
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 639801, 34 pages
doi:10.1155/2010/639801

Review Article
Some Applications of Fractional
Calculus in Engineering

J. A. Tenreiro Machado, Manuel F. Silva,
Ramiro S. Barbosa, Isabel S. Jesus, Cecı́lia M. Reis,
Maria G. Marcos, and Alexandra F. Galhano

Institute of Engineering of Porto, Porto, Portugal

Correspondence should be addressed to J. A. Tenreiro Machado, jtm@isep.ipp.pt

Received 9 June 2009; Accepted 29 July 2009

Academic Editor: Jose Balthazar

Copyright q 2010 J. A. Tenreiro Machado et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Never-
theless, the application of FC just emerged in the last two decades, due to the progress in the area
of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems
theory some work has been carried out but the proposed models and algorithms are still in a pre-
liminary stage of establishment. Having these ideas in mind, the paper discusses FC in the study of
system dynamics and control. In this perspective, this paper investigates the use of FC in the fields
of controller tuning, legged robots, redundant robots, heat diffusion, and digital circuit synthesis.

1. Introduction

The generalization of the concept of derivative Dα[f(x)] to noninteger values of α goes back
to the beginning of the theory of differential calculus. In fact, Leibniz, in his correspondence
with Bernoulli, L’Hôpital and Wallis (1695), had several notes about the calculation of
D1/2[f(x)]. Nevertheless, the development of the theory of Fractional Calculus (FC) is due
to the contributions of many mathematicians such as Euler, Liouville, Riemann, and Letnikov
[1–3].

The FC deals with derivatives and integrals to an arbitrary order (real or, even,
complex order). The mathematical definition of a derivative/integral of fractional order has
been the subject of several different approaches [1–3]. For example, the Laplace definition of
a fractional derivative of a signal x(t) is

Dαx(t) = L−1

{
sαX(s) −

n−1∑
k=0

skDα−k−1x(t)|t=0

}
, (1.1)
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where n − 1 < α ≤ n, α > 0. The Grünwald-Letnikov definition is given by (α ∈ R):

Dαx(t) = lim
h→ 0

[
1
hα

∞∑
k=0

(−1)k
(
α

k

)
x(t − kh)

]
,

(
α

k

)
=

Γ(α + 1)
Γ(k + 1)Γ(α − k + 1)

,

(1.2)

where Γ is the Gamma function and h is the time increment. However, (1.2) shows that
fractional-order operators are “global” operators having a memory of all past events, making
them adequate for modeling memory effects in most materials and systems.

The Riemann-Liouville definition of the fractional-order derivative is (α > 0):

aD
α
t f(t) =

1
Γ(n − α)

dn

dtn

∫ t

a

f(τ)

(t − τ)α−n+1
dτ, n − 1 < α < n, (1.3)

where Γ(x) is the Gamma function of x.
Based on the proposed definitions it is possible to calculate the fractional-order

integrals/derivatives of several functions (Table 1). Nevertheless, the problem of devising
and implementing fractional-order algorithms is not trivial and will be the matter of the
following sections.

In recent years FC has been a fruitful field of research in science and engineering
[1–6]. In fact, many scientific areas are currently paying attention to the FC concepts and
we can refer its adoption in viscoelasticity and damping, diffusion and wave propagation,
electromagnetism, chaos and fractals, heat transfer, biology, electronics, signal processing,
robotics, system identification, traffic systems, genetic algorithms, percolation, modeling and
identification, telecommunications, chemistry, irreversibility, physics, control systems as well
as economy, and finance [7–18].

Bearing these ideas in mind, Sections 2–6 present several applications of FC in science
and engineering. In Section 2, it is presented the application of FC concepts to the tuning
of PID controllers and, in Section 3, the application of a fractional-order PD controller in
the control of the leg joints of a hexapod robot. Then in Section 4, it is presented the
fractional dynamics in the trajectory control of redundant manipulators. Next, in Section 5, it
is introduced the fractional characteristics of heat diffusion along a media and, in Section 6 it
is shown the application of FC to circuit synthesis using evolutionary algorithms. Finally, the
main conclusions are presented in Section 7.

2. Tuning of PID Controllers Using Fractional Calculus Concepts

The PID controllers are the most commonly used control algorithms in industry. Among the
various existent schemes for tuning PID controllers, the Ziegler-Nichols (Z-N) method is the
most popular and is still extensively used for the determination of the PID parameters. It
is well known that the compensated systems, with controllers tuned by this method, have
generally a step response with a high percent overshoot. Moreover, the Z-N heuristics are
only suitable for plants with monotonic step response.
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Table 1: Fractional-order integrals of several functions.

ϕ(x), x ∈ R (Iα+ϕ)(x), x ∈ R, α ∈ C

(x − a)β−1 Γ(β)
Γ(α + β)

(x − a)α+β−1, Re(β) > 0

eλx λ−αeλx, Re(λ) > 0

⎧⎨
⎩

sin(λx)

cos(λx)
λ−α

⎧⎨
⎩

sin(λx − απ/2),

cos(λx − απ/2),
λ > 0, Re(α) > 1

eλx

⎧⎨
⎩

sin(γx)

cos(γx)

eλx

(λ2 + γ2)α/2

⎧⎨
⎩

sin(γx − αφ), φ = arctan(γ/λ)

cos(γx − αφ), γ > 0, Re(λ) > 1

In this section, we study a methodology for tuning PID controllers such that the
response of the compensated system has an almost constant overshoot defined by a
prescribed value. The proposed method is based on the minimization of the integral of
square error (ISE) between the step responses of a unit feedback control system, whose
open-loop transfer function L(s) is given by a fractional-order integrator and that of the PID
compensated system [7].

Figure 1 illustrates the fractional-order control system that will be used as reference
model for the tuning of PID controllers. The open-loop transfer function L(s) is defined as
(α ∈ R+):

L(s) =
(
ωc

s

)α

, (2.1)

where ωc is the gain crossover frequency, that is, |L(jωc)| = 1. The parameter α is the slope of
the magnitude curve, on a log-log scale, and may assume integer as well as noninteger values.
In this study we consider 1 < α < 2, such that the output response may have a fractional
oscillation (similar to an underdamped second-order system). This transfer function is also
known as the Bode’s ideal loop transfer function since Bode studies on the design of feedback
amplifiers in the 1940s [19].

The Bode diagrams of amplitude and phase of L(s) are illustrated in Figure 2. The
amplitude curve is a straight line of constant slope −20αdB/dec, and the phase curve is a
horizontal line positioned at −απ/2 rad. The Nyquist curve is simply the straight line through
the origin, arg L(jω) = −απ/2 rad.

This choice of L(s) gives a closed-loop system with the desirable property of being
insensitive to gain changes. If the gain changes, the crossover frequency ωc will change, but
the phase margin of the system remains PM = π(1−α/2) rad, independent of the value of the
gain. This can be seen from the curves of amplitude and phase of Figure 2.

The closed-loop transfer function of fractional-order control system of Figure 1 is given
by

G(s) =
L(s)

1 + L(s)
=

1
(s/ωc)

α + 1
, 1 < α < 2. (2.2)
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Figure 1: Fractional-order control system with open-loop transfer function L(s).
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Figure 2: Bode diagrams of amplitude and phase of L(jω) for 1 < α < 2.

The unit step response of G(s) is given by the expression:

yd(t) = L−1
{

1
s
G(s)

}
= L−1

{
ωα
c

s(sα +ωα
c )

}
= 1 −

∞∑
n=0

[
−(ωct)α

]n
Γ(1 + αn)

= 1 − Eα
[
−(ωct)α

]
. (2.3)

For the tuning of PID controllers, we address the fractional-order transfer function
(2.2) as the reference system [8]. With the order α and the crossover frequency ωc we can
establish the overshoot and the speed of the output response, respectively. For that purpose
we consider the closed-loop system shown in Figure 3, where Gc(s) and Gp(s) are the PID
controller and the plant transfer functions, respectively.

The transfer function of the PID controller is

Gc(s) =
U(s)
E(s)

= K
(

1 +
1
Tis

+ Tds
)
, (2.4)

where E(s) is the error signal and U(s) is the controller’s output. The parameters K, Ti, and
Td are the proportional gain, the integral time constant, and the derivative time constant of
the controller, respectively.
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Figure 3: Closed-loop control system with PID controller Gc(s).

The design of the PID controller will consist on the determination of the optimum PID
set gains (K, Ti, Td) that minimize J , the integral of the square error (ISE), defined as

J =
∫∞

0

[
y(t) − yd(t)

]2
dt, (2.5)

where y(t) is the step response of the closed-loop system with the PID controller (Figure 3)
and yd(t) is the desired step response of the fractional-order transfer function (2.2) given by
(2.3).

To illustrate the effectiveness of proposed methodology we consider the third-order
plant transfer function:

Gp(s) =
Kp

(s + 1)3
(2.6)

with nominal gain Kp = 1.
Figure 4 shows the step responses and the Bode diagrams of phase of the closed-loop

system with the PID for the transfer function Gp(s) for gain variations around the nominal
gain (Kp = 1) corresponding to Kp = {0.6, 0.8, 1.0, 1.2, 1.4}, that is, for a variation up to ±40%
of its nominal value. The system was tuned for α = 3/2 (PM = 45◦), ωc = 0.8 rad/s. We verify
that we get the same desired iso-damping property corresponding to the prescribed (α,ωc)
values.

In fact, we observe that the step responses have an almost constant overshoot
independent of the variation of the plant gain around the gain crossover frequency ωc.
Therefore, the proposed methodology is capable of producing closed-loop systems robust to
gain variations and step responses exhibiting an iso-damping property. The proposed method
was tested on several systems revealing good results. It was also compared with other tuning
methods showing comparable or superior results [8].

3. Fractional PDα Control of a Hexapod Robot

Walking machines allow locomotion in terrain inaccessible to other type of vehicles, since
they do not need a continuous support surface, but at the cost of higher requirements for leg
coordination and control. For these robots, joint level control is usually implemented through
a PID-like scheme with position feedback. Recently, the application of the theory of FC to
robotics revealed promising aspects for future developments [9]. With these facts in mind,
this section compares different Fractional PDα robot controller tuning, applied to the joint
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Figure 4: Bode phase diagrams and step responses for the closed-loop system with a PID controller for
Gp(s). The PID parameters are K = 1.9158, Ti = 1.1407, and Td = 0.9040.

control of a walking system (Figure 5) with n = 6 legs, equally distributed along both sides of
the robot body, having each three rotational joints (i.e., j = {1, 2, 3} ≡ {hip,knee, ankle}) [10].

During this study leg joint j = 3 can be either mechanical actuated or motor actuated
(Figure 5). For the mechanical actuated case, we suppose that there is a rotational pre-
tensioned spring-dashpot system connecting leg links Li2 and Li3. This mechanical impedance
maintains the angle between the two links while imposing a joint torque [10].

Figure 5 presents the dynamic model for the hexapod body and foot-ground
interaction. It is considered robot body compliance because walking animals have a spine
that allows supporting the locomotion with improved stability. The robot body is divided
in n identical segments (each with mass Mbn

−1) and a linear spring-damper system (with
parameters defined so that the body behaviour is similar to the one expected to occur on an
animal) is adopted to implement the intrabody compliance [10]. The contact of the ith robot
feet with the ground is modelled through a nonlinear system [11], being the values for the
parameters based on the studies of soil mechanics [11].

The general control architecture of the hexapod robot is presented in Figure 6 [12].
In this study we evaluate the effect of different PDα, α ∈ R, controller implementations for
Gc1(s), while Gc2 is a proportional controller with gain Kpj = 0.9 (j = 1, 2, 3). For the PDα

algorithm, implemented through a discrete-time 4th-order Padé approximation (aij , bij ∈ R,
j = 1, 2, 3), we have

Gc1j(z) ≈ Kpj +Kαj
∑i=u

i=0 aij z
−i∑i=u

i=0 bij z
−i
, (3.1)

where Kpj and Kαj are the proportional and derivative gains, respectively, and αj is the
fractional order, for joint j. Therefore, the classical PD1 algorithm occurs when the fractional
order αj = 1.0.
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Figure 5: Model of the robot body and foot-ground interaction.

It is analysed the system performance of the different PDα tuning, during a periodic
wave gait at a constant forward velocity VF , for two cases: two leg joints are motor actuated
and the ankle joint is mechanical actuated and the three leg joints are fully motor actuated
[10].

The analysis is based on the formulation of two indices measuring the mean absolute
density of energy per traveled distance (Eav) and the hip trajectory errors (εxyH) during
walking, according to

Eav =
1
d

n∑
i=1

m∑
j=1

∫T

0

∣∣τ ij(t)θ̇ij(t)∣∣dt [
Jm−1

]
,

εxyH =
n∑
i=1

√√√√ 1
Ns

Ns∑
k=1

(
ΔixH

2 + ΔiyH
2
)

[m],

ΔixH = xiHd(k) − xiH(k), ΔiyH = yiHd(k) − yiH(k).

(3.2)

To tune the different controller implementations we adopt a systematic method,
testing and evaluating several possible combinations of parameters, for all controller
implementations. Therefore, we adopt the Gc1(s) parameters that establish a compromise
in what concerns the simultaneous minimisation of Eav and εxyH . Moreover, it is assumed
high-performance joint actuators, with a maximum actuator torque of τijMax = 400 Nm, and
the desired angle between the foot and the ground (assumed horizontal) is established as
θi3hd = −15◦. We tune the PDα joint controllers for different values of the fractional order αj
while making α1 = α2 = α3.

We start by considering that leg joints 1 and 2 are motor actuated and joint 3 is
mechanical actuated. For this case we tune the PDα joint controllers for different values of
the fractional order αj , with step Δαj = 0.1, namely, αj = {−0.9,−0.8, . . . ,+0.9}. Afterwards,
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Figure 6: Hexapod robot control architecture.

350

450

550

650

750

E
a
v
(J

m
−1
)

0.5 1 1.5 2 2.5 3

εxyH (m)

α = 0.4

α = 0.5

α = 0.6

Figure 7: Locus of Eav versus εxyH for the different values of α in the Gc1(s) tuning, when establishing a
compromise between the minimisation of Eav and εxyH , with Gc2 = 0.9, joints 1 and 2 motor actuated and
joint 3 mechanical actuated.

we consider that joint 3 is also motor actuated, and we repeat the controller tuning procedure
versus αj .

For the first situation under study, we verify that the value of αj = 0.6 (Figure 7), being
the gains of the PDα controller Kp1 = 2500, Kα1 = 800, Kp2 = 300, Kα2 = 100 and the parame-
ters of the mechanical spring-dashpot system for the ankle actuation K3 = 1, B3 = 2, presents
the best compromise situation between the simultaneous minimisation of εxyH and Eav.

Regarding the case when all joints are motor actuated, Figure 8 presents the best
controller tuning for different values of αj . The experiments reveal the superior performance
of the PDα controller for αj ≈ 0.5, with Kp1 = 15000, Kα1 = 7200, Kp2 = 1000, Kα2 = 800, and
Kp3 = 150, Kα3 = 240.

For αj = {0.1, 0.2, 0.3, 0.4} the results are very poor and for αj = {−0.9, . . . ,−0.1}∪{+0.9},
the hexapod locomotion is unstable. Furthermore, we conclude that the best case corresponds
to all leg joints being motor actuated.

In conclusion, the experiments reveal the superior performance of the FO controller
for αj ≈ 0.5 and a robot with all motor actuated joints, as can be concluded analysing the
curves for the joint actuation torques τ1jm (Figure 9) and for the hip trajectory tracking errors
Δ1xH and Δ1yH (Figure 10).
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Figure 9: Plots of τ1jm versus t, with joints 1 and 2 motor actuated and joint 3 mechanical actuated and all
joints motor actuated, for αj = 0.5.
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Figure 10: Plots of Δ1xH and Δ1yH versus t, with joints 1 and 2 motor actuated and joint 3 mechanical
actuated and all joints motor actuated, for αj = 0.5.
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Since the objective of the walking robots is to walk in natural terrains, in the sequel it
is examined how the different controller tunings behave under different ground properties,
considering that all joints are motor actuated. For this case, and considering the previously
tuning controller parameters, the values of {KxF, BxF,KyF, ByF} are varied simultaneously
through a multiplying factor Kmult that is varied in the range [0.1, 4.0]. This variation for
the ground model parameters allows the simulation of the ground behaviour for growing
stiffness, from peat to gravel [11].

The performance measure Eav versus the multiplying factor of the ground parameters
Kmult is presented on Figure 11. Analysing the system performance from the viewpoint
of the index Eav, it is possible to conclude that the best PDα implementation occurs for
the fractional order αj = 0.5. Moreover, it is clear that the performances of the different
controller implementations are almost constant on all range of the ground parameters, with
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the exception of the fractional order αj = 0.4. For this case, Eav presents a significant variation
with Kmult. Therefore, we conclude that the controller responses are quite similar, meaning
that these algorithms are robust to variations of the ground characteristics [12].

4. Fractional Dynamics in the Trajectory Control of
Redundant Manipulators

A redundant manipulator is a robotic arm possessing more degrees of freedom (dof )
than those required to establish an arbitrary position and orientation of the end effector.
Redundant manipulators offer several potential advantages over non-redundant arms. In
a workspace with obstacles, the extra degrees of freedom can be used to move around
or between obstacles and thereby to manipulate in situations that otherwise would be
inaccessible [20–23].

When a manipulator is redundant, it is anticipated that the inverse kinematics admits
an infinite number of solutions. This implies that, for a given location of the manipulator’s
gripper, it is possible to induce a self-motion of the structure without changing the location of
the end effecter. Therefore, the arm can be reconfigured to find better postures for an assigned
set of task requirements.

Several kinematic techniques for redundant manipulators control the gripper through
the rates at which the joints are driven, using the pseudoinverse of the Jacobian [22, 24].
Nevertheless, these algorithms lead to a kind of chaotic motion with unpredictable arm
configurations.

Having these ideas in mind, Section 4.1 introduces the fundamental issues for the
kinematics of redundant manipulators. Based on these concepts, Section 4.2 presents the
trajectory control of a three dof robot. The results reveal a chaotic behavior that is further
analyzed in Section 4.3.

4.1. Kinematics of Redundant Manipulators

A kinematically redundant manipulator has more dof than those required to define an
arbitrary position and orientation of the gripper. In Figure 12 is depicted a planar manipulator
with k ∈ ℵ rotational (R) joints that is redundant for k > 2. When a manipulator is
redundant it is anticipated that the inverse kinematics admits an infinite number of solutions.
This implies that, for a given location of the manipulator’s gripper, it is possible to induce
a self-motion of the structure without changing the location of the gripper. Therefore,
redundant manipulators can be reconfigured to find better postures for an assigned set of
task requirements but, on the other hand, have a more complex structure requiring adequate
control algorithms.

We consider a manipulator with n degrees of freedom whose joint variables are
denoted by q = [q1, q2, . . . , qn]

T . We assume that a class of tasks, we are interested in can
be described by m variables, x = [x1, x2, . . . , xm]

T (m < n) and that the relation between q
and x is given by

x = f(q), (4.1)

where f is a function representing the direct kinematics.
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Figure 12: A planar redundant planar manipulator with k rotational joints.

Differentiating (4.1) with respect to time yields

ẋ = J(q)q̇, (4.2)

where ẋ ∈ Rm, q̇ ∈ Rn, and J(q) = ∂f(q)/∂q ∈ Rm × n. Hence, it is possible to calculate a
path q(t) in terms of a prescribed trajectory x(t) in the operational space. We assume that the
following condition is satisfied:

max rank{J(q)} = m. (4.3)

Failing to satisfy this condition usually means that the selection of manipulation
variables is redundant and the number of these variables m can be reduced. When condition
(4.3) is verified, we say that the degree of redundancy of the manipulator is n−m. If, for some
q we have

rank{J(q)} < m (4.4)

then the manipulator is in a singular state. This state is not desirable because, in this region
of the trajectory, the manipulating ability is very limited.

Many approaches for solving redundancy [25, 26] are based on the inversion of (4.2).
A solution in terms of the joint velocities is sought as

q̇ = J#(q)ẋ, (4.5)

where J# is one of the generalized inverses of the J [26–28]. It can be easily shown that a more
general solution to (4.2) is given by

q̇ = J+(q)ẋ + [I − J+(q)J(q)]q̇0, (4.6)

where I is the n × n identity matrix and q̇0 ∈ Rn is a n × 1 arbitrary joint velocity vector
and J+ is the pseudoinverse of the J. The solution (4.6) is composed of two terms. The
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first term is relative to minimum norm joint velocities. The second term, the homogeneous
solution, attempts to satisfy the additional constraints specified by q̇0. Moreover, the matrix
I − J+(q)J(q) allows the projection of q̇0 in the null space of J. A direct consequence is
that it is possible to generate internal motions that reconfigure the manipulator structure
without changing the gripper position and orientation [27–30]. Another aspect revealed by
the solution of (4.6) is that repetitive trajectories in the operational space do not lead to
periodic trajectories in the joint space. This is an obstacle for the solution of many tasks
because the resultant robot configurations have similarities with those of a chaotic system.

4.2. Robot Trajectory Control

The direct kinematics and the Jacobian of a 3-link planar manipulator with rotational joints
(3R robot) has a simple recursive nature according with the expressions:

[
x1

x2

]
=

[
l1C1 + l2C12 + l3C123

l1S1 + l2S12 + l3S123

]
,

J =

[
−l1S1 − · · · − l3S123 · · · − l3S123

l1C1 + · · · + l3C123 · · · l3C123

]
,

(4.7)

where li is the length of link i, qi...k = qi + · · · + qk, Si...k = Sin(qi...k), and Ci...k = Cos(qi...k).
During all the experiments it is considered Δt = 10−3 seconds, LTOT = l1 + l2 + l3 = 3,

and l1 = l2 = l3.
In the closed-loop pseudoinverse’s method the joint positions can be computed

through the time integration of the velocities according with the block diagram of the inverse
kinematics algorithm depicted in Figure 13, where xref represents the vector of reference
coordinates of the robot gripper in the operational space.

Based on (4.7) we analyze the kinematic performances of the 3R-robot when repeating
a circular motion in the operational space with frequency ω0 = 7.0 rad s−1, centre at distance
r = [x2

1 + x
2
2]

1/2 and radius ρ.
Figure 14 shows the joint positions for the inverse kinematic algorithm (4.5) for r =

{0.6, 2.0} and ρ = {0.3, 0.5}. We observe that the following hold.

(i) For r = 0.6 occur unpredictable motions with severe variations that lead to high
joint transients [13]. Moreover, we verify a low-frequency signal modulation that
depends on the circle being executed.

(ii) For r = 2.0 the motion is periodic with frequency identical to ω0 = 7.0 rad s−1.
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Figure 14: The 3R-robot joint positions versus time using the pseudoinverse method for r = {0.6, 2.0} and
ρ = {0.3, 0.5}.

4.3. Analysis of the Robot Trajectories

In the previous subsection we verified that the pseudoinverse-based algorithm leads to
unpredictable arm configurations. In order to gain further insight into the pseudoinverse
nature several distinct experiments are devised in the sequel during a time window of 300
cycles. Therefore, in a first set of experiments we calculate the Fourier transform of the 3R-
robot joints velocities for a circular repetitive motion with frequency ω0 = 7.0 rad s−1, radius
ρ = {0.1, 0.3, 0.5, 0.7}, and radial distances r ∈]0, LTOT − ρ[.

Figure 15 shows |F{q̇2(t)}| versus the frequency ratio ω0/ω and the distance r where
F{ } represents the Fourier operator. Is verified an interesting phenomenon induced by the
gripper repetitive motion ω0 because a large part of the energy is distributed along several
subharmonics. These fractional-order harmonics (foh) depend on r and ρ making a complex
pattern with similarities with those revealed by chaotic systems. Furthermore, we observe
the existence of several distinct regions depending on r.

For example, selecting in Figure 15 several distinct cases, namely for r = {0.08,
0.30, 0.53, 1.10, 1.30, 2.00}, we have the different signal Fourier spectra clearly visible in
Figure 16.
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Figure 15: |F{q̇2(t)}| of the 3R-robot during 300 cycles versus r and ω/ω0, for ρ = {0.1, 0.3, 0.5, 0.7}, ω0 =
7.0 rad s−1.

In the authors’ best knowledge the foh are aspects of fractional dynamics [14, 15, 31],
but a final and assertive conclusion about a physical interpretation is a matter still to be
explored.

For joints velocities 1 and 3 the results are similar to the verified ones for joint
velocity 2.

5. Heat Diffusion

The heat diffusion is governed by a linear one-dimensional partial differential equation (PDE)
of the form:

∂u

∂t
= k

∂2u

∂x2
, (5.1)

where k is the diffusivity, t is the time, u is the temperature, and x is the space coordinate.
However, (5.1) involves the solution of a PDE of parabolic type for which the standard theory
guarantees the existence of a unique solution [16].

For the case of a planar perfectly isolated surface we usually apply a constant
temperature U0 at x = 0 and analyzes the heat diffusion along the horizontal coordinate x.
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Figure 16: |F{q̇2(t)}| of the 3R-robot during 300 cycles versus the frequency ratio ω/ω0, for r =
{0.08, 0.30, 0.53, 1.10, 1.30, 2.00}, ρ = 0.7, ω0 = 7.0 rad s−1.

Under these conditions, the heat diffusion phenomenon is described by a noninteger-order
model:

U(x, s) =
U0

s
G(s) G(s) = e−x

√
s/k, (5.2)

where x is the space coordinate,U0 is the boundary condition, andG(s) is the system transfer
function.

In our study, the simulation of the heat diffusion is performed by adopting the
Crank-Nicholson implicit numerical integration based on the discrete approximation to
differentiation as [16, 17]

−ru
[
j + 1, i + 1

]
+ (2 + r)u

[
j + 1, i

]
− ru

[
j + 1, i − 1

]
= ru

[
j, i + 1

]
+ (2 − r)u

[
j, i

]
+ u

[
j, i − 1

]
,

(5.3)

where r = Δt(Δx2)−1, {Δx,Δt}, and {i, j} are the increments and the integration indices for
space and time, respectively.
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Figure 17: Closed-loop system with PID controller Gc(s).

5.1. Control Strategies

The generalized PID controller Gc(s) has a transfer function of the form

Gc(s) = K
[

1 +
1

Tisα
+ Tdsβ

]
, (5.4)

where α and β are the orders of the fractional integrator and differentiator, respectively. The
constants K, Ti, and Td are correspondingly the proportional gain, the integral time constant,
and the derivative time constant.

Clearly, taking (α, β) = {(1, 1), (1, 0), (0, 1), (0, 0)} we get the classical {PID,PI,PD,P}
controllers, respectively.

The PIαDβ controller is more flexible and gives the possibility of adjusting more
carefully the closed-loop system characteristics.

In the following two subsections, we analyze the system of Figure 17 by adopting the
classical integer-order PID and a fractional PIDβ, respectively.

5.2. PID Tuning Using the Ziegler-Nichols Rule

In this subsection, we analyze the closed-loop system with a conventional PID controller
given by the transfer function (5.4) with α = β = 1. Usually, the PID parameters (K, Ti, Td)
are tuned by using the so-called Ziegler-Nichols open loop (ZNOL) method [17]. The ZNOL
heuristics are based on the approximate first-order plus dead-time model:

Ĝ(s) =
Kp

τs + 1
e−sT . (5.5)

For the heat system, the resulting parameters are {Kp, τ, T} = {0.52, 162, 28} leading to
the PID constants {K, Ti, Td} = {18.07, 34.0, 8.5}.

A step input is applied at x = 0.0 m and the closed-loop response c(t) is analyzed
for x = 3.0 m, without actuator saturation (Figure 18). We verify that the system with a
PID controller, tuned through the ZNOL heuristics, does not produce satisfactory results
giving a significant overshoot ov and a large settling time ts, namely, {ts, tp, tr , ov(%)} ≡
{44.8, 27.5, 12.0, 68.56}, where tp represents the peak time and tr the rise time. We consider
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Figure 18: Step responses of the closed-loop system for the PID controller and x = 3.0 m.

two indices that measure the response error, namely, the integral square error (ISE) and the
integral time square error (ITSE) criteria defined as

ISE =
∫∞

0
[r(t) − c(t)]2dt,

ITSE =
∫∞

0
t[r(t) − c(t)]2dt.

(5.6)

We can use other performance criteria such as the integral absolute error (IAE) or the
integral time absolute error (ITAE); however, in the present case, the ISE and the ITSE criteria
have produced the best results and are adopted in the study.

In this case, the ZNOL PID tuning leads to the values (ISE, ITSE) = (27.53, 613.97). The
poor results indicate again that the method of tuning may not be the most adequate for the
control of the heat system.

In fact, the inherent fractional dynamics of the system lead us to consider other
configurations. In this perspective, we propose the use of fractional controllers tuned by the
minimization of the indices ISE and ITSE.

5.3. PIDβ Tuning Using Optimization Indices

In this subsection, we analyze the closed-loop system under the action of the PIDβ controller
given by the transfer function (5.4) with α = 1 and 0 ≤ β ≤ 1. The fractional derivative term
Tds

β in (5.4) is implemented through a fourth-order Padé discrete rational transfer function.
It used a sampling period of T = 0.1 second.

The PIDβ controller is tuned by the minimization of an integral performance index.
For that purpose, we adopt the ISE and ITSE criteria.

A step reference input R(s) = 1/s is applied at x = 0.0 m and the output c(t) is
analyzed for x = 3.0 m, without actuator saturation. The heat system is simulated for 3000
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Figure 19: The PIDβ parameters (K, Ti, Td) versus β for the ISE and ITSE optimization criteria. The dot
represents the PID-ZNOL.

seconds. Figure 19 illustrates the variation of the fractional PID parameters (K, Ti, Td) as
function of the order’s derivative β, for the ISE and the ITSE criteria. The dots represent the
values corresponding to the classical PID (ZNOL-tuning) addressed in the previous section.

The curves reveal that for β < 0.4 the parameters (K, Ti, Td) are slightly different, for
the two ISE and ITSE criteria, while for β ≥ 0.4 they lead to almost similar values. This fact
indicates a large influence of a weak-order derivative on system’s dynamics.

To further illustrate the performance of the fractional-order controllers a saturation
nonlinearity is included in the closed-loop system of Figure 17 and inserted in series with the
output of the controller Gc(s). The saturation element is defined as

n(m) =

⎧⎨
⎩
m, |m| < δ,

δ sign (m), |m| ≥ δ.
(5.7)

The controller performance is evaluated for δ = {20, . . . , 100} and δ = ∞ which
corresponds to a system without saturation. We use the same fractional-PID parameters
obtained without considering the saturation nonlinearity.

Figures 20 and 21 show the step responses of the closed-loop system and the
corresponding controller output, for the PIDβ tuned in the ISE and ITSE perspectives for
δ = 10 and δ = ∞, respectively. The controller parameters {K, Ti, Td, β} correspond to the
minimization of those indices leading to the values ISE: {K, Ti, Td, β} ≡ {3, 23, 90.6, 0.875} and
ITSE: {K, Ti, Td, β} ≡ {1.8, 17.6, 103.6, 0.85}.

The step responses reveal a large diminishing of the overshoot and the rise time when
compared with the integer PID, showing a good transient response and a zero steady-state
error. The PIDβ leads to better results than the classical PID controller tuned through the
ZNOL rule. These results demonstrate the effectiveness of the fractional algorithms when
used for the control of fractional-order systems. The step response and the controller output
are also improved when the saturation level δ is diminished.

Figure 22 depicts the ISE and ITSE indices for 0 ≤ β ≤ 1, when δ = {20, . . . , 100} and
δ = ∞. We verify the existence of a minimum for β = 0.875 and β = 0.85 for the ISE and ITSE
cases, respectively. Furthermore, the higher the δ the lower the value of the index.
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Figure 20: Step responses of the closed-loop system and the controller output for the ISE and the ITSE
indices, with a PIDβ controller, δ = 10 and x = 3.0 m.
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Figure 21: Step responses of the closed-loop system and the controller output for the ISE and the ITSE
indices, with a PIDβ controller, δ =∞ and x = 3.0 m.

Figures 23 and 24 show the variation of the settling time ts, the peak time tp, the rise
time tr , and the percent overshoot ov(%), for the closed-loop response tuned through the
minimization of the ISE and the ITSE indices, respectively.

In the ISE case ts, tp, and tr diminish rapidly for 0 ≤ β ≤ 0.875, while for β > 0.875
the parameters increase smoothly. For the ITSE, we verify the same behavior for β = 0.85. On
the other hand, ov(%) increases smoothly for 0 ≤ β ≤ 0.7, while for β > 0.7 it decreases very
quickly, both for the ISE and the ITSE indices.
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Figure 22: ISE and ITSE versus 0 ≤ β ≤ 1 for δ = {20, . . . , 100} and δ =∞.

In conclusion, for 0.85 ≤ β ≤ 0.875 we get the best controller tuning, superior to the
performance revealed by the classical integer-order scheme.

6. Circuit Synthesis Using Evolutionary Algorithms

In recent decades evolutionary computation (EC) techniques have been applied to the design
of electronic circuits and systems, leading to a novel area of research called Evolutionary
Electronics (EE) or Evolvable Hardware (EH). EE considers the concept for automatic
design of electronic systems. Instead of using human conceived models, abstractions, and
techniques, EE employs search algorithms to develop implementations not achievable with
the traditional design schemes, such as the Karnaugh or the Quine-McCluskey Boolean
methods.

Several papers proposed designing combinational logic circuits using evolutionary
algorithms and, in particular, genetic algorithms (GAs) [32, 33] and hybrid schemes such
as the memetic algorithms (MAs) [34].

Particle swarm optimization (PSO) constitutes an alternative evolutionary computa-
tion technique, and this paper studies its application to combinational logic circuit synthesis.
Bearing these ideas in mind, the organization of this section is as follows. Section 6.1 presents
a brief overview of the PSO. Section 6.2 describes the PSO-based circuit design, while
Section 6.3 exhibits the simulation results.

6.1. Particle Swarm Optimization

In literature about PSO the term ‘swarm intelligence’ appears rather often and, therefore, we
begin by explaining why this is so.
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Figure 23: Parameters ts, tp, tr , ov(%) for the step responses of the closed-loop system for the ISE indice,
with a PIDβ controller, when δ = {20, . . . , 100} and δ =∞, x = 3.0 m.

Noncomputer scientists (ornithologists, biologists, and psychologists) did early
research, which led into the theory of particle swarms. In these areas, the term “swarm
intelligence” is well known and characterizes the case when a large number of individuals
are able of accomplish complex tasks. Motivated by these facts, some basic simulations of
swarms were abstracted into the mathematical field. The usage of swarms for solving simple
tasks in nature became an intriguing idea in algorithmic and function optimization.



Mathematical Problems in Engineering 23

25

30

35

40

45

50

t s
(s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

δ =∞
δ = 20
δ = 30
δ = 40
δ = 50

δ = 60
δ = 70
δ = 80
δ = 90
δ = 100

ITSE

(a)

35

40

45

50

55

60

65

70

75

t p
(s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

δ =∞
δ = 20
δ = 30
δ = 40
δ = 50

δ = 60
δ = 70
δ = 80
δ = 90
δ = 100

ITSE

(b)

14

16

18

20

22

24

26

28

t r
(s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

δ =∞
δ = 20
δ = 30
δ = 40
δ = 50

δ = 60
δ = 70
δ = 80
δ = 90
δ = 100

ITSE

(c)

4

6

8

10

12

14

16

18

20

22

o
v
(%

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β

δ =∞
δ = 20
δ = 30
δ = 40
δ = 50

δ = 60
δ = 70
δ = 80
δ = 90
δ = 100

ITSE

(d)

Figure 24: Parameters ts, tp, tr , ov(%) for the step responses of the closed-loop system for the ITSE indice,
with a PIDβ controller, when δ = {20, . . . , 100} and δ =∞, x = 3.0 m.

Eberhart and Kennedy were the first to introduce the PSO algorithm [35], which
is an optimization method inspired in the collective intelligence of swarms of biological
populations, and was discovered through simplified social model simulation of bird flocking,
fishing schooling, and swarm theory.

In the PSO, instead of using genetic operators, as in the case of GAs, each particle
(individual) adjusts its flying according with its own and its companions experiences. Each
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particle is treated as a point in a D-dimensional space and is manipulated as described in
what follows in the original PSO algorithm:

vid = vid + c1rand( )
(
pid − xid

)
+ c2Rand( )

(
pgd − xid

)
, (6.1a)

xid = xid + vid, (6.1b)

where c1 and c2 are positive constants, rand( ) and Rand( ) are two random functions in
the range [0, 1], Xi = (xi1, xi2, . . . , xiD) represents the ith particle, Pi = (pi1, pi2, . . . , piD) is
the best previous position (the position giving the best fitness value) of the particle, the
symbol g represents the index of the best particle among all particles in the population, and
Vi = (vi1, vi2, . . . , viD) is the rate of the position change (velocity) for particle i.

However, (6.1a) and (6.1b) represent the flying trajectory of a population of particles.
Also, (6.1a) describes how the velocity is dynamically updated and (6.1b) the position update
of the “flying” particles. Moreover, (6.1b) is divided in three parts, namely the momentum,
the cognitive and the social parts. In the first part the velocity cannot be changed abruptly:
it is adjusted based on the current velocity. The second part represents the learning from its
own flying experience. The third part consists on the learning group flying experience [36].

The first new parameter added into the original PSO algorithm is the inertia weigh.
The dynamic equation of PSO with inertia weigh is modified to be

vid = wvid + c1rand( )
(
pid − xid

)
+ c2Rand( )

(
pgd − xid

)
, (6.2a)

xid = xid + vid, (6.2b)

where w constitutes the inertia weigh that introduces a balance between the global and the
local search abilities. A large inertia weigh facilitates a global search while a small inertia
weigh facilitates a local search.

Another parameter, called constriction coefficient k, is introduced with the hope that it
can insure a PSO to converge. A simplified method of incorporating it appears in (6.3), where
k is function of c1 and c2 as it is presented as follows:

vid = k
[
vid + c1rand( )

(
pid − xid

)
+ c2Rand( )

(
pgd − xid

)]
,

xid = xid + vid,
(6.3)

k = 2
(

2 − φ −
√
φ2 − 4φ

)−1

, (6.4)

where φ = c1 + c2, φ > 4.
There are two different PSO topologies, namely, the global version and the local

version. In the global version of PSO, each particle flies through the search space with a
velocity that is dynamically adjusted according to the particle’s personal best performance
achieved so far and the best performance achieved so far by all particles. On the other hand,
in the local version of PSO, each particle’s velocity is adjusted according to its personal best
and the best performance achieved so far within its neighborhood. The neighborhood of each
particle is generally defined as topologically nearest particles to the particle at each side.
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2. Calculate the fitness of each individual in the
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3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Loop to step 2 until some condition is met

Figure 25: Evolutionary computation algorithm.

1. Initialize the population
2. Calculate the fitness of each individual in the
population
3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Apply a local search algorithm
5. Loop to step 2 until some condition is met

Figure 26: Memetic algorithm.

PSO is an evolutionary algorithm simple in concept, easy to implement and
computationally efficient. Figures 25, 26, and 27 present a generic EC algorithm, a hybrid
algorithm, more precisely a MA and the original procedure for implementing the PSO
algorithm, respectively.

The different versions of the PSO algorithms are the real-value PSO, which is the
original version of PSO and is well suited for solving real-value problems; the binary version
of PSO, which is designed to solve binary problems; and the discrete version of PSO, which
is good for solving the event-based problems. To extend the real-value version of PSO to
binary/discrete space, the most critical part is to understand the meaning of concepts such as
trajectory and velocity in the binary/discrete space.

Kennedy and Eberhart [35] use velocity as a probability to determine whether xid
(a bit) will be in one state or another (zero or one). The particle swarm formula of (6.1a)
remains unchanged, except that now pid and xid are integers in [0.0, 1.0] and a logistic
transformation S(vid) is used to accomplish this modification. The resulting change in
position is defined by the following rule:

if [rand( ) < S(vid)] then xid = 1; else xid = 0, (6.5)

where the function S(v) is a sigmoid limiting transformation and rand( ) is a random number
selected from a uniform distribution in the range [0.0, 1.0].
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1. Initialize population in hyperspace
2. Evaluate fitness of individual particles
3. Modify velocities based on previous best and
global (or neighborhood) best
4. Terminate on some condition
5. Go to step 2

Figure 27: Particle swarm optimization process.

X Y

a11 a12 a13

a21 a22 a23

a31 a32 a33

Inputs Outputs

Figure 28: A 3 × 3 matrix representing a circuit with input X and output Y .

6.2. PSO Based Circuit Design

We adopt a PSO algorithm to design combinational logic circuits. A truth table specifies the
circuits and the goal is to implement a functional circuit with the least possible complexity.
Four sets of logic gates have been defined, as shown in Table 2, being Gset 2 the simplest one
(i.e., a RISC-like set) and Gset 6 the most complex gate set (i.e., a CISC-like set). Logic gate
named WIRE means a logical no-operation.

In the PSO scheme the circuits are encoded as a rectangular matrix A (row × column
= r × c) of logic cells as represented in Figure 28.

Three genes represent each cell: <input1><input2><gate type>, where input1 and input2
are one of the circuit inputs, if they are in the first column, or one of the previous outputs,
if they are in other columns. The gate type is one of the elements adopted in the gate set.
The chromosome is formed with as many triplets as the matrix size demands (e.g., triplets =
3× r × c). For example, the chromosome that represents a 3×3 matrix is depicted in Figure 29.

The initial population of circuits (particles) has a random generation. The initial
velocity of each particle is initialized with zero. The following velocities are calculated
applying (6.2a) and the new positions result from using (6.2b). This way, each potential
solution, called particle, flies through the problem space. For each gene is calculated the
corresponding velocity. Therefore, the new positions are as many as the number of genes in
the chromosome. If the new values of the input genes result out of range, then a re-insertion
function is used. If the calculated gate gene is not allowed a new valid one is generated at
random. These particles then have memory and each keeps information of its previous best
position (pbest) and its corresponding fitness. The swarm has the pbest of all the particles and
the particle with the greatest fitness is called the global best (gbest).

The basic concept of the PSO technique lies in accelerating each particle towards its
pbest and gbest locations with a random weighted acceleration. However, in our case we also
use a kind of mutation operator that introduces a new cell in 10% of the population. This
mutation operator changes the characteristics of a given cell in the matrix. Therefore, the
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Matrix elementa11 a33

Figure 29: Chromosome for the 3 × 3 matrix of Figure 28.

mutation modifies the gate type and the two inputs, meaning that a completely new cell can
appear in the chromosome.

To run the PSO we have also to define the number P of individuals to create the initial
population of particles. This population is always the same size across the generations, until
reaching the solution.

The calculation of the fitness function Fs in (6.6) has two parts, f1 and f2, where
f1 measures the functionality and f2 measures the simplicity. In a first phase, we compare
the output Y produced by the PSO-generated circuit with the required values YR, according
with the truth table, on a bit-per-bit basis. By other words, f1 is incremented by one for each
correct bit of the output until f1 reaches the maximum value f10 that occurs when we have
a functional circuit. Once the circuit is functional, in a second phase, the algorithm tries to
generate circuits with the least number of gates. This means that the resulting circuit must
have as much genes <gate type> ≡<wire> as possible. Therefore, the index f2, that measures
the simplicity (the number of null operations), is increased by one (zero) for each wire (gate)
of the generated circuit, yielding

f10 = 2ni × no,

f1 = f1 + 1 if {bit i of Y} = {bit i of YR}, i = 1, . . . , f10,

f2 = f2 + 1 if gate type = wire,

Fs =

⎧⎨
⎩
f1, Fs < f10,

f1 + f2, Fs ≥ f10,

(6.6)

where ni and no represent the number of inputs and outputs of the circuit.
The concept of dynamic fitness function Fd results from an analogy between control

systems and the GA case, where we master the population through the fitness function. The
simplest control system is the proportional algorithm; nevertheless, there can be other control
algorithms, such as the proportional and the differential scheme.

In this line of thought, (6.6) is a static fitness function Fs and corresponds to using a
simple proportional algorithm. Therefore, to implement a proportional-derivative evolution
the fitness function needs a scheme of the type [18]

Fd = Fs +KDμ[Fs], (6.7)

where 0 ≤ μ ≤ 1 is the differential fractional-order and K ∈ R is the “gain” of the dynamical
term.
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Figure 30: S(N) versus Av(N) with P = 3000 and Fs for the GA, the MA, and the PSO algorithms.

6.3. Experiments and Results

A reliable execution and analysis of an EC algorithm usually requires a large number
of simulations to provide a reasonable assurance that the stochastic effects are properly
considered. Therefore, in this study are developed n = 20 simulations for each case under
analysis.
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Figure 31: Av(PT) versus Av(N) with P = 3000 and Fs for the GA, the MA, and the PSO algorithms.

The experiments consist on running the three algorithms {GA,MA,PSO} to generate
a typical combinational logic circuit, namely, a 2-to-1 multiplexer (M2-1), a 1-bit full adder
(FA1), a 4-bit parity checker (PC4) and a 2-bit multiplier (MUL2), using the fitness scheme
described in (6.6) and (6.7). The circuits are generated with the gate sets presented in Table 2
and P = 3000, w = 0.5, c1 = 1.5, and c2 = 2.

Figure 30 depicts the standard deviation of the number of generations to achieve the
solution S(N) versus the average number of generations to achieve the solution Av(N)
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Table 2: Gate sets.

Gate set Logic gates
Gset 2 {AND, XOR, WIRE}
Gset 3 {AND, OR, XOR, WIRE}
Gset 4 {AND, OR, XOR, NOT, WIRE}
Gset 6 {AND, OR, XOR, NOT, NAND, NOR, WIRE}

Table 3: The parameters (a, b) and (c, d).

Algorithm a b c d

GA 0.0365 1.602 0.1526 1.1734
MA 0.0728 1.2602 0.2089 1.3587
PSO 0.2677 1.1528 0.0141 1.1233

for the algorithms {GA,MA,PSO}, the circuits {M2-1, FA1, PC4,MUL2}, and the gate sets
{2, 3, 4, 6}. In these figure, we can see that the MUL2 circuit is the most complex one, while
the PC4 and the M2-1 are the simplest circuits. It is also possible to conclude that Gset 6 is the
less efficient gate set for all algorithms and circuits.

Figure 30 reveals that the plots follow a power law:

S(N) = a[Av(N)]b a, b ∈ R. (6.8)

Table 3 presents the numerical values of the parameters (a, b) for the three algorithms.
In terms of S(N) versus Av(N), the MA algorithm presents the best results for

all circuits and gate sets. In what concerns the other two algorithms, the PSO is superior
(inferior) to the GA for complex (simple) circuits.

Figure 31 depicts the average processing time to obtain the solution Av(PT) versus
the average number of generations to achieve the solution Av(N) for the algorithms
{GA,MA,PSO}, the circuits {M2-1, FA1, PC4,MUL2} and the gate sets {2, 3, 4, 6}. When
analysing these charts it is clear that the PSO algorithm demonstrates to be around ten times
faster than the MA and the GA algorithms.

These plots follow also a power law:

Av(PT) = c[Av(N)]d c, d ∈ R. (6.9)

Table 3 shows parameters (c, d) and we can see that the PSO algorithm has the best
values.

Figures 32 and 33 depict the standard deviation of the number of generations to
achieve the solution S(N) and the average processing time to obtain the solution Av(PT),
respectively, versus the average number of generations to achieve the solution Av(N) for the
PSO algorithm using Fd, the circuits {M2-1, FA1, PC4, MUL2}, and the gate sets {2, 3, 4, 6}. We
conclude that Fd leads to better results in particular for the MUL2 circuit and for the Av(PT).

Figures 34 and 35 present a comparison between Fs and Fd.
In terms of S(N) versus Av(N) it is possible to say that the MA algorithm presents

the best results. Nevertheless, when analysing Figure 31, that shows Av(PT) versus Av(N)
for reaching the solutions, we verify that the PSO algorithm is very efficient, in particular, for
the more complex circuits.



Mathematical Problems in Engineering 31

0.1

1

10

100

1000

10000

S
(N

)

1 10 100 1000 10000

Av(N)

PSO with Fd

Gset 2 M2-1
Gset 4 M2-1
Gset 2 FA1
Gset 4 FA1

Gset 2 PC4
Gset 4 PC4

Gset 2 MUL2
Gset 4 MUL2

Gset 3 M2-1
Gset 6 M2-1
Gset 3 FA1
Gset 6 FA1

Gset 3 PC4
Gset 6 PC4

Gset 3 MUL2
Gset 6 MUL2a

Figure 32: S(N) versus Av(N) for the PSO algorithm, P = 3000 and Fd.
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Figure 33: Av(PT) versus Av(N) for the GA, P = 3000 and Fd.



32 Mathematical Problems in Engineering

1

10

100

1000

10000

A
v
(N

)

Gset 6 Gset 4 Gset 3 Gset 2

Fs, M2-1
Fd , M2-1
Fs, FA1
Fd , FA1

Fs, PC4
Fd , PC4
Fs, MUL2
Fd , MUL2

Figure 34: Av(N) for the PSO algorithm, P = 3000 using Fs and Fd.
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Figure 35: S(N) for the PSO algorithm, P = 3000 using Fs and Fd.

The PSO-based algorithm for the design of combinational circuits follows the same
profile as the other two evolutionary techniques presented in this paper.

Adopting the study of the S(N) versus Av(N) for the three evolutionary algorithms,
the MA algorithm presents better results over the GA and the PSO algorithms. However, in
what concerns the processing time to achieve the solutions, the PSO outcomes clearly the GA
and the MA algorithms. Moreover, applying the Fd the results obtained are improved further
in all gate sets and in particular for the more complex circuits.
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7. Conclusions

Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus.
Nevertheless, the application of FC just emerged in the last two decades, due to the progress
in the area of chaos that revealed subtle relationships with the FC concepts.

Recently FC has been a fruitful field of research in science and engineering and
many scientific areas are currently paying wider attention to the FC concepts. In the field
of dynamical systems theory, some work has been carried out but the proposed models and
algorithms are still in a preliminary stage of establishment. This article presented several case
studies on the implementation of FC-based models and control systems, being demonstrated
the advantages of using the FC theory in different areas of science and engineering. In fact,
this paper studied a variety of different physical systems, namely

(i) tuning of PID controllers using fractional calculus concepts;

(ii) fractional PDα control of a hexapod robot;

(iii) fractional dynamics in the trajectory control of redundant manipulators;

(iv) heat diffusion;

(v) circuit synthesis using evolutionary algorithms.

It has been recognized the advantageous use of this mathematical tool in the modeling
and control of these dynamical systems, and the results demonstrate the importance of
Fractional Calculus and motivate for the development of new applications.
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