x0, y0) as j → ∞. Then xj → x0, yj → y0 (j → ∞), and for each j ≥ 1 there exists
wj ∈ Axj with yj = gk(xj)wj . Since AX is compact, we may suppose that wj → w0 as
j → ∞. By letting j → ∞ and using the fact that A is closed, we get w0 ∈ Ax0 and y0 =
gk(x0)w0 ∈ gk(x0)Ax0, that is, (x0, y0) ∈ graphAk. Hence, Ak is closed. On the other hand,
by (2.5), it is easy to see thatAk(X) is compact. Hence by Lemmas 1.3 and 1.4 and Remark 1.5,
Ak is also u.s.c. and u.h.c..

Since σ#((I − Ak)x, p) = 〈p, x〉 + σ#(Akx,−p) for p ∈ Rn and x ∈ X, it follows that
for each p ∈ Rn, the function x → σ#((I − Ak)x, p) is u.s.c. on X. And so, by Definition 1.1,
S = I −Ak is u.h.c.

Assume that p ∈ Rn and x ∈ ∂(X, p). If p = 0, then 〈p, x〉 = 0 = σb(x −Akx, p). If p /= 0,
then by Lemma 2.2, x ∈ ∂X, which further implies by gk|∂X = 0 that Akx = {0} and hence
〈p, x〉 = σb(x −Akx, p). Therefore, S = I −Ak satisfies the outward condition stated in (1.5).
In view of Theorem 1.7, we have (I − Ak)X ⊇ X. Hence for each c ∈ X, there exists xk ∈ X
such that

c ∈ xk −Akx
k. (2.6)

If xk ∈ U0, by (2.5) and gk|U0
= 1, we have c ∈ xk −Axk. Set Δck = 0, then we get

c + Δck ∈ xk −Axk, ‖Δck‖ ≤ μ∞ +
1
k
. (2.7)

If xk ∈ X \ U0, by (2.5) and (2.6) there exists wk ∈ Axk such that c = xk − gk(xk)wk. Let
Δck = (gk(xk) − 1)wk. Then c + Δck = xk − wk ∈ xk − Axk and Δck ∈ (gk(xk) − 1)Axk. By
virtue of (2.4), (2.5), and (1.6), we see that (2.7) is also true.

Now, we obtain two sequences {xk : k ≥ 1} ⊆ X and {Δck : k ≥ 1} ⊆ Rn with
‖Δck‖ ≤ μ∞ + (1/k). Since X is compact and {Δck : k ≥ 1} is bounded, we may assume that
xk → x ∈ X and Δck → Δc as k → ∞. Combining this with (2.7) and also using the fact
that A is closed, we obtain that c + Δc ∈ x −Ax and ‖Δc‖ ≤ μ∞.

Next, we prove the second part of the theorem. Since X∞ and X are compact, also
by Lemmas 1.3–1.6 and Remark 1.5, we only need to prove that F1 is closed. Assume that
{(ck, xk) : k ≥ 1} ⊆ graphF1 with (ck, xk) → (c, x)(k → ∞). Then for each k ≥ 1 there exists
Δck ∈ Rn such that

ck + Δck ∈ xk −Axk, ‖Δck‖ ≤ μ∞. (2.8)

We may suppose that Δck → Δc as k → ∞. This implies by (2.8) and the closeness of A
that c + Δc ∈ x −Ax and ‖Δc‖ ≤ μ∞. Hence, F1 is closed and has all the continuity properties
stated in the theorem. This completes the proof.

Remark 2.4. In the proof of the theorem, the condition c ∈ X∞ is not used. We impose this
requirement in order to make sure that c + Δc ∈ Rn

+.
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2.2. Exterior Approximation Method

Define a function δ∞(x) on X and a set-valued map F2 from X∞ to X by

δ∞(x) =

⎧
⎨

⎩

0 if x ∈ intX,

|Ax|∞ if x ∈ ∂X,

F2c = {x ∈ X : ∃Δc ∈ Rn s.t. c + Δc ∈ x −Ax, ‖Δc‖ ≤ δ∞(x)} for c ∈ X∞,

(2.9)

where X∞ is defined as in (2.2). Then we have the following result.

Theorem 2.5. Suppose that X∞ /= ∅ and c ∈ X∞. Then there exist x ∈ X, Δc ∈ Rn such that
c+Δc ∈ x−Ax, and ‖Δc‖ ≤ δ∞(x). Furthermore, F2 defined by (2.9) is closed, u.s.c. and u.h.c., and
the subset of points at which F2 is continuous is residual.

Proof. Let B(X, ε) = {x ∈ Rn : d(x,X) ≤ ε} for ε > 0. For each k ≥ 1, let Bk(X) =̂ B(X, 1/k) and
let Pk be the projection from Bk(X) to X, that is, Pkx ∈ X such that ‖Pkx − x‖ = infy∈X‖y − x‖
for x ∈ Bk(X). It is easy to see that Bk(X) is a convex compact set with nonempty interior,
Pkx = x if x ∈ X and Pkx ∈ ∂X if x ∈ Bk(X) \X, and ‖Pkx − x‖ ≤ 1/k for all x ∈ Bk(X).

As in the proof of Theorem 2.3, we assume that gk is a continuous function from Bk(X)
to R+ with compact support set such that

0 ≤ gk(x) ≤ 1 for x ∈ Bk(X), gk
∣∣
X = 1, gk

∣∣
∂(Bk(X)) = 0. (2.10)

Let Ak be a set-valued map from Bk(X) to Rn defined by

Akx = gk(x)A(Pkx) for x ∈ Bk(X). (2.11)

Utilizing the similar method as in the proof of Theorem 2.3, we can show that Ak is a
closed, u.s.c., and u.h.c. set-valued map with nonempty convex compact values and satisfies

Ak|X = A, Ak|∂(Bk(X)) = {0}. (2.12)

In fact, if (xm, ym) ∈ graphAk with (xm, ym) → (x0, y0) (m → ∞), then x0 ∈ BkX,
Pkx

m → Pkx
0 ∈ X (m → ∞), and for each m ≥ 1, there exists wm ∈ A(Pkx

m) such
that ym = gk(xm)wm. Since A(Pk(Bk(X))) ⊆ AX and AX is compact, we may suppose
that wm → w0 (m → ∞). By letting m → ∞, from the closeness of A, Lemmas 1.3
and 1.4, and Remark 1.5, we conclude that w0 ∈ A(Pkx

0), y0 = gk(x0)w0 ∈ Akx
0, that is,

(x0, y0) ∈ graphAk, and thus Ak is closed, u.s.c. and u.h.c..
Also as in the proof of Theorem 2.3, we can prove that I − Ak satisfies the outward

condition stated in (1.5). (In fact, assume that p ∈ Rn and x ∈ ∂(Bk(X), p). If p = 0, then
〈p, x〉 = 0 = σb(x−Akx, p). If p /= 0, then by Lemma 2.2, x ∈ ∂(Bk(X)), which implies by (2.12)
that Akx = {0}, and hence 〈p, x〉 = σb(x −Akx, p).) By Theorem 1.7, we obtain

(I −Ak)Bk(X) ⊇ Bk(X) ⊇ X(⊇ X∞). (2.13)
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Combining this with (2.11), we know that for each c ∈ X, there exists xk ∈ Bk(X) such that

c ∈ xk − gk
(
xk

)
A
(
Pkx

k
)
. (2.14)

Set xk = Pkx
k. Then xk ∈ X. If there is k ≥ 1 such that xk ∈ intX, then from (2.10),

(2.12), and (2.14)we have xk = xk and c ∈ xk −Axk. Set x = xk and Δc = 0. Then

c + Δc ∈ x −Ax, ‖Δc‖ = 0 ≤ δ∞(x). (2.15)

If for all k ≥ 1, xk ∈ Bk(X) \ int X, then xk = Pkx
k ∈ ∂X and ‖xk − xk‖ ≤ 1/k. By (2.14), there

exists zk ∈ Axk such that c = xk − g(xk)zk. Let Δck = xk − xk + [g(xk) − 1]zk. Then we obtain

(a) c + Δck = xk − zk ∈ xk −Axk,

(b)
∥∥∥Δck

∥∥∥ ≤
∥∥∥xk − xk

∥∥∥ +
∣∣∣g
(
xk

)
− 1

∣∣∣
∥∥∥zk

∥∥∥ ≤ 1
k
+
∣∣∣Axk

∣∣∣
∞
.

(2.16)

Since X is compact and {Δck : k ≥ 1} is bounded, we may assume that xk → x and
Δck → Δc as k → ∞. This implies by xk ∈ ∂X(k ≥ 1) that x ∈ ∂X. On the other hand, if ε > 0
and B(Ax, ε) is a ε-neighborhood ofAx, then there exists a neighborhoodU(x) of x such that
A(U(x)

⋂
X) ⊆ B(Ax, ε) becauseA is u.s.c., and thus for any x′ ∈ U(x)∩X, |Ax′|∞ ≤ |Ax|∞+ε.

Hence the function

x 
→ |Ax|∞ is upper semicontinuous (i.e.,u.s.c.) on X. (2.17)

By letting k → ∞ and using the closeness of A, from (2.16) and (2.17), we get c + Δc ∈
x − Ax and ‖Δc‖ ≤ |Ax|∞ = δ∞(x). Combining this with (2.15), we conclude that the first
part of the theorem is true.

As in the proof of Theorem 2.3, we also need to verify that graphF2 is closed. Suppose
that {(ck, xk) : k ≥ 1} ⊆ graphF2 and (ck, xk) → (c, x) as k → ∞. Then for each k ≥ 1 there
exists Δck ∈ Rn such that

(a) ck + Δck ∈ xk −Axk,

(b) ‖Δck‖ ≤ δ∞
(
xk

)
.

(2.18)

We may suppose Δck → Δc as k → ∞. By (2.18)(a) we have c + Δc ∈ x −Ax. On the other
hand, by (2.9) and (2.17), it is easy to see that the function x 
→ δ∞(x) is also u.s.c. on X.
Combining this with (2.18)(b), we obtain ‖Δc‖ ≤ δ∞(x). Therefore, F2 is closed and has the
continuity results stated in the theorem.

Remark 2.6. As the discussion in Remark 2.4, the assumption that c ∈ X∞ is used to make
sure that c + Δc is a nonnegative net output vector.
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Remark 2.7. Another approach to obtain Theorem 2.5 is to use the so-called neighborhood
approximation method discussed in [2]. Indeed, if we define the set-valued map T from X

to Rn by Tx = Ax + B(x, δ∞(x)), then we can prove that T is also an upper hemicontinuous
set-valued map with convex compact values and satisfies the outward condition stated in
(1.5). Hence, by Theorem 1.7, we obtain that T(X) ⊇ X ⊇ X∞, which can be used to prove
Theorem 2.5.

3. Theorems Without Continuity Assumption

In Theorem 1.7 the associated set-valued map is assumed to be u.h.c.. Recently, a Rogalski-
Cornet-type theorem without any continuity conditions was proved in [5]. As a simple
application, it is briefly applied to (1.1) in [5]. In this section, we develop more solvability
and stability results for (1.1). We first review this theorem in the framework of n-dimensional
Euclidean space.

Let X be a nonempty convex compact subset of Rn, S : X → 2R
n
a set-valued map

from X to Rn such that Sx is a nonempty closed convex subset of Rn for each x ∈ X, and
SX =

⋃
x∈X Sx its range. For each p ∈ Rn, c ∈ X, and ε ≥ 0, we set

Y
(
S, p, c, ε

)
=
{
x ∈ X : σ#(Sx − c, p

)
+ ε ≥ 0

}
, Y

(
S, p, c

)
= Y

(
S, p, c, 0

)
. (3.1)

Let Y (S) be the set of all c ∈ X such that

(a) Y
(
S, p, c

)
is closed, ∀p ∈ Rn,

(b) x ∈ Y
(
S, p, c

)
if x ∈ X, p ∈ NX(x).

(3.2)

Let Ỹ (S) be a subset of Y (S) and FS a set-valued map from Ỹ (S) to X defined by

(a) Ỹ (S) =
{
c ∈ Y (S) : ∀p ∈ Rn, ∀ε ≥ 0, Y

(
S, p, c, ε

)
is closed

}
,

(b) FSc = {x ∈ X : c ∈ Sx} = X ∩ S−1c, for c ∈ Ỹ (S).
(3.3)

Then the following Rogalski-Cornet-type theorem was proved in [5].
In the sequel, we assume that X in Lemma 3.1 is precisely the same subset X of Rn

+ as
stated in (1.2) and use Lemma 3.1 to obtain three results for (1.1).

Lemma 3.1. (i) (see [5, Theorem 2.8]) If Y (S)/= ∅, then Y (S) ⊆ SX.
(ii) (see [5, Theorem 2.12]) If Ỹ (S)/= ∅, then Ỹ (S) is compact. Moreover, FS defined by (3.3) is

closed, u.s.c. and u.h.c., and the subset of points at which FS is continuous is residual.

Remark 3.2. (i) Two counter-examples were presented in [5] to show that the set-valued map
S in Lemma 3.1 does not need the u.s.c., l.s.c., and u.h.c. conditions.

(ii) In case S is u.h.c., then for each p ∈ Rn, c ∈ Rn, and ε ≥ 0, the function f(x) =
σ#(Sx− c, p) + ε = σ#(Sx, p)− 〈p, c〉+ ε is u.s.c. on X, and thus the upper section Y (S, p, c, ε) =
{x ∈ X | f(x) ≥ 0} is closed. This proves that Y (S, p, c, ε) is closed for all p ∈ Rn, c ∈ Rn, and
ε ≥ 0 provided S is u.h.c..
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3.1. The First Result

The first result is similar to Theorem 2.5. However, the u.s.c. assumption concerning A
introduced in Section 2 has been removed. Let μ∞, X∞, δ∞(x), and F2 be defined as in (1.6),
(2.2), and (2.9), respectively. Define

A∞ : X −→ 2R
n

by A∞x = B(0, δ∞(x)) for x ∈ X. (3.4)

Applying Lemma 3.1 to S = I − (A +A∞), we have the following results.

Theorem 3.3. Assume that μ∞ is finite, X∞ /= ∅ and S = I − (A +A∞).

(i) Let c0 ∈ X∞. If (3.2)(a) holds for c0, then F2c
0 /= ∅, that is,

∃x0 ∈ X, ∃Δc0 ∈ Rn s.t. c0 + Δc0 ∈ x0 −Ax0, ‖Δc‖ ≤ σ∞
(
x0
)
. (3.5)

(ii) If Y (S, p, c, ε) defined by (3.1) is closed for all p ∈ Rn, c ∈ X∞, and ε ≥ 0, then F2 defined
by (2.9) is closed, u.s.c., and u.h.c., and the subset of points at which F2 is continuous is
residual.

(iii) If A is u.s.c., then F2 has the same properties as stated in (ii).

Proof. (i) Since A has convex compact values, X is compact and μ∞ is finite; by (3.4) it is easy
to see that S = I − (A + A∞) is a strict set-valued map from X to Rn with convex compact
values. We shall prove c0 ∈ Y (S) by showing c0 satisfying (3.2). By the assumption of (i), it
is sufficient to prove that (3.2)(b) holds for c0. Indeed, we can prove that (3.2)(b) holds for
any c ∈ X. Suppose that x ∈ X, p ∈ NX(x), and c ∈ X. If p = 0, then σ#(Sx − c, 0) = 0.
If p /= 0, then x ∈ ∂X by Lemma 2.2. Hence by (2.9), δ∞(x) = |Ax|∞, 0 ∈ Ax + B(0, |Ax|∞),
σb(Ax +A∞x, p) ≤ 0, and thus 〈p, x〉 = supy∈X〈p, y〉 ≥ 〈p, c〉 ≥ σb(Ax +A∞x, p) + 〈p, c〉, that
is, σ#(Sx− c, p) = σ#(x−Ax−A∞x− c, p) ≥ 0. So (3.2)(b) holds for all c ∈ X. By Lemma 3.1(i)
and X∞ ⊆ X, we have c0 ∈ Y (S) ⊆ SX =

⋃
x∈X(x −Ax −A∞x). This implies that (3.5) is true,

and thus (i) follows.
(ii) By the proof of (i), we have known that (3.2)(b) holds for all c ∈ X. Combining

this with the assumption of (ii) and using (3.3)(a), we obtain that X∞ ⊆ Ỹ (S). So Ỹ (S) is
nonempty and also compact by Lemma 3.1(ii). In view of Lemmas 1.3–1.6 and Remark 1.5, to
complete the proof of (ii), it is enough to show that F2 is closed since X∞ and X are compact.
Suppose that {(cm, xm) : m ≥ 1} ⊆ graphF2 with (cm, xm) → (c0, x0) (m → ∞). Then
c0 ∈ X∞ ⊂ Ỹ (S), and for each m ≥ 1 there exists Δcm ∈ B(0, δ∞(xm)) such that cm + Δcm ∈
xm − Axm. By graphF2 ⊆ X∞ × X ⊆ Ỹ (S) × X and (3.4), we can see that cm ∈ Sxm, that is,
(cm, xm) ∈ graphFS,where FS is defined by (3.3) for S = I−(A+A∞). By Lemma 3.1(ii), FS is
closed, and thus (c0, x0) ∈ graphFS, which implies that x0 ∈ X and c0 ∈ Sx0 = (I −A−A∞)x0.
So we can select Δc0 ∈ B(0, δ∞(x0)) such that c0 + Δc0 ∈ x0 −Ax0, that is, (c0, x0) ∈ graphF2.
Hence F2 is closed.

(iii) Since A is u.s.c, by the proof of Theorem 2.5, we have known that the function
x 
→ δ∞(x) is u.s.c. on X. Combining this with (3.4), it is easy to see that the set-valued map
A∞ is u.s.c., and, by Lemma 1.4, also u.h.c.. Thus for each p ∈ Rn, the function x 
→ σ#(Sx, p) =
〈p, x〉 + σ#(Ax,−p) + σ#(A∞x,−p) is u.s.c. on X. This implies that S = I − (A + A∞) is u.h.c.
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on X. Hence by Remark 3.2 and X∞ ⊆ X, the condition of (ii) is true. This completes the
proof.

3.2. The Second Result

Next we use a new number μ0, a new set X0, and a new set-valued map F0 from X0 to X to
obtain further solvability and stability result for (1.1). Set

|Ax|0 = inf
z∈Ax

‖z‖, (x ∈ X), μ0 = sup
x∈∂X

|Ax|0,

δ0(x) =

⎧
⎨

⎩

0 if x ∈ intX,

|Ax|0 if x ∈ ∂X,
X0 = X

⋂[
μ0,+∞

)n
,

(3.6)

and define A0 : X → 2R
n
and F0 : X0 → 2X by

A0x = B(0, δ0(x)) for x ∈ X,

F0c = {x ∈ X : ∃Δc ∈ Rn s.t. c + Δc ∈ x −Ax, ‖Δc‖ ≤ δ0(x)} for c ∈ X0.
(3.7)

Applying Lemma 3.1 to S = I − (A +A0), we have the following results.

Theorem 3.4. Assume that μ0 is finite, X0 /= ∅, and S = I − (A +A0).

(i) Let c0 ∈ X0. If (3.2)(a) holds for c0, then F0c
0 /= ∅, that is,

∃x0 ∈ X, ∃Δc0 ∈ Rn s.t. c0 + Δc0 ∈ x0 −Ax0, ‖Δc0‖ ≤ δ0(x). (3.8)

(ii) If Y (S, p, c, ε) defined by (3.1) is closed for all p ∈ Rn, c ∈ X0 and ε ≥ 0, then F0 defined
by (3.7) is closed, u.s.c., and u.h.c., and the subset of points at which F0 is continuous is
residual.

(iii) If A is u.s.c. on X and also l.s.c. on ∂X, then the result of (ii) for F0 is also true.

Proof. (i) It is easy to see that S is a strict set-valued map with convex compact values. As in
the proof of Theorem 3.3, we can prove that (3.2)(b) holds for all c ∈ X. Thus we can follow
the proof of Theorem 3.3(i) to obtain the conclusion of (i). In fact, let x ∈ X, p ∈ NX(x), and
c ∈ X. If p = 0, then σ#(Sx−c, p) = 0. If p /= 0, then x ∈ ∂X. So δ0(x) = |Ax|0, 0 ∈ Ax+B(0, δ0(x))
and σb(Ax+A0x, p) ≤ 0. This implies 〈p, x〉 = supy∈X〈p, y〉 ≥ 〈p, c〉 ≥ σb(Ax+A0x, p)+〈p, c〉,
that is, σ#(Sx − c, p) = σ#(x −Ax −A0x − c, p) ≥ 0. Hence, (3.2)(b) holds for all c ∈ X, and by
Lemma 3.1(i), c0 ∈ Y (S) ⊆ SX =

⋃
x∈X(x −Ax −A0x). Thus (3.8) is true.

(ii) The proof of (ii) is similar to that of Theorem 3.3(ii). Indeed, by the proof of (i) and
the assumption of (ii), we can see thatX0 ⊆ Ỹ (S), and thus Ỹ (S) is compact by Lemma 3.1(ii).
If {(cm, xm) : m ≥ 1} ⊆ graphF0 such that (cm, xm) → (c0, x0) as m → ∞, then c0 ∈ X0 ⊂
Ỹ (S), x0 ∈ X, and there exists Δcm ∈ B(0, δ0(xm)) with cm + Δcm ∈ xm − Axm. Hence by
(3.3) and (3.7), (cm, xm) ∈ graphFS, where FS is defined by (3.3) for S = I − (A + A0). Also
by Lemma 3.1(ii), we have (c0, x0) ∈ graphFS, that is, c0 ∈ (I − A − A0)x0. So we can select
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Δc0 ∈ B(0, δ0(x0)) such that c0 + Δc0 ∈ x0 − Ax0. Therefore, (c0, x0) ∈ graphF0 and F0 is
closed.

(iii) Similar to the proof of Theorem 3.3(iii), it suffices to show that S = I − (A + A0)
is u.h.c.. For x ∈ intX and p ∈ Rn, we have A0x = {0}. In this case, since σ#(Sx, p) = 〈x, p〉 +
σ#(Ax,−p) holds for any x ∈ intX and A is u.h.c., we obtain that S is u.h.c. in intX. Now,
we prove that S is also u.h.c. at any point x0 ∈ ∂X. Because σ#(Sx, p) = 〈x, p〉 + σ#(Ax,−p) +
σ#(A0x,−p) holds for any x ∈ X and p ∈ Rn, it is sufficient to show that A0 is u.h.c. at
x0 ∈ ∂X. SinceAx0 is compact, there is z0 ∈ Ax0 such that ‖z0‖ = |Ax0|0 = δ0(x0). AsA is l.s.c.
at x0 by the assumption, for ε > 0, there exists an open neighborhood U(x0) of x0 such that
Ax∩B(z0, ε)/= ∅ for all x ∈ X∩U(x0). This implies that for each x ∈ X∩U(x0), δ0(x) ≤ |Ax|0 ≤
infy∈Ax∩B(z0,ε)‖y‖ ≤ supy∈B(z0,ε)‖y‖ ≤ δ0(x0) + ε, and hence B(0, δ0(x)) ⊆ B(B(0, δ0(x0)), ε) for
all x ∈ X ∩ U(x0). So we conclude that A0 is u.s.c. at x0 and, by Lemma 1.4, also u.h.c..
Therefore, S = I − (A +A0) is u.h.c. on X, and the conclusion of (iii) follows. This completes
the proof.

Remark 3.5. As in the previous theorems, the assumptions c0 ∈ X∞ in Theorem 3.3 and c0 ∈ X0

in Theorem 3.4 are used to make sure that the net output vectors are nonnegative.

3.3. The Third Result

Finally, we use the values of A at the boundary ∂X of X to consider the solvability and
stability of (1.1). Define F̂ : X̂ → 2X by

X̂ = {c ∈ X : ∀x ∈ ∂X, (Ax + c) ∩X /= ∅},

F̂c = {x ∈ X : c ∈ x −Ax} for c ∈ X̂.
(3.9)

Applying Lemma 3.1 to S = I −A, we have the following results.

Theorem 3.6. Assume that X̂ /= ∅ and S = I −A.

(i) If (3.2)(a) holds for all c ∈ X̂, then X̂ ⊆ Y (S) ⊆ (I −A)X, and X̂ is compact. In particular,
if X̂ ∩ Rn

+ /= ∅, then for any c ∈ X̂ ∩ Rn
+, (1.1) is solvable.

(ii) If Y (S, p, z, ε) defined by (3.1) is closed for all p ∈ Rn, c ∈ X̂, and ε ≥ 0, then F̂ defined
by (3.9) is closed, u.s.c., and u.h.c., and the subset of points at which F̂ is continuous is
residual.

(iii) If A is u.s.c., then both results of (i) and (ii) are also true.

Proof. (i) Let c ∈ X̂, x ∈ X, and p ∈ NX(x). If p = 0, then σ#(x − Ax − c, 0) = 〈0, x〉. If p /= 0,
then x ∈ ∂X. From (3.9), we know that (Ax + c) ∩ X/= ∅. This implies that σb(Ax + c, p) ≤
σb((Ax + c) ∩X, p) ≤ σ#(X, p) = 〈p, x〉. Hence (3.2)(b) holds for all c ∈ X̂, and then c ∈ Y (S).
By Lemma 3.1(i), it follows that X̂ ⊆ Y (S) ⊆ SX = (I −A)X.

To prove that X̂ is compact, we only need to prove that X̂ is closed. Suppose that
{cm : m ≥ 1} ⊆ X̂ such that cm → c0 ∈ X as m → ∞. Let x ∈ ∂X. Then by (3.9), (Ax + cm) ∩
X /= ∅ for m ≥ 1. Hence there exists a sequence {ym : m ≥ 1} ⊆ X such that ym ∈ Ax + cm.
Therefore, ym − cm ∈ Ax. Because Ax is compact, there exists a convergent subsequence of
{ym − cm : m ≥ 1}. Since cm → c0 as m → ∞, we may assume that ym → y0 ∈ X, which
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implies y0 ∈ (Ax + c0) ∩ X. Hence c0 ∈ X̂ and X̂ is closed. The rest of (i) is clear because
X̂ ∩ Rn

+ ⊂ (I −A)X.
(ii) By assumption of (ii), the proof of (i), and Lemma 3.1, we can see that X̂ ⊂ Ỹ (S),

Ỹ (S) is compact, and FS defined by (3.3) for S = I −A is closed. With the same method as in
proving Theorem 3.3(ii), we can show that F̂ is closed and has all the continuous properties
stated in this theorem (ii).

(iii) By assumption of (iii) and σ#((I − A)x, p) = 〈p, x〉 + σ#(Ax,−p), we can see that
S = I − A is u.h.c., hence Y (S, p, c, ε) is closed for all p ∈ Rn, c ∈ X̂ and ε ≥ 0. Hence both
conditions of (i) and (ii) are satisfied, and therefore the result of (iii) follows. This completes
the proof.

4. Conclusions

In this paper, the Leontief-type input-output inclusion has been studied. First applying
Rogalski-Cornet theorem [6], we have proved two solvability and stability theorems
(Theorems 2.3 and 2.5) under the assumption that the set-valued map in this inclusion is
upper semicontinuous. Then utilizing a Rogalski-Cornet-type theorem proved in [5], we
have also proved three solvability and stability theorems (Theorems 3.3–3.6) in which the
continuity assumption regarding the set-valued map in this inclusion is no longer needed.
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