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This paper presents a new robust filter structure to solve the simultaneous state and fault
estimation problem of linear stochastic discrete-time systems with unknown disturbance. The
method is based on the assumption that the fault and the unknown disturbance affect both
the system state and the output, and no prior knowledge about their dynamical evolution is
available. By making use of an optimal three-stage Kalman filtering method, an augmented fault
and unknown disturbance models, an augmented robust three-stage Kalman filter (ARThSKF)
is developed. The unbiasedness conditions and minimum-variance property of the proposed filter
are provided. An illustrative example is given to apply this filter and to compare it with the existing
literature results.

1. Introduction

The joint fault and state estimation for linear stochastic systems with unknown disturbance
is concerned in this paper. The most important aim is to obtain an unbiased robust estimation
of the fault and the state despite the presence of the unknown disturbance. This can be useful
to solve a fault detection and isolation (FDI) problem [1–4] or a fault tolerant control (FTC)
problem [5].

State estimation for stochastic linear systems with unknown inputs has gained the
interest of many researchers during the last decades. In this context, this problem has been
extensively studied using the Kalman filtering approach, see, for example, [1, 6–23]. When
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the model of the unknown input is available, it is possible to obtain an optimal estimation by
using the Augmented State Kalman Filter (ASKF). To reduce computation costs of the ASKF,
Friedland [7] has introduced the Two-Stage Kalman Filter (TSKF). His approach consists of
decoupling the ASKF into the state subfilter and unknown-input subfilter. Friedland’s filter
is only optimal for constant bias. Many authors have extended the Friedland’s idea to treat
the stochastic bias, for example, [6, 10, 13–19]. In the same context, Hsieh and Chen [14]
have generalized Friedland’s filter by destroying the bias noise effect to obtain the Optimal
Two-Stage Kalman Filter (OTSKF). Chen and Hsieh [15] proposed a generalization of the
OTSKF to get the Optimal MultiStage Kalman Filter (OMSKF). Recently, Kim et al. [17] have
developed an adaptive version of TSKF noted ATSKF (Adaptive Two-Stage Kalman Filter)
and they have analysed the stability of this filter in [18].

On the other hand, when the unknown input model is not available, the unbiased
minimum variance (UMV) state estimations are insensitive with the unknown inputs.
Kitanidis [20] has developed a Kalman filter with unknown inputs by minimizing the trace
of the state error covariance matrix under an algebraic constraint. Darouach and Zasadzinski
[21] have used a parameterizing technique as an extension of the Kitanidis’s results to
derive an UMV estimator. Hsieh [13] has developed a robust filter in two-stage noted RTSKF
(Robust Two-Stage Kalman Filter) equivalent to Kitanidis’s filter. Next, the same author [11]
has proposed an extension of the RTSKF (named ERTSKF) to solve the addressed general
unknown-input filtering problem. To obtain ERTSKF, the author has introduced a new
constrained relationship to have an equivalent structure to the optimal unbiased minimum-
variance filter (OUMVF) presented in [12]. Gillijns andMoor [22] have treated the problem of
estimating the state in the presence of unknown inputs which affect the system model. They
developed a recursive filter which is optimal in the sense of minimum-variance. This filter has
been extended by the same authors [23] for joint input and state estimation to linear discrete-
time systems with direct feedthrough where the state and the unknown input estimation are
interconnected. This filter is called recursive three-step filter (RTSF) and is limited to direct
feedthrough matrix with full rank. Recently, Hsieh [8] has extended the RTSF [23] noted
ERTSF, where he solved a general case when the direct feedthrough matrix has an arbitrary
rank.

Model-based fault detection and isolation (FDI) problem for linear stochastic discrete-
time systems with unknown disturbance is several studied. In [2, 3], the optimal filtering
and robust fault diagnosis problem has been studied for stochastic systems with unknown
disturbance. An optimal observer is proposed, which can produce disturbances decoupled
state estimation with minimum-variance for linear time-varying systems with both noise
and unknown disturbance. Recently, the unknown input filtering idea [8] is extended by
[1] to solve the previously problem. Indeed, Ben Hmida et al. [1] present a new recursive
filter to joint fault and state estimation of linear time-varying stochastic discrete-time systems
in the presence of unknown disturbance. The method is based on the assumption that no
prior knowledge about the dynamical evolution of the fault and the unknown disturbance is
available. Moreover, it considers an arbitrary direct feedthroughmatrix of the fault. However,
it may in certain cases suffer from poor quality fault estimation.

The main objective of this paper is to develop a robust filter structure, that can solve
the problem of simultaneously estimating the state and the fault in presence of the unknown
disturbance. If the fault and the unknown disturbance affect the system state, we develop
the robust three-stage Kalman filter (RThSKF) on two steps. Firstly, we make three-stageU-V
transformations in order to decouple the covariance matrix on the augmented state Kalman
Filter (ASKF) thus, we obtain an optimal structure named optimal three-stage Kalman filter
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(OThSKF). Then, we use a modification in measurement update equations of the OThSKF in
order to obtain an unbiased fault and state estimation. On the other hand, when the fault and
the unknown disturbance affect both the state and the measurement equations, we propose
an augmented robust three-stage Kalman filter (ARThSKF) to overcome this problem. This
latter is obtained by a direct application of the RThSKF on the augmented fault and unknown
disturbance models. The performances of the resulting filter are established in the sense of
the unbiased minimum-variance estimation.

This paper is organized as follows. Section 2 states the problem of interest. In Section 3
we design the OThSKF. A robust three-stage Kalman filter (RThSKF) is developed in
Section 4. In Section 5, the augmented robust three-stage Kalman filter is derived. Finally,
an illustrative example of the proposed filter is presented.

2. Statement of the Problem

The problem consists of designing a filter that gives a robust state and fault estimation for
linear stochastic systems in the presence of unknown disturbance. This problem is described
by the bloc diagram in Figure 1.

The plant P represents the linear time-varying discrete stochastic system

xk+1 = Akxk + Bkuk + Fx
kfk + Ex

kdk +wx
k, (2.1)

yk = Hkxk + F
y

k
fk + E

y

k
dk + vk, (2.2)

where xk ∈ Rn is the state vector, uk ∈ Rr is the known control input, fk ∈ Rp is the
additive fault vector, dk ∈ Rq is the unknown disturbance and yk ∈ Rm is the observation
vector. wx

k
and vk are uncorrelated white noises sequences of zero-mean and the covariance

matrices are Qx
k
= E[wx

k
wT

k
] ≥ 0, and Rk = E[vkv

T
k
] > 0, respectively, where E[·] denotes the

expectation operator. The matrices Ak, Bk, Fx
k
, Hk and F

y

k
are known and have appropriate

dimensions. We assume that (Ak,Hk) is observable,m ≥ p + q, rank(Hk+1F
x
k ) = rank(Fx

k ) and
rank(Hk+1E

x
k) = rank(Ex

k). The initial state is uncorrelated with the white noises processes
wx

k
and vk. The initial state x0 is a gaussian random variable with E[x0] = x̂0 and

E[(x0 − x̂0)(x0 − x̂0)
T ] = Px

0 .
Under system equations (2.1)-(2.2), we consider that the proposed filter has the

following form:

x̂k+1/k+1 = xk+1/k+1 + V
12
k+1fk+1/k+1 + V

13
k+1dk+1/k+1,

̂fk+1/k+1 = fk+1/k+1 + V
23
k+1dk+1/k+1,

xk+1/k+1 = xk+1/k +K
x

k+1
(

yk+1 −Hk+1xk+1/k
)

,

fk+1/k+1 = K
f

k+1

(

yk+1 −Hk+1xk+1/k
)

,

dk+1/k+1 = Kd
k+1

(

yk+1 −Hk+1xk+1/k
)

,

xk+1/k = Akx̂k/k + Bkuk.

(2.3)
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Figure 1: State and fault estimator filter.

The gain matrices K
x

k+1, K
f

k+1, and Kd
k+1 and the correction parameters V

12
k+1, V

13
k+1, and

V
23
k+1 will be determined later.

3. Optimal Three-Stage Kalman Filter (OThSKF)

This section is devoted to the optimal three-stage Kalman filter design. We first recall the
structure of the augmented state filter, then the UV transformations are defined which will be
used later to decouple the augmented state Kalman filter equations into three subfilters.

We should treat dk and fk as a random-walk processes with given wide-sense
representation.

Thus, the dynamics of dk may be assumed as follows:

dk+1 = dk +wd
k. (3.1)

The additive faults fk are generated by

fk+1 = fk +w
f

k
, (3.2)

where, the noises w
f

k and wd
k are zero-mean white noise sequences with the following

covariances:

E
(

w
f

k
w

fT

�

)

= Q
f

k
δk�,

E
(

wd
kw

dT
�

)

= Qd
kδk�,

E
(

wx
kw

fT

�

)

= Q
xf

k δk�,

E
(

wx
kw

dT
�

)

= Qxd
k δk�,

E
(

w
f

kw
dT
�

)

= Q
fd

k δk�.

(3.3)
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The initial fault and unknown input satisfy the followings:

E(f0
)

= f0,

E(d0) = d0,

E
(

(

f0 − f0

)(

f0 − f0

)T
)

= P
f

0 ,

E
(

(

d0 − d0

)(

d0 − d0

)T
)

= Pd
0 ,

E
(

(

x0 − f0

)(

x0 − f0

)T
)

= P
xf

0 ,

E
(

(

x0 − d0

)(

x0 − d0

)T
)

= Pxd
0 ,

E
(

(

f0 − d0

)(

f0 − d0

)T
)

= P
fd

0 .

(3.4)

3.1. Augmented State Kalman Filter (ASKF)

Treating xk,fk and dk as the augmented system state, the ASKF is described by

xa
k+1/k = Aa

kx
a
k/k + Ba

kuk, (3.5)

Pa
k+1/k = Aa

kP
a
k/kA

aT
k +Qa

k, (3.6)

xa
k+1/k+1 = xa

k+1/k +Ka
k+1

(

yk+1 −Ha
k+1x

a
k+1/k

)

, (3.7)

Ka
k+1 = Pa

k+1/kH
aT
k+1

(

Ha
k+1P

a
k+1/kH

aT
k+1 + Rk+1

)−1
, (3.8)

Pa
k+1/k+1 =

(

I −Ka
k+1H

a
k+1

)

Pa
k+1/k, (3.9)

where

xa
(·) =

⎡

⎢

⎢

⎣

x(·)

f(·)

d(·)

⎤

⎥

⎥

⎦

, Aa
k =

⎡

⎢

⎢

⎣

Ak Fx
k Ex

k

0 I 0

0 0 I

⎤

⎥

⎥

⎦

, Ba
k =

⎡

⎢

⎢

⎣

Bk

0

0

⎤

⎥

⎥

⎦

, Ha
k =

[

Hk F
y

k
E
y

k

]

,

Pa
(·) =

⎡

⎢

⎢

⎢

⎣

Px
(·) P

xf

(·) Pxd
(·)

P
fx

(·) P
f

(·) P
fd

(·)

Pdx
(·) P

df

(·) Pd
(·)

⎤

⎥

⎥

⎥

⎦

, Qa
k =

⎡

⎢

⎢

⎢

⎣

Qx
k

Q
xf

k
Qxd

k

Q
fx

k Q
f

k Q
fd

k

Qdx
k

Q
df

k
Qd

k

⎤

⎥

⎥

⎥

⎦

.

(3.10)
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The filter model (3.5)–(3.9)may be used to produce the optimal state estimate. But, this filter
has two main disadvantages: the increase of the computational cost with the augmentation
of the state dimension and the rise of numerical problems during the implementation
[13]. So, to solve these problems, we should use the three-stage Kalman filtering (ThSKF)
technique.

3.2. U-V Transformations

According to [13, 14], the ThSKF is obtained by the application of a three-stage U-V
transformations in order to decouple the ASKF covariance matrices, that is, Pa

k+1/k and
Pa
k+1/k+1. The aim is to find matrices Uk+1 and Vk+1 such that

Pa
k+1/k = Uk+1P

a

k+1/kU
T
k+1,

Pa
k+1/k+1 = Vk+1P

a

k+1/k+1V
T
k+1,

(3.11)

with P
a

(·) = diag{Px

(·), P
f

(·), P
d

(·)}, where P
x

(·),P
f

(·) and P
d

(·) denote the transformed covariance
matrices.

We define the structures of the Uk+1 and Vk+1 matrices as follows:

Uk+1 =

⎡

⎢

⎢

⎣

I U12
k+1 U13

k+1

0 I U23
k+1

0 0 I

⎤

⎥

⎥

⎦

,

Vk+1 =

⎡

⎢

⎢

⎣

I V 12
k+1 V 13

k+1

0 I V 23
k+1

0 0 I

⎤

⎥

⎥

⎦

,

(3.12)

U
ij

k+1 and V
ij

k+1 for i = 1 or 2 and j = 2 or 3 are to be determined later.
Using these transformations (3.12), the equations (3.5), (3.7), and (3.8) are transformed

into

xa
k+1/k = Uk+1x

a
k+1/k,

xa
k+1/k+1 = Vk+1x

a
k+1/k+1,

Ka
k+1 = Vk+1K

a

k+1.

(3.13)



Mathematical Problems in Engineering 7

The inverse transformations of Uk+1 and Vk+1 (3.12)will have this form

U−1
k+1 = ˜Uk+1 =

⎡

⎢

⎢

⎣

I ˜U12
k+1

˜U13
k+1

0 I ˜U23
k+1

0 0 I

⎤

⎥

⎥

⎦

,

V −1
k+1 = ˜Vk+1 =

⎡

⎢

⎢

⎣

I ˜V 12
k+1

˜V 13
k+1

0 I ˜V 23
k+1

0 0 I

⎤

⎥

⎥

⎦

.

(3.14)

Using these inverse transformations (3.14), we have

xa
k+1/k = ˜Uk+1x

a
k+1/k,

P
a

k+1/k = ˜Uk+1P
a
k+1/k

˜UT
k+1,

xa
k+1/k+1 = ˜Vk+1x

a
k+1/k+1,

K
a

k+1 = ˜Vk+1K
a
k+1,

P
a

k+1/k+1 = ˜Vk+1P
a
k+1/k+1

˜V T
k+1,

(3.15)

where

xa
(·) =

⎡

⎢

⎢

⎣

x(·)

f (·)

d(·)

⎤

⎥

⎥

⎦

, P
a

(·) =

⎡

⎢

⎢

⎢

⎣

P
x

(·) 0 0

0 P
f

(·) 0

0 0 P
d

(·)

⎤

⎥

⎥

⎥

⎦

, K
a

(·) =

⎡

⎢

⎢

⎢

⎣

K
x

(·)

K
f

(·)

K
d

(·)

⎤

⎥

⎥

⎥

⎦

. (3.16)

3.3. Decoupling

If we use the two-step substitution method, the filter model (3.5)–(3.9) is transformed into

xa
k+1/k = ˜Uk+1Πk+1x

a
k/k + ˜Uk+1B

a
kuk, (3.17)

P
a

k+1/k = ˜Uk+1

(

Πk+1P
a
k/kΠ

T
k+1 +Qa

k

)

˜Uk+1, (3.18)

xa
k+1/k+1 = ˜Vk+1Πk+1x

a
k+1/k +K

a

k+1
(

yk+1 − Sk+1x
a
k+1/k

)

, (3.19)

K
a

k+1 = ˜Vk+1Πk+1P
a

k+1/kS
T
k+1

(

Sk+1P
a

k+1/kS
T
k+1 + Rk+1

)−1
, (3.20)

P
a

k+1/k+1 =
(

˜Vk+1Πk+1 −K
a

k+1Sk+1

)

P
a

k+1/k

(

˜Vk+1Πk+1

)−1
, (3.21)
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where

Πk+1 = Aa
kVk =

⎡

⎢

⎢

⎣

Ak Π12
k+1 Π13

k+1

0 I Π23
k+1

0 0 I

⎤

⎥

⎥

⎦

,

Sk+1 =
[

S1
k+1 S2

k+1 S3
k+1

]

,

(3.22)

with

Π12
k+1 = AkV

12
k + Fx

k ,

Π13
k+1 = AkV

13
k + Fx

kV
23
k + Ex

k,

Π23
k+1 = V 23

k ,

(3.23)

S1
k+1 = Hk+1, (3.24a)

S2
k+1 = Hk+1U

12
k+1 + F

y

k+1, (3.24b)

S3
k+1 = Hk+1U

13
k+1 + F

y

k+1U
23
k+1 + E

y

k+1. (3.24c)

Now, we start by developing the equations (3.18) and (3.21), respectively.
From (3.18), we obtain

P
x

k+1/k = AkP
x

k/kA
T
k +Q

1
k,

P
f

k+1/k = P
f

k/k +Q
2
k,

P
d

k+1/k = P
d

k/k +Qd
k,

(3.25)

where

Q
1
k = Qx

k + Π12
k+1P

f

k/kΠ
12T
k+1 −U12

k+1P
f

k+1/kU
12T
k+1 + Π13

k+1P
d

k/kΠ
13T
k+1 −U13

k+1P
d

k+1/kU
13T
k+1,

Q
2
k = Q

f

k
+ Π23

k+1P
d

k/kΠ
23T
k+1 −U23

k+1P
d

k+1/kU
23T
k+1,

U13
k+1 =

(

Π13
k+1P

d

k/k +Qxd
k

)(

P
d

k+1/k

)−1
,

U23
k+1 =

(

Π23
k+1P

d

k/k +Q
fd

k

)(

P
d

k+1/k

)−1
,

U12
k+1 =

(

Π12
k+1P

f

k/k + Π13
k+1P

d

k/kΠ
23T
k+1 −U13

k+1P
f

k/kU
23T
k+1 +Q

xf

k

)(

P
f

k+1/k

)−1
.

(3.26)
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The development of (3.21), leads to

P
x

k+1/k+1 =
(

I −K
x

k+1S
1
k+1

)

P
x

k+1/k, (3.27)

P
f

k+1/k+1 =
(

I −K
f

k+1S
2
k+1

)

P
f

k+1/k, (3.28)

P
d

k+1/k+1 =
(

I −K
d

k+1S
3
k+1

)

P
d

k+1/k, (3.29)

V 12
k+1 = U12

k+1 −K
x

k+1S
2
k+1, (3.30)

V 13
k+1 = U13

k+1 − V 12
k+1K

f

k+1S
3
k+1 −K

x

k+1S
3
k+1, (3.31)

V 23
k+1 = U23

k+1 −K
f

k+1S
3
k+1. (3.32)

With reference to (3.17), (3.19) and (3.20), we obtain, respectively,

xk+1/k = Akxk/k + Bkuk + u1
k, (3.33)

fk+1/k = fk/k + u2
k, (3.34)

dk+1/k = dk/k, (3.35)

xk+1/k+1 = xk+1/k +K
x

k+1

(

yk+1 − S1
k+1xk+1/k

)

, (3.36)

fk+1/k+1 = fk+1/k +K
f

k+1

(

yk+1 − S1
k+1xk+1/k − S2

k+1fk+1/k

)

, (3.37)

dk+1/k+1 = dk+1/k +K
d

k+1

(

yk+1 − S1
k+1xk+1/k − S2

k+1fk+1/k − S3
k+1dk+1/k

)

, (3.38)

K
x

k+1 = P
x

k+1/kS
1T
k+1

(

S1
k+1P

x

k+1/kS
1T
k+1 + Rk+1

)−1
, (3.39)

K
f

k+1 = P
f

k+1/kS
2T
k+1

(

S2
k+1P

f

k+1/kS
2T
k+1 + S1

k+1P
x

k+1/kS
1T
k+1 + Rk+1

)−1
, (3.40)

K
d

k+1 = P
d

k+1/kS
3T
k+1

(

S3
k+1P

d

k+1/kS
3T
k+1 + S2

k+1P
f

k+1/kS
2T
k+1 + S1

k+1P
x

k+1/kS
1T
k+1 + Rk+1

)−1
, (3.41)

where

u1
k =

(

Π12
k+1 −U12

k+1

)

fk/k +
(

Π13
k+1 −U13

k+1 −U12
k+1

(

Π23
k+1 −U23

k+1

))

dk/k,

u2
k =

(

Π23
k+1 −U23

k+1

)

dk/k.

(3.42)
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Finally, to correct the estimation of the state and the fault, we should follow these
equations

x̂k+1/k+1 = xk+1/k+1 + V 12
k+1fk+1/k+1 + V 13

k+1dk+1/k+1,

̂Px
k+1/k+1 = P

x

k+1/k+1 + V 12
k+1P

f

k+1/k+1V
12T
k+1 + V 13

k+1P
d

k+1/k+1V
13T
k+1 ,

̂fk+1/k+1 = fk+1/k+1 + V 23
k+1dk+1/k+1,

̂P
f

k+1/k+1 = P
f

k+1/k+1 + V 23
k+1P

d

k+1/k+1V
23T
k+1 .

(3.43)

The OThSKF is optimal in the minimum mean square error (MMSE) sense. However, this
filter loses its optimality, when the statistical properties of the models (3.1) and (3.2) are
unknown or not perfectly known. So, it would be better to use a robust three-stage Kalman
filter (RThKF) to get a good estimation of state and fault in the presence of unknown
disturbance.

4. Robust Three-Stage Kalman Filter (RThSKF)

In this section, we present a robust version of a filter to solve the joint fault and state
estimation problem for linear stochastic system with unknown disturbance. We consider
that the fault and the unknown disturbance only affect the state equation, that is, (Fy

k =
E
y

k = 0). This filter is obtained by modifying the measurement update equations of unknown
disturbance subfilter and fault subfilter of the OThSKF.

Equations (3.24b)-(3.24c)will be rewritten as follow:

S2
k+1 = Hk+1U

12
k+1,

S3
k+1 = Hk+1U

13
k+1.

(4.1)

By substituting (3.34) and (3.35) into (3.37) and (3.38) and combining (3.28) and (3.29) into
(3.40) and (3.41), respectively, the measurement update equations of the unknown input
subfilter and the fault subfilter are given as follow:

fk+1/k+1 =
(

I −K
f

k+1S
2
k+1

)

fk+1/k +K
f

k+1

(

yk+1 − S1
k+1xk+1/k

)

, (4.2)

K
f

k+1 = P
f

k+1/k+1S
2T
k+1C

−1
k+1, (4.3)

dk+1/k+1 =
(

I −K
d

k+1S
3
k+1

)

dk/k +K
d

k+1

(

yk+1 − S1
k+1xk+1/k − S2

k+1fk+1/k

)

, (4.4)

K
d

k+1 = P
d

k+1/k+1S
3T
k+1

(

S2
k+1P

f

k+1/kS
2T
k+1 + Ck+1

)−1
, (4.5)

where Ck+1 = Hk+1P
x

k+1/kH
T
k+1 + Rk+1.
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Firstly, to eliminate the two terms fk+1/k and dk/k, we will choose the matrix gains

K
f

k+1 and K
d

k+1 that can satisfy the following algebraic constraints:

(

I −K
f

k+1S
2
k+1

)

= 0, (4.6)

(

I −K
d

k+1S
3
k+1

)

= 0, (4.7)

K
d

k+1S
2
k+1 = 0. (4.8)

In this case, (4.2) and (4.4) become

fk+1/k+1 = K
f

k+1

(

yk+1 − S1
k+1xk+1/k

)

,

dk+1/k+1 = K
d

k+1

(

yk+1 − S1
k+1xk+1/k

)

.

(4.9)

With substituting (4.3) and (4.5) into (4.6) and (4.7) and using (4.8), P
f

k+1/k+1 and P
d

k+1/k+1 can
be rewritten as follows

P
f

k+1/k+1 =
(

S2T
k+1C

−1
k+1S

2
k+1

)+
,

P
d

k+1/k+1 =
(

S3T
k+1C

−1
k+1S

3
k+1

)+
,

(4.10)

where M+ denotes any one-condition generalized inverse of M, that is, MM+M = M.

The gain matrix K
d

k+1 is calculated in the assumption that the constraints (4.7) and
(4.8) are satisfied:

K
d

k+1 = P
d

k+1/k+1S
3T
k+1C

−1
k+1αk+1

(

I − S2
k+1S

2+
k+1

)

, (4.11)

where αk+1 is an arbitrary matrix.
Equations (3.33) and (3.34) are presented, respectively, as follows:

xk+1/k = Akx̂k/k + Bkuk + ũ1
k,

fk+1/k = fk/k + ũ2
k,

(4.12)

where

ũ1
k =

(

Fx
k −U12

k+1

)

fk/k +
(

Ex
k −U13

k+1 +U12
k+1U

23
k+1

)

dk/k,

ũ2
k =

(

Π23
k+1 −U23

k+1

)

dk/k.

(4.13)
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In order to return (4.12) robust against the fault and the unknown disturbance, we can choose
ũ1
k
= 0 and ũ2

k
= 0.

In this case, the new matrices U12
k+1, U

13
k+1, and U23

k+1 can be written as follow:

U23
k+1 = Π23

k+1 = V 23
k ,

U12
k+1 = Fx

k ,

U13
k+1 = Ex

k + Fx
kV

23
k .

(4.14)

Equation (4.12) becomes

xk+1/k = Akx̂k/k + Bkuk,

fk+1/k = fk/k.
(4.15)

Finally, an unbiased estimation of the state and the fault is obtained if and only if the
constraints (4.6)–(4.8) are satisfied and

V 12
k+1 = Fx

k −K
x

k+1S
2
k+1,

V 23
k+1 = −Kf

k+1Hk+1E
x
k,

V 13
k+1 = Ex

k −K
x

k+1Hk+1E
x
k + V 12

k+1V
23
k+1.

(4.16)

Now, we summarize the robust three-stage Kalman filter (RThSKF) equations as follow:

x̂k+1/k+1 = xk+1/k+1 + V 12
k+1fk+1/k+1 + V 13

k+1dk+1/k+1,

̂Px
k+1/k+1 = P

x

k+1/k+1 + V 12
k+1P

f

k+1/k+1V
12T
k+1 + V 13

k+1P
d

k+1/k+1V
13T
k+1 ,

̂fk+1/k+1 = fk+1/k+1 + V 23
k+1dk+1/k+1,

̂P
f

k+1/k+1 = P
f

k+1/k+1 + V 23
k+1P

d

k+1/k+1V
23T
k+1 ,

(4.17)

where xk+1/k+1 is given by

xk+1/k = Akx̂k/k + Bkuk,

P
x

k+1/k = Ak
̂Px
k/kA

T
k +Qx

k,

K
x

k+1 = P
x

k+1/kH
T
k+1C

−1
k+1,

xk+1/k+1 = xk+1/k +K
x

k+1
(

yk+1 −Hk+1xk+1/k
)

,

P
x

k+1/k+1 =
(

I −K
x

k+1Hk+1

)

P
x

k+1/k,

(4.18)



Mathematical Problems in Engineering 13

the fault fk+1/k+1 is given by

P
f

k+1/k+1 =
(

S2T
k+1C

−1
k+1S

2
k+1

)+
,

K
f

k+1 = P
f

k+1/k+1S
2T
k+1C

−1
k+1,

fk+1/k+1 = K
f

k+1
(

yk+1 −Hk+1xk+1/k
)

,

(4.19)

dk+1/k+1 is given by

P
d

k+1/k+1 =
(

S3T
k+1C

−1
k+1S

3
k+1

)+
,

K
d

k+1 = P
d

k+1/k+1S
3T
k+1C

−1
k+1αk+1

(

I − S2
k+1

(

S2
k+1

)+)
,

dk+1/k+1 = K
d

k+1
(

yk+1 −Hk+1xk+1/k
)

.

(4.20)

The initial conditions are given as follow: x̂0/0 = x0, ̂Px
0/0 = Px

0 and V 23
0 .

5. Augmented Robust Three-Stage Kalman Filter (ARThSKF)

In this section, we consider that the fault and the unknown disturbance affect both the
state and the measurement equations, that is, (Fy

k /= 0 and E
y

k /= 0). Using the same technique
proposed by [9, 10], the measurement equation (2.2) can be rewritten as follows:

yk = Hkxk + F
y

k
˜fk + E

y

k
˜dk + vk. (5.1)

Hence, we augment the fault and the unknown disturbance as follow:

dk −→ da
k =

[

˜dT
k dT

k

]T
,

fk −→ fa
k =

[

˜fT
k fT

k

]T
.

(5.2)

Thus, the system model (2.1) and (5.1) can be represented, respectively, by:

xk+1 = Akxk + Bkuk + F
x

kf
a
k + E

x

kd
a
k +wx

k,

yk = Hkxk + F
y

kf
a
k + E

y

kd
a
k + vk,

(5.3)

where

F
x

k =
[

0 Fx
k

]

, F
y

k =
[

F
y

k 0
]

,

E
x

k =
[

0 Ex
k

]

, E
y

k =
[

E
y

k 0
]

.

(5.4)
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Referring to (4.14) and (5.4), we define

U
12
k+1 = F

x

k,

U
13
k+1 = E

x

k + F
x

kV
23
k ,

U
23
k+1 = V

23
k .

(5.5)

Using (5.5), equations (3.24b)-(3.24c) can be written as follow:

S
2
k+1 = Hk+1F

x

k + F
y

k+1 =
[

F
y

k
S2
k+1

]

,

S
3
k+1 = Hk+1E

x

k + E
y

k+1 + S
2
k+1V

23
k

=
[

E
y

k+1 + F
y

k+1V
23
k Hk+1E

x
k+1 + S2

k+1V
23
k

]

(5.6)

The augmented fault and unknown disturbance RThKF (ARThSKF) is obtained by a direct
application of the RThSKF with a minor modification

x̂k+1/k+1 = xk+1/k+1 + V
12
k+1fk+1/k+1 + V

13
k dk+1/k+1,

̂Px
k+1/k+1 = P

x

k+1/k+1 + V
12
k+1P

f

k+1/k+1V
12T
k+1 + V

13
k+1P

d
k+1/k+1V

13T
k+1,

̂fk+1/k+1 = fk+1/k+1 + V
23
k+1dk+1/k+1,

̂P
f

k+1/k+1 = P
f

k+1/k+1 + V
23
k+1P

d
k+1/k+1V

23T
k+1,

(5.7)

where xk+1/k+1 is given by (4.18), fk+1/k+1 and dk+1/k+1 are given by

fk+1/k+1 = K
f

k+1

(

yk+1 −Hk+1xk+1/k
)

,

K
f

k+1 = P
f

k+1/k+1S
2T
k+1C

−1
k+1,

P
f

k+1/k+1 =
{

S
2T
k+1C

−1
k+1S

2
k+1

}+
,

dk+1/k+1 = Kd
k+1

(

yk+1 −Hk+1xk+1/k
)

,

Kd
k+1 = Pd

k+1/k+1S
3T
k+1C

−1
k+1αk+1

(

I − S
2
k+1S

2+
k+1

)

,

Pd
k+1/k+1 =

{

S
3T
k+1C

−1
k+1S

3
k+1

}+
,

(5.8)

where αk+1 is an arbitrary matrix.
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The unknown disturbance estimation error ˜dk+1 is given by

˜dk+1 = da
k+1 − dk+1/k+1

=
(

I −Kd
k+1S

3
k+1 −Kd

k+1S
2
k+1V

23
k+1

)

da
k+1 −Kd

k+1S
2
k+1f

a
k+1 −Kd

k+1ek+1,
(5.9)

where ek+1 = Hk+1(Akx̃k +wx
k) + vk+1.

The unbiasedness constraints to have an unbiased estimation of the unknown
disturbance are given as follow:

I −Kd
k+1S

3
k+1 = 0,

Kd
k+1S

2
k+1 = 0.

(5.10)

The fault estimation error ˜fk+1 is presented as follows

˜fk+1 = fa
k+1 − ̂fk+1/k+1

= fa
k+1 − fk+1/k+1 − V 23

k+1dk+1/k+1

=
(

I −K
f

k+1S
2
k+1

)

fa
k+1 −K

f

k+1

(

S
3
k+1 − S

2
k+1V

23
k

)

da
k+1 − V

23
k+1dk+1/k+1 −K

f

k+1ek+1.

(5.11)

The estimator ̂fk+1 is unbiased if and only if

V
23
k+1 = −Kf

k+1

(

S
3
k+1 − S

2
k+1V

23
k

)

,

0 = I −K
f

k+1S
2
k+1.

(5.12)

The state estimation error x̃k+1 has the following form:

x̃k+1 = xk+1 − x̂k+1/k+1

=
(

I −K
x

k+1

)

(Akx̃k +wk) −K
x

k+1vk+1 +
(

E
x

k −Kx
k+1S

2
k+1

)

fa
k+1 − V

12
k+1fk+1/k+1

+
(

E
x

k −K
x

k+1S
3
k+1 +K

x

k+1S
2
k+1V

23
k

)

da
k+1 − V

13
k+1dk+1/k+1.

(5.13)

The parameters V
12
k+1 and V

13
k+1 have the following relations:

V
12
k+1 = F

x

k −K
x

k+1S
2
k,

V
13
k+1 = E

x

k −K
x

k+1

(

S
3
k+1 − S

2
k+1V

23
k

)

+ V
12
k+1V

23
k+1.

(5.14)
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If the gainmatricesK
x

k+1,K
f

k+1 andKd
k+1 are determined to satisfy the unbiasedness conditions

(5.10) and (5.12), then the proposed filter ensure an unbiased minimum-variance estimation
of state, fault and unknown disturbance. Indeed, the unknown disturbance, fault and state
estimation errors are given, respectively, as follows:

˜dk+1 = −Kd
k+1ek+1,

˜fk+1 = −Kf

k+1ek+1 − V
23
k+1K

d
k+1ek+1,

x̃k+1 =
(

I −K
x

k+1

)

(Akx̃k +wk) −K
x

k+1vk+1 − V
12
k+1K

f

k+1ek+1 − V
13
k+1K

d
k+1ek+1.

(5.15)

6. Illustrative Example

We consider the linearizedmodel of a simplified longitudinal flight control system as follows:

xk+1 = (Ak + ΔAk)xk + Bkuk + Fa
kf

a
k +wx

k,

yk = (Hk + ΔHk)xk + Fs
kf

s
k + vk,

(6.1)

where the state variables are: pitch angle δz, pitch rate ωz and normal velocity ηy, the control
input uk is the elevator control signal. Fa

k
and Fs

k
are the matrices distribution of the actuator

fault fa
k and sensor fault fs

k .
The presented system equations can be rewritten as follow:

xk+1 = Akxk + Bkuk + Fx
kfk + Ex

kdk +wx
k,

yk = Hkxk + F
y

k fk + E
y

kdk + vk,
(6.2)

where Fx
k and F

y

k are the distributionmatrices of the fault vector in the state andmeasurement
equations

Fx
k =

[

Fa
k 0

]

,

F
y

k
=
[

0 Fs
k

]

(6.3)

The terms Ex
k
dk and E

y

k
dk represent the parameter perturbations in matrices Ak and Hk:

[

ΔAk

ΔHk

]

=

[

Ex
k

E
y

k

]

ΔkM,

dk = ΔkMxk,

(6.4)

where ΔkΔT
k
≤ I.
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The numerical example given in [2, 3] is considered and slightly modified, where the
parameters system are given as follows:

Ak =

⎡

⎢

⎢

⎣

0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0

⎤

⎥

⎥

⎦

, Bk =

⎡

⎢

⎢

⎣

0.4252

−0.0082
0.1813

⎤

⎥

⎥

⎦

,

Hk = I3×3, xk =
[

ηy ωz δz
]T
,

Qx
k = diag

{

0.12, 0.12, 0.012
}

, Rk = 0.12I3×3.

(6.5)

We inject simultaneously two faults in the system,

[

fa
k

fs
k

]

=

[

2us(k − 20) − 2us(k − 60)

−us(k − 30) + us(k − 70)

]

, (6.6)

where us(k) is the unit-step function.
In the simulation, the aerodynamic coefficients are perturbed; M = [−0.02 0 0]

and Δk = 0.2 sin(0.1k). In addition, we set uk = 10, x0 = [0 − 1 2]T , P0 = 0.1I3×3.
We propose to apply the proposed filter (ARThSKF) to obtain a robust estimation of

simultaneous actuator and sensor faults. The obtained results will be compared with existing
filters in literature, in particular the ARTSKF [10].

6.1. Case 1

The matrices distribution of the fault and the unknown disturbance are taken as follow:

Ex
k =

[

0 1 0
]T
, E

y

k
=
[

1 0 0
]T
,

Fa
k =

[

0.4252 −0.0082 0.1813
]T
, Fs

k =
[

0 0 1
]T
.

(6.7)

In Figures 2 and 3, we focused on the presentation of the fault (fk) and the unknown
disturbance (dk), respectively. We have plotted the actual value, the estimated values
obtained by ARThSKF and ARTSKF.

The simulation results in Table 1, show the average root mean square errors (RMSE)
in the estimated states, fault and unknown disturbance. For example, the RMSE of the first
component of state vector is calculated by

RMSE(x1,k) =

√

√

√

√

1
N

N
∑

k=1

(x1,k − x̂1,k/k)
2. (6.8)

From Figures 2, 3, and Table 1, the filtering performances of the ARThSKF appears to bemuch
better that those of ARTSKF.
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Figure 2: Actual fault fk and estimated fault ̂fk/k (Case 1).
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Figure 3: Actual unknown disturbance dk and its estimated ̂dk/k (Case 1).



Mathematical Problems in Engineering 19

Table 1: Performance of the ARThSKF and ARTSKF (Case 1).

RMSE ARThSKF ARTSKF
x1,k 0.9731 10.0330
x2,k 0.1418 0.1418
x3,k 0.1827 0.3576
fa
k

1.1796 2.7494
fs
k

0.1887 0.3795
dk 0.2225 0.3035

Table 2: Performance of the ARThSKF and ARTSKF (Case 2).

RMSE ARThSKF ARTSKF
x1,k 1.2893 5.3844
x2,k 0.1422 0.1418
x3,k 0.5028 0.5920
fa
k

2.5954 4.6809
fs
k

0.5087 0.5944
dk 1.2805 9.6895

6.2. Case 2

Here, we assume that the distribution matrices of the fault and the unknown disturbance are
the followings:

Ex
k =

[

0 0 0
]T
, E

y

k
=
[

1 0 0
]T
,

Fa
k =

[

0.4252 −0.0082 0.1813
]T
, Fs

k =
[

0 0 1
]T
.

(6.9)

According to Table 2 and Figures 4 and 5, we note that the ARThSKF gives the best estimation
of the first component of the state vector, the actuator fault and the unknown disturbance in
comparison with the ARTSKF.

6.3. Case 3

In this case, the distribution matrices of the fault and the unknown disturbance are given by:

Ex
k =

[

1 0 0
]T
, E

y

k =
[

1 0 0
]T
,

Fa
k =

[

0.4252 −0.0082 0.1813
]T
, Fs

k =
[

0 0 1
]T
.

(6.10)

In Figures 6 and 7, we deduce that the ARThSKF and ARTSKF have similar filtering
performances. Indeed, the evaluation of the RMSE values presented in the Table 3 confirms
this deduction.
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Figure 4: Actual fault fk and estimated fault ̂fk/k (Case 2).
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Figure 5: Actual unknown disturbance dk and its estimated ̂dk/k (Case 2).
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Figure 6: Actual fault fk and estimated fault ̂fk/k (Case 3).
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Figure 7: Actual unknown disturbance dk and its estimated ̂dk/k (Case 3).
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Table 3: Performance of the ARThSKF and ARTSKF (Case 3).

RMSE ARThSKF ARTSKF
x1,k 0.4566 0.5315
x2,k 0.1424 0.1418
x3,k 0.5072 0.5924
fa
k

2.6148 4.6444
fs
k

0.5130 0.5946
dk 0.4569 0.5379

Table 4: Performance of the ARThSKF and ARTSKF (Case 4).

RMSE ARThSKF ARTSKF
x1,k 2.7895 8.6757
x2,k 0.1416 0.1418
x3,k 0.1516 0.1516
fa
k

2.3823 4.6188
fs
k

3.7220 5.3151
dk 0.4706 0.5691

6.4. Case 4

Now, we take the following values of the distrubition matrices of the fault and the unknown
disturbance:

Ex
k =

[

0 0 1
]T
, E

y

k
=
[

1 0 0
]T
,

Fa
k =

[

0.4252 −0.0082 0.1813
]T
, Fs

k =
[

1 0 0
]T
.

(6.11)

The simulation results presented in Figures 8 and 9 and Table 4 show that the ARThSKF is a
little better than the ARTSKF. In this case, we notes that the two filters ARThSKF and ARTSKF
do not estimate suitably the sensor fault, since Ey

k
= Fs

k
.

7. Conclusion

In this paper, the problem of joint state and fault estimation for linear discrete-time stochastic
systems with unknown disturbance is solved by using the robust three-stage Kalman filtering
technique. We assume that the fault and the unknown disturbance affect both the system
state and the output. To achieve this aim, a new robust filter named ARThSKF has been
proposed by using an optimal three-stage Kalman filtering method and an augmented fault
and unknown disturbance models. The unbiasedness conditions and minimum-variance
property of this filter are also established. The proposed filter is applied efficiently to solve
two problems: Firstly, it estimates the actuator and sensor faults simultaneously; Secondly, it
establishes a comparative study with the existing literature results.
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Figure 8: Actual fault fk and estimated fault ̂fk/k (Case 4).
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Figure 9: Actual unknown disturbance dk and its estimated ̂dk/k (Case 4).
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