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A novel semiblind defocused image deconvolution technique is proposed, which is based on
multivariate local polynomial regression (MLPR) and iterative Wiener filtering (IWF). In this
technique, firstly a multivariate local polynomial regression model is trained in wavelet domain to
estimate defocus parameter. After obtaining the point spread function (PSF) parameter, iterative
wiener filter is adopted to complete the restoration. We experimentally illustrate its performance
on simulated data and real blurred image. Results show that the proposed PSF parameter
estimation technique and the image restoration method are effective.

1. Introduction

Shooting a real world image with a camera through an optical device gives a 2D image
where at least some parts are affected by a blur and noise. Images can be blurred by
atmospheric turbulence, relative motion between sensors and objects, longer exposures,
and so on, but the exact cause of blurring may be unknown. Restoration of blurred noisy
images [1–3] is one of the main topics in many processing. The literatures [4–6] have
given good methods to improve image qualities. The purpose of image restoration is to
reconstruct an unobservable true image from a degraded observation. An observed image
can be written, ignoring additive noise, as the two-dimensional (2D) convolution of the true
image with a linear space-invariant (LSI) blur, known as the PSF. Restoration in the case
of known blur, assuming the linear degradation model, is called linear image restoration
and it has been presented extensively in the last three decades giving rise to a variety of
solutions [7–10]. In many practical situations, however, the blur is unknown. Hence, both
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blur identification and image restoration must be performed from the degraded image.
Restoration in the case of unknown blur is called blind image restoration [11–13]. Existing
blind restoration methods can be categorized into two main groups: (i) those which estimate
the PSF a priori independent of the true image so as to use it later with one of the linear
image restoration methods, such as zero sheet separation, generalized cross validation, and
maximum likelihood and expectation maximization based on the ARMA image model [14–
16], and (ii) those which estimate the PSF and the true image simultaneously, such as
nonnegative sand support constraints recursive inverse filtering, maximum likelihood and
conjugate gradient minimization, and simulated annealing [17, 18]. Algorithms belonging
to the first class are computationally simple, but they are limited to situations in which the
PSF has a special form, and the true image has certain features. Algorithms belonging to
the second class, which are computationally more complex, must be used for more general
situations. In this paper, a kind of semi-blind image restoration algorithm is proposed in case
of known the blur type (defocused blurring).

In general, discrete model for a linear degradation caused by blurring can be given by
the following equation:

y
(
i, j
)
= h

(
i, j
) ∗ f(i, j) + n

(
i, j
)
, (1.1)

where ∗ indicates two-dimensional convolution, f(i, j) represents in original image, y(i, j) is
the degraded image, h(i, j) represents the two-dimensional PSF, and n(i, j) is the additive
noise. In this paper, we deal only with additive Gaussian noise, as it effectively models the
noise in many different imaging scenarios. The difficulty in solving the restoration problem
with a spatially varying blur commonly motivates the use of a stationary model for the blur.
This leads to the following expression for the degradation system:
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The use of linear techniques for solving the restoration problem is facilitated by using
space-invariant model. Models that utilize space-variant degradations are also common, but
lead to more complex solutions. As for defocus blur, PSF is modeled as a uniform intensity
distribution within a circular disk,

h
(
i, j
)
=

⎧
⎨

⎩

1
πR2

, if
√
i2 + j2 ≤ R,

0, otherwise,
(1.3)

where disk radius R is the only unknown parameter for this type of blur.
Many existing image restoration algorithms assume that the PSF is known, but in

practical it is not always the case. The restoration without knowing of the PSF is called
blind image restoration. Fourier methods can be used to estimate the defocus parameter R
through calculating a ratio of power of high frequencies portion to that of low frequencies
portion. However, a main drawback of the method is its bad noise immunity. To solve this
problem, [19] proposed a novel algorithm to overcome this shortcoming, the RBF neural
network is applied to fit R. This scheme has good fitting, but bad prediction. To avoid the
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weak generalization ability, an more efficient method for estimating parameter R is proposed
in this paper. The prediction ability of these two methods is compared with the trained five
images. The steps of the presented algorithm in this paper is as follows: Firstly we construct
feature vectors of several blurred images with known defocus radius R in wavelet domain,
then a multivariate local polynomial estimation model [20–22] is trained using the vectors
as inputs and defocus parameters as outputs. After the model is trained, the new defocused
images are applied to the trained model for predicting the parameter R. For a semi-blind
defocused image, R can be estimated through calculating the feature vectors and using it
as input of the trained model. With known radius R, many traditional algorithm could be
applied to restore the degraded image. In this paper, iterative Wiener filtering [23] is adopted
to image restoration.

2. Relationship between Wavelet Coefficients and R

The wavelet transform provides a powerful and versatile framework for image processing.
It is widely used in the fields of image denoising, compression, fusion, image restoration
[24–26], and so forth.

The two-dimensional discrete wavelet transform (DWT) [27, 28] hierarchically
decompose an input image into a series of successively lower resolution images and their
associated detail images. DWT is implemented by a set of filters, which are convolved
with the image rows and columns. An image is convolved with low-pass and high-pass
filters and the odd samples of the filtered outputs are discarded resulting in downsampling
the image by a factor of 2. The l level wavelet decomposition of an image I results in an
approximation image Xl and three detail images Hl, Vl, and Dl in horizontal, vertical, and
diagonal directions respectively. Decomposition into l levels of an original image results in a
down sampled image of resolution 2l with respect to the image as well as detail images.

When an image is defocused, edged in it are smoothed and widened. The amount of
high frequency band decreased, and that corresponding to low frequency band increases.

In order to denote the relationship between wavelet coefficients and defocused radius
R, we define five variables named v1, v2, v3, v4, and v5 as follows:

v1 =
|V2|s
|H2|s

,

v2 =
|H2|s
|X2|s

,

v3 =
|H1|s

num{H1} ,

v4 =
|H2|s

num{H2} ,

v5 =
|D1|s

num{D1} ,

(2.1)

where |·|s represents the summation of all coefficients’ absolute value, num{·} is total number
of coefficients.
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Figure 1: Relationship Between v1−5 and R.

An original image is blurred artificially by a uniform defocus PSF with Rwhose value
rang from 1 to 20. The relationship between v1, v2, v3, v4, v5 and R is shown in Figure 1,
where the curves are normalized in [0, 1] interval.WhenR increases, v2, v3, v4 and v5 decrease
monotonously.

In order to estimate defocus parameter R, only known the roughly similar relationship
is not enough. As shown in Figure 2, every image has monotonous curve between v2, v5

and R, but they are not superposition. For a degraded unknown PSF image, R cannot be
calculated because the curve of the given image is not known. For example, if v2 of image
“rice” has been calculated, and then we estimate R according curve if “ic” in Figure 2, wrong
results are obtained obviously. To solve this problem, one of the methods is to choose neural
networks. Computational artificial neural networks are known to have the capability for
performing complex mappings between input and output data, but neural network method
has bad generalization ability. Here we propose a multivariate local polynomial regression
model to estimate R. The variables v1−5 are chosen to train the multivariate local polynomial
estimation model. Prediction Comparison is made to verify the advantages of multivariate
local polynomial fitting.

3. Training Multivariate Local Polynomial Estimation Model

Multivariate local polynomial fitting is an attractive method both from theoretical and
practical point of view. Multivariate local polynomial method has a small mean squared
error compared with the Nadaraya-Watson estimator which leads to an undesirable form of
the bias and the Gasser-Muller estimator which has to pay a price in variance when dealing



Mathematical Problems in Engineering 5

0 5 10 15 20
0

0.02

0.04

0.06

0.08
Feature vector v2

(a)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Feature vector v5

Cameraman
Rice
Ic

Circles
Testpat 1

(b)

Figure 2: Curves v2 and v5 of Different Images.

with a random designmodel. Multivariate local polynomial fitting also has other advantages.
The method adapts to various types of designs such as random and fixed designs, highly
clustered and nearly uniform designs. Furthermore, there is an absence of boundary effects:
the bias at the boundary stays automatically of the same order as the interior, without use
of specific boundary kernels. The local polynomial approximation approach is appealing on
general scientific grounds: the least squares principle to be applied opens the way to a wealth
of statistical knowledge and thus easy generalizations. In this Section, we briefly outline
and review the idea of the extension of multivariate local polynomial fitting [20–22] to the
parameter R of defocused PSF.

3.1. Multivariate Kernel Function

To localize data in the m-dimension, we need a multikernel function. Generally speaking, a
multivariate kernel function refers to an m-variate function satisfying

∫+∞

−∞
· · ·

∫+∞

−∞
K
(
x
)
dx = 1. (3.1)

Here and hereafter, we use
∫

to indicate multivariate integration over the m-
dimensional Euclidean space.
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There are two common methods for constructing multivariate kernel functions. For a
univariate kernel k(x), the product kernel is given by

K
(
x
)
=

m∏

i=1

k(xi), (3.2)

and the spherically symmetric kernel is defined as

K
(
x
)
= cK,mK

(∥∥x
∥
∥), (3.3)

where cK,m = {∫ K(‖x‖)dx}−1 is a normalization constant and ‖x‖ = (x2
1 + x2

2 + · · · + x2
m)

−1/2.
Popular choices of K(x) include the standard d-variate normal density

K
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)
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(

−
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2

)

, (3.4)

and the spherical Epanechnikov kernel

K
(
x
)
=
{
d(d + 2)Γ(m/2)

4πm/2

}(
1 − ∥∥x∥∥2

)

+
. (3.5)

The latter is the optimal kernel, according to Fan and Gijbels [21] and Su [22].
The localization in multivariate nonparametric regression is frequently carried out

by the kernel weighting. Let H be a symmetric positive-definite matrix called a bandwidth
matrix. The localization scheme at a point x assigns the weight

KH

(
Xi − x

)
, with KH

(
x
)
=
∣∣H

∣∣−1K
(
H−1x

)
, (3.6)

where |H| is the determinant of the matrix H. The bandwidth matrix is introduced to
accommodate the dependent structure in the independent variables. For practical problems,
the bandwidth matrixH is taken to be a diagonal matrix. The different independent variables
will be accommodated into different scales. For simplification, the bandwidth matrix is
designed intoH = hIm (Im denoting the identity matrix of order m).

3.2. Multivariate Predictor with Local Polynomial Fitting

Suppose that the input vector is V = (v1, v2, v3, v4, v5), the model is fitted by the function

R = f
(
V
)
. (3.7)
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Our purpose is to obtain the estimation R̂ = f̂(V ) of function f , this paper, we use the
dth order multivariate local polynomial f(V ) to predict the defocused parameter RT value
based on the point VT of the test image. The polynomial function can be described as

f
(
V
) ≈

∑

0≤|j|≤d

1
j!
D

(j)
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)(
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)j
=
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)(
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, (3.8)

where
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(3.9)

In the multivariate prediction method, VTa(a = 1, 2, . . . , A) denotes the trained image
feature vectors. Using A pairs of (VTa , Ra), for which the values are already known, the
coefficients of fi is determined by minimizing

A∑

a=1

⎡

⎢
⎣Ra −

∑

0≤
∣
∣∣j
∣
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bj
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)(
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)j
⎤

⎥
⎦

2

·KH

(
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)
. (3.10)

For the weighted least squared problem, a matrix form can be described by

W1/2 · Y = W1/2 ·X · B + ε, (3.11)

where

Y =
(
y1, y2, . . . , yA

)T
, ya = Ra,

B =
(
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(
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)
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(
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)
, . . . , bd

(
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))T
,

W = diag
{
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(
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)
, KH

(
VT2 − VT

)
, . . . , KH

(
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)}
,

(3.12)
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and X is the A × S(S =
∑
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We then have the least squared solution with multivariate local polynomial fitting as
follows:

B̂ =
(
W1/2X

)†
Y (3.14)

or, when XTWX is inverse, the estimation can be written by

B̂ =
(
XTWX

)−1
XTWY, (3.15)

then we can get the estimation R̂T = f̂(VT )

R̂T = f̂
(
VT

)
= E1

(
XTWX

)−1
XTWY, (3.16)

where E1 = (1, 0, 0, . . . , 0)1×S.
Computing the B̂ will suffer from large computational cost. we can use the recursive

least squared method to reduce the computation complexity, and it is very powerful
especially in the real time prediction problems. There are several important issues about the
bandwidth, the order of multivariate local polynomial function and the kernel functionwhich
have to be discussed. The three problems will be presented in Section 3.3.

3.3. Parameters Selections

For the multivariate local polynomial predictor, there are three important problems which
have significant influence to the prediction accuracy and computational complexity. First
of all, there is the choice of the bandwidth matrix, which plays a rather crucial role. The
bandwidth matrix H is taken to be a diagonal matrix. For simplification, the bandwidth
matrix is designed into H = hIm. So the most important thing is to find the bandwidth h.
A too big bandwidth underparameterizes the regression function, causing a large modeling
bias, while a too small bandwidth overparameterizes the unknown function and results in
noisy estimates. In theory, there exists an optimal bandwidth hopt in the meaning of mean
squared error, such that

hopt = arg min
h

∫ (
f
(
x
) − f̂

(
x
))2

dx. (3.17)
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But the optimal bandwidth cannot be solved directly. So we discuss how to get the
asymptotically optimal bandwidth. There are quite a few important techniques for selecting
the bandwidth. such as cross-validation and plug-in bandwidth selectors. a conceptually
simple technique, with theoretical justification and good empirical performance, is the plug-
in technique.

Another issue in multivariate local polynomial fitting is the choice of the order of the
polynomial. Since the modeling bias is primarily controlled by the bandwidth, this issue is
less crucial however. For a given bandwidth h, a large value of d would expectedly reduce
the modeling bias, but would cause a large variance and a considerable computational cost.
Since the bandwidth is used to control the modeling complexity, and due to the sparsity of
local data in multidimensional space, a higher-order polynomial is rarely used. We use the
local quadratic regression to indicate the flavor of the multivariate local polynomial fitting,
that is to say, d = 2.

The third issue is the selection of the kernel function. In this paper, of course, we choose
the optimal spherical Epanechnikov kernel function, which minimizes the asymptotic MSE
of the resulting multivariate local polynomial estimators, as our kernel function.

3.4. Estimating the Defocused Parameter

Twenty original images are chosen to train the model. The images are defocused artificially
with R whose value ranging from 2 to 7. So the total number of training samples are 120.
Then feature vectors are constructed using variables v1−5 of each image:

V = (v1, v2, v3, v4, v5). (3.18)

The defocused parameter R is the model output.
When training samples {VTa , Ra}120a=1 are given, obtaining weights matrix B, according

to the relationship between the V and R, then the defocused parameter R can be calculated
using the trained model.

4. Iterative Wiener Filter

Wiener filtering (minimizing mean square error) is commonly used to restore linearly-
degraded images. To obtain optimal results, there must be accurate knowledge of the
covariance of the ideal image. In this section, the so-called iterative Wiener filter [19, 23]
is used to restore the original image.

The imaging system H is assumed to be linear shift invariant with additive,
independent, white noise processes of known variance. the model for the observed image
y is given in matrix notation by

y = Hf + n, (4.1)

where f is the ideal image. The optimal linear minimum mean-squared error, or Wiener
restoration filter given by

f̂ = By, (4.2)
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where B = RffH
T [HRffH

T +Rnn]
−1, requires accurate knowledge of Rff , the autocorrelation

of ideal image f . However, in practical situations f is usually not available and only a single
copy of the blurred image to be restored, y, is provided. In the absence of a more accurate
knowledge of the ideal image f , the blurred image y is often used in its place simply because
there is no other information about f readily available. The signal y is subsequently used to
compute an estimate of Rff and this estimate is used in place of Rff in (4.2).

The following summarizes the iterative Wiener filtering procedure.

Step 1 (Initialization). Use y to compute an initial (i = 0) estimate of Rff by

Rff(0) = Ryy = E
{
yyT

}
. (4.3)

Step 2 (Filter Construction). Use Rff(i), the ith estimate of Rff to construct the (i + 1)th
restoration filter B(i + 1) given by

Bi+1 = RffH
T
[
HRffH

T + Rnn

]−1
. (4.4)

Step 3 (Restoration). Restore y by the B(i + 1) filter to obtain f̂(i + 1), the (i + 1)th estimate
of f

f̂(i + 1) = B(i + 1)y. (4.5)

Step 4 (Update). Use f̂(i + 1) to compute an improved estimate of Rff , given by

Rff(i + 1) = E
{
f̂(i + 1)f̂ T (i + 1)

}
. (4.6)

Step 5 (Iteration). Increment i and repeat Steps 2, 3, 4, and 5.

5. Experimental Results and Analysis

The experiments are carried out by using the Matlab image processing toolbox. The
performance of the proposed image restoration algorithm has been evaluated using the
classical gray-scale Moon image, Coins image, Saturn image, and Tire image in Matlab
toolbox. To verify the good ability of restoration of the proposed algorithm, one real blurred
image is used for the deconvolution procedure. The results show our method is very
successful for this kind of blurred image.

In image restoration studies, the degradation modelled by blurring and additive noise
is referred to in terms of the metric blurred signal-to-noise ratio (BSNR). This metric for a
zero-mean M ×N image is given by

BSNR = 10 log10

{
(1/MN)

∑M
m=1

∑N
n=1 z

2(m,n)

σ2
v

}

, (5.1)
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(a) (b) (c)

Figure 3: Result of Moon. True image (a), blurred image (b), estimated image(c), BSNR = 12.35, ISNR =
22.56.

(a) (b) (c)

Figure 4: Result for Coins. True image (a), blurred image (b), restored image (c), BSNR = 11.22, ISNR =
23.14.

where z(m,n) is the noise-free blurred image and σ2
v is the additive noise variance.

For the purpose of objectively testing the performance of linear image restoration
algorithms, the improvement in signal-to-noise ratio (ISNR) is often used. ISNR is defined
as

ISNR = 10 log10

⎧
⎪⎨

⎪⎩

∑M
m=1

∑N
n=1

[
f(m,n) − y(m,n)

]2

∑M
m=1

∑N
n=1

[
f(m,n) − f̂(m,n)

]2

⎫
⎪⎬

⎪⎭
, (5.2)

where f(m,n) and y(m,n) are the original and degraded image pixel intensity values and
f̂(m,n) is the restored true image pixel intensity value. ISNR cannot be used when the true
image is unknown, but it can be used to compare different methods in simulations when the
true image is known.

In order to find the good performance of the proposed multivariate local polynomial
Regression method (MLPR) compared with the RBF neural network algorithm (RBFNN)
which is investigated in the literature [19], the same defocused blurred images are used for
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(a) (b) (c)

Figure 5: Result for Saturn. True image (a), blurred image (b), restored image (c), BSNR = 13.17, ISNR =
24.31.

(a) (b) (c)

Figure 6: Result for Tire. True image (a), blurred image (b), restored image (c), BSNR = 11.56, ISNR =
22.09.

the experiments. Mean squared prediction errors are shown in Table 1. From Table 1, we can
conclude that the prediction results of MLPR predictor are significantly better than the RBF
neural network method in the same simulated data.

Figures 3, 4, 5 and 6, in which the true images, blurred images and estimated true
images are depicted in the left, middle and right column, respectively, illustrate how the
method behaves in Moon, Coins, Saturn and Tire images. It is clear from Figures 3–6 that
performance of the new method is effective in different images. Figure 7 also shows that the
presented algorithm is good for real blurred image.

6. Conclusions

A new method that is based on multivariate local polynomial regression model and iterative
Wiener filtering for semi-blind restoration of blurred noisy images was proposed in this
paper. Defocused parameter was estimated by a multivariate local polynomial regression
model trained in wavelet domain. The main advantages of the proposed technique are
that it is not only robust to noise because wavelet transform has an excellent denoising
ability, but also effective to artificially and practically defocused blurred image. Restoration
is successfully realized by the iterative Wiener filter, resulting in improved the image quality.
The algorithm was justified via simulation and real image. Defocused image parameter can
be successfully estimated by using trained model. Experimental results show the proposed
algorithm is reliable and robust for defocused blurred image restoration.
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(a) (b)

Figure 7: Result for real blurred image. blurred image (a) restored image (b).

Table 1: MSE using both methods.

Training image Different methods eMSE

Moon RBFNN 4.81 × 10−6

Moon MLPR 4.13 × 10−8

Coins RBFNN 5.06 × 10−6

Coins MLPR 3.97 × 10−8

Saturn RBFNN 6.62 × 10−6

Saturn MLPR 5.65 × 10−9

Tire RBFNN 8.04 × 10−6

Tire MLPR 7.19 × 10−8
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