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Generally speaking, a vibration system consists of three parts: vibration resource, vibration transfer
path, and vibration receiver. Based on the dynamic sensitivity technique, this paper proposes a
method for evaluating the contribution of each vibration transfer path to the dynamic response
of the vibration receiver. Nonlinear stiffness is an important factor in causing the nonlinearity of
vibration systems. Taking sensitivity as the evaluation criteria, we present an effective approach for
estimating the influence of nonlinear stiffness in vibration transfer paths on the dynamic response
of the vibration receiver. Using the proposed method, the sensitivity of the vibration system with
multiple and/or multidimensional transfer paths could be determined in the time domain.

1. Introduction

The level of vibration and noise relates to the quality of mechanical products and equipments.
That is to say mechanical products with proper vibration and noise characteristics are prone
to be favored by customers and are prone to make more profits for the enterprise. Therefore,
the study of the transfer of vibration and noise in vibration systems with multiple and/or
multi-dimensional transfer paths is of significant value. As well known, the technology
of vibration and noise control plays an important role both in the improvement of the
comprehensive property and technical index of mechanical products and in the advancement
of the scientific and technical grade of mechanical equipments. The conventional conception
of vibration and noise control in practical engineering projects is to cut off the transfer
path of vibration and noise so as to reduce vibration and noise disturbance. However,
in practical applications, it is out of the question to completely cut off the vibration
transfer path. And an engineer can only try to minimize the energy transfer in vibration
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Figure 1: The model of 5-DOF vibration transfer path systems.

transfer paths while the vibration transfer paths in vibration systems are precisely identified.
Therefore, the researches on the interaction of the vibration source, vibration transfer path,
and vibration receiver are mainly focused on energy transfer techniques and physical
experiments. The methods based on energy (or power) transfer and dynamic tests have been
widely used to investigate the dynamic characteristics of vibration transfer path systems [1–
5].

When conducting a dynamic design or modification, a designer always needs to know
which parameters have more significant effects on the dynamic performance of the system.
Therefore, dynamic sensitivity analysis has turned to be a powerful and multipurpose design
tool in optimum structural design, structural parameter identification, system dynamic
control, and so forth. Generally speaking, vibration tests are needed in dynamic design
of a practical engineering project. Once the design scheme is changed, the whole process
of the vibration test should be performed once again, which wastes great expenditures
of resources, both human and material. In this case, a designer relies largely upon his
experiences and past works, which is blind to some extent. Therefore, we need to study the
sensitivity of vibration systems with respect to path parameters. In this way, the performance
variation of the dynamic system following the change of path parameters can be figured
out.

On the basis of the basic conception of vibration theories, this paper presents a method
to quantify the contribution of each vibration transfer path to the dynamic response of the
vibration transfer path system by employing the dynamic sensitivity as an evaluation index.
Especially, a method for sensitivity analysis of nonlinear vibration transfer path systems
with respect to different kinds of non-linear stiffness is also explored in the time domain.
In view of the above studies, the designer can figure out which kind of non-liner stiffness
has more significant influence on the dynamic response of the vibration transfer path system.
Then precautionary measures can be taken to reduce the energy transfer of vibration and
noise by modifying the structural parameter and topology or by changing components in the
significant transfer paths.
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2. Vibration Transfer Path Systems

Generally speaking, every vibration engineering problem can be rationalized into three
parts: vibration source (i.e., what is the dynamic loading), vibration path (i.e., what is
the structural mass, stiffness, and damping), and vibration response and its effects on the
“receiver” (typically, the receiver is humans, occupying the structure but could also be
vibration sensitive equipment). As shown in Figure 1, a five-degree-of-freedom (5-DOF)
vibration transfer path system with non-linear stiffness is subjected to a dynamic excitation.
Newton’s law can be applied to obtain the vibration differential equations of the 5-DOF
vibration transfer path system as follows:

Mẍ + Cẋ +K(x)x = F(t), (2.1)

where

M = diag
[
ms mp1 mp2 mp3 mr

]
,

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

cs + csp1 + csp2 + csp3 −csp1 −csp2 −csp3 0

−csp1 csp1 + crp1 0 0 −crp1

−csp2 0 csp2 + crp2 0 −crp2

−csp3 0 0 csp3 + crp3 −crp3

0 −crp1 −crp2 −crp3 cr + crp1 + crp2 + crp3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ks + ksp1 + ksp2 + ksp3 −ksp1 −ksp2 −ksp3 0

−ksp1 ksp1 + krp1 0 0 −krp1

−ksp2 0 ksp2 + krp2 0 −krp2

−ksp3 0 0 ksp3 + krp3 −krp3

0 −krp1 −krp2 −krp3 kr + krp1 + krp2 + krp3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

F(t) = {F0 sin(ωt)0000}T , x(t) =
{
xsxp1xp2xp3xr

}T
.

(2.2)

In this paper, ksp1 is supposed to be non-linear stiffness. In general, there are two kinds of non-
linear elastic forces, which are called the material non-linear force and the piecewise linear
force. ke(i)

sp1 (i = 1, 2) is used to denote the equivalent linear stiffness of the above mentioned
two kinds of non-linear stiffness. In engineering practice, the non-linear stiffness is usually
approximately described by equivalent linear stiffness as

Ke =
∂F(x)
∂xT

=
∂[K(x)x]

∂xT
= K(x) +

∂K(x)
∂xT

(In ⊗ x), (2.3)
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where F(x) = K(x)x denotes the non-linear elastic force, In is a identity matrix with n × n
dimensions, and the symbol ⊗ represents Kronecker product, which can be defined as

Ap×q ⊗ Bs×t =

⎡

⎢⎢⎢
⎣

a11B a12B · · · a1qB
a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap2B · · · apqB

⎤

⎥⎥⎥
⎦

ps×qt

. (2.4)

3. Nonlinear Stiffness in Vibration Transfer Path Systems

In most cases, the elastic force is non-linear. When dealing with a specific problem, based
on experiments, the non-linear elastic force can always be expressed as a function of motion
parameters after some simplifications. This approach is often an important step in dealing
with vibration engineering problems with non-linear stiffness.

3.1. Material Non-Linear Stiffness

In actual engineering materials, the stress-strain relation is nonlinear and follows Hook’s
law only up to a certain deformation (displacement of one end with respect to the other).
Beyond the deformation, the stress exceeds the yield point of the material and the stress-
strain relation becomes nonlinear. This kind of non-linear stiffness is usually called material
non-linear stiffness, which can be roughly divided into two types. (1) If the slope of the force-
deflection curve increases with the increase of the deformation, the spring element is said to
be hardening or hard. (2) If the slope of the force-deflection curve decreases with the increase
of the deformation, the spring element is softening or soft. In many practical applications, the
non-linear elastic force can be approximately denoted as

F
(1)
sp1(x) = k

1(1)
sp1

(
xp1 − xs

)
± k2(1)

sp1

(
xp1 − xs

)3
, (3.1)

where k
1(1)
sp1 > 0, k2(1)

sp1 > 0 and xp1 − xs is the displacement of the spring from its free length,

k
1(1)
sp1 (xp1 − xs) denotes the linear elastic force, k2(1)

sp1 (xp1 − xs)
3 denotes the non-linear elastic

force, and the non-linear elastic force is often much smaller than the linear elastic force.
Therefore the non-linear elastic force can be regarded as a correction term. Sign “±” indicates
the character of stiffness, which is “+” or “−” depending on whether the character of the
stiffness is hard or soft. Consequently, the coefficient of the equivalent linear stiffness, ke(1)

sp1 ,

of material non-linear stiffness can be represented as

k
e(1)
sp1 = k

1(1)
sp1 ± 3k2(1)

sp1

(
xp1 − xs

)2
. (3.2)

As shown in (3.2), a nonlinear spring element does not have a single stiffness value because
its slope is variable. For a hard spring, its slop and thus its stiffness increase with deflection.
The stiffness of a soft spring decreases with deflection.
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3.2. Piecewise Linear Stiffness

Sometimes a nonlinear model is unavoidable. This is the case when a system is designed
to utilize two or more spring elements to achieve a spring constant that varies with the
applied load. Even if each spring element is linear, the combined system will be nonlinear.
An example of such a system is the vehicle suspension with a main spring and an auxiliary
spring. Furthermore, some vibrating machineries, such as the vibrating screen and the
oscillating conveyer, use the spring set to get the desired dynamic characteristics. As for
this kind of non-linear elastic model, under certain circumstances, two or more groups of
springs work together in the form of parallel or series to increase or decrease the stiffness of
the system. From statics, we know that the non-linear restoring force of the piecewise linear
stiffness vibration system can be represented as

F
(2)
sp1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k
2(2)
sp1

(
xp1−xs

)
−
(
k

1(2)
sp1 −k

2(2)
sp1

)(
xp1 − xs

)
0, −

(
xp1 − xs

)
0 ≥

(
xp1 − xs

)
,

k
1(2)
sp1

(
xp1 − xs

)
, −

(
xp1 − xs

)
0≤

(
xp1 − xs

)
≤
(
xp1−xs

)
0,

k
2(2)
sp1

(
xp1 − xs

)
+
(
k

1(2)
sp1 − k

2(2)
sp1

)(
xp1 − xs

)
0,

(
xp1 − xs

)
0≤

(
xp1 − xs

)
.

(3.3)

Therefore, for the non-linear stiffness of piecewise linearity, the equivalent stiffness k
e(2)
sp1 of

ksp1 is

k
e(2)
sp1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k
1(2)
sp1 , −

(
xp1 − xs

)
0 ≤

(
xp1 − xs

)
≤
(
xp1 − xs

)
0.

k
2(2)
sp1 , otherwise.

(3.4)

To investigate the influences of different kinds of non-linear stiffness on the dynamic
response of the vibration transfer path system, we present a method for sensitivity analysis of
the dynamic response of the vibration receiver with respect to the equivalent linear stiffness
coefficients (ke(1)

sp1 and k
e(2)
sp1 ) of material non-linear stiffness and piecewise linear stiffness. In

this way, which kind of nonlinear stiffness has more significant influence on the dynamic
responses of vibration transfer path systems can be accurately judged.

4. Sensitivity with Respect to Path Parameters and
Non-Linear Stiffness

Sensitivity analysis plays an important role in optimization design and dynamic modifi-
cation. Based on design sensitivity results, an engineer can decide on the direction and
amount of design change needed to improve the performance measures. In addition,
design sensitivity information can provide answers to “what if” questions by predicting
performance measure perturbations when the perturbations of design variables are provided.
The dynamic sensitivity analysis provides a theoretical basis for identifying the parameter
contribution of each transfer path to the dynamic response of vibration transfer path systems.
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Based on Kronecker algebra and matrix calculus, we can obtain general sensitivity equations
through partial differential vector calculus of (2.1):

M
Dẍ
DVT

+ C
Dẋ
DVT

+K
Dx
DVT

=
F(t)
∂VT

− ∂M
∂VT

(Is ⊗ ẍ) −
∂C
∂VT

(Is ⊗ ẋ) −
∂K
∂VT

(Is ⊗ x), (4.1)

where Is is a identity matrix with s × s dimensions, signal “⊗” is the Kronecker
product, V = (mp1 mp2 mp3 csp1 csp2 csp3 crp1 crp2 crp3 ksp1 ksp2 ksp3 krp1 krp2 krp3)

T , and
Dx/DVT , Dẋ/DVT ,
Dẍ/DVT are Jacobian matrices, namely, the parameter sensitivity matrices. And the
parameter sensitivity matrices can be obtained by substituting the solutions of (2.1), x, ẋ, ẍ
into (4.1). Then the sensitivity of dynamic response of the vibration transfer path system with
respect to each path parameter can be solved as follows:

Dx
Dmp

=
∂x

∂mp1
+

∂x
∂mp2

+
∂x

∂mp3
, (4.2a)

Dx
Dcsp

=
∂x

∂csp1
+

∂x
∂csp2

+
∂x

∂csp3
, (4.2b)

Dx
Dcrp

=
∂x

∂crp1
+

∂x
∂crp2

+
∂x

∂crp3
, (4.2c)

Dx
Dksp

=
∂x

∂ksp1
+

∂x
∂ksp2

+
∂x

∂ksp3
, (4.2d)

Dx
Dkrp

=
∂x

∂krp1
+

∂x
∂krp2

+
∂x

∂krp3
, (4.2e)

where Dx/Dmp, Dx/Dcsp, Dx/Dcrp, Dx/Dksp, and Dx/Dkrp are the sensitivity of the
dynamic response of the vibration receiver with respect to the mass, damping and stiffness
of the vibration transfer path system, respectively. These sensitivity matrices can be used
to judge the contribution of each path parameter to the dynamic response of the vibration
receiver. The sign of sensitivity can be positive or negative. When a sensitivity coefficient is
positive, an increase in the model parameter leads to an increase in the corresponding state
variable, and when it is negative, the opposite is true. Moreover, the larger the absolute value
of sensitivity is, the more significant is the factor for the response of the vibration transfer
path system.

Sensitivity analysis of a vibration transfer path system with respect to non-linear path
stiffness provides a theoretical basis for identifying the parameter contribution of each kind of
non-linear stiffness to the dynamic response of the vibration receiver. Through the differential
of (2.1) with respect to k

e(i)
sp1 , we get the following sensitivity function:

M
dẍ

dke(i)
sp1

+ C
dẋ

dke(i)
sp1

+K
dx

dke(i)
sp1

= − dK

dke(i)
sp1

x (i = 1, 2), (4.3)
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Figure 2: Sensitivity with respect to mass.
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Figure 3: Sensitivity with respect to damping.

where dx/dke(i)
sp1 , dẋ/dke(i)

sp1 , and dẍ/dke(i)
sp1 are sensitivity matrices of the dynamic response of

the vibration receiver with respect to the coefficient of non-linear path stiffness. In order to
identify the contribution of different kinds of non-linear stiffness in transfer paths, we present
a sensitivity analysis model by which the sensitivity of the vibration transfer path system with

respect to the coefficients of different kinds of non-linear stiffness, V = (k2(1)
sp1 k

2(2)
sp1 )

T
, can be

obtained. Obviously, we can get the dynamic response of the vibration transfer path system,
x, ẋ, and ẍ, from (2.1). Then, substituting the results of (2.1) into (4.1) and (4.3), we can get
the sensitivity of the vibration transfer path system with respect to linear equivalent stiffness
coefficients k

2(1)
sp1 and k

2(2)
sp1 to evaluate the effects of the non-linear stiffness on the dynamic

response of the vibration receiver.
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Figure 4: The curve of the sensitivity with respect to stiffness.
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Figure 5: Sensitivity with respect to equivalent stiffness.

5. Numerical Examples

As the 5-DOF vibration transfer path system shown in Figure 1, the mass of the vibration
resource is ms = 0.5 kg, the damping coefficient of the vibration resource system is cs = 1 N ·
s/m, and the stiffness coefficient of the vibration resource system is ks = 500 N/m, the mass of
the vibration receiver is mr = 0.5 kg, the damping coefficient of the vibration receiver system
is cr = 1.0 N · s/m, the stiffness of the vibration receiver system is kr = 1000 N/m. In the three
transfer paths, the masses and the coefficients of the damping and stiffness are mp1 = 0.4 kg,
mp2 = 0.5 kg, mp3 = 0.6 kg, csp1 = crp1 = 6 N ·s/m, csp2 = crp2 = 4 N ·s/m, csp3 = crp3 = 8 N ·s/m,
ksp1 = krp1 = 800 N/m, ksp2 = krp2 = 600 N/m, and ksp3 = krp3 = 400 N/m, respectively. Try
to figure out the sensitivity of the vibration transfer path system with respect to each path
parameter when subjected to dynamic excitation, F = 10 sin(10t) or F = 10 exp(−0.2t).
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Figure 6: Sensitivity with respect to the material non-linear coefficient k2(2)
sp1 .

The sensitivity of the vibration transfer path system with respect to the mass, damping
and stiffness of the vibration transfer path system can be depicted in Figures 2–4. From the
results of sensitivity analysis, we can draw the conclusion that under the same excitation,
the mass has the strongest influence on the vibration transfer path system, followed by the
damping, and the stiffness. Besides, the damping and stiffness near the vibration receiver
have stronger effect on the dynamic response of the vibration receiver at the transient
vibration stage. Therefore, while modifying structural parameters or replacing components,
the mass, damping and stiffness of the 5-DOF vibration transfer path system need to be
sequentially considered, so that the transfer of vibration and noise in vibration transfer path
systems can be decreased efficiently.

In the above mentioned 5-DOF vibration transfer path system, ksp1 is non-linear
stiffness, and the liner parts of the non-linear stiffness are k1(1)

sp1 = k
1(2)
sp1 = 800 N/m. The turning

point of the piecewise linear stiffness is (xp1 − xs)0 = 1.5 × 10−3 m, and k
2(1)
sp1 = 80 N/m3. The

nonlinear correction term of the non-linear material stiffness is k
2(2)
sp1 = 8 N/m. Try to figure

out the sensitivity of the dynamic response of the 5-DOF vibration transfer path system with
respect to each kind of non-linear stiffness.

(1) The sensitivity of the dynamic response of the vibration receiver in the 5-DOF
vibration transfer path system with respect to the linear equivalent stiffness coefficient of the
non-linear stiffness ke(i)

sp1 (i = 1, 2) is depicted in Figure 5:
From Figure 5, we can draw the conclusion that although the linear parts of non-

linear stiffness are equal, the sensitivity with respect to the linear equivalent stiffness of
material nonlinear stiffness and piecewise linear stiffness is different. The reason is that the
dependency relationship between the non-linear part of different kinds of non-linear stiffness
and the dynamic response of the vibration transfer path system is different. In comparison,
the sensitivity with respect to the equivalent linear stiffness of the piecewise linear stiffness
is bigger than that of the material non-linear stiffness.

(2) The sensitivity of the dynamic response of the vibration receiver in the 5-DOF
vibration transfer path system with respect to the coefficients of the non-linear part of the
material non-linear stiffness and piecewise stiffness, k2(1)

sp1 and k
2(2)
sp1 , is depicted in Figures 6

and 7.
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Figure 7: Sensitivity with respect to the piecewise linear coefficient k2(2)
sp1 .

From the results shown in Figures 6 and 7, we can draw the conclusion that in the
above mentioned 5-DOF vibration transfer path system, the non-linear part of the piecewise
stiffness, k

2(2)
sp1 , is more sensitive to the dynamic responses of the vibration transfer path

system than that of the material non-linear stiffness, k2(1)
sp1 . However these two non-linear

stiffness parameters have different units; the results drawn above can only be used as a
reference to decrease the transfer of vibration or noise in the vibration transfer path system.

6. Conclusion

The effects of non-linear stiffness parameters on vibration transfer path systems are discussed
in this paper. Based on the sensitivity technology, sensitivity scheduling of dynamic responses
of vibration transfer path systems with respect to path parameters and non-linear stiffness is
provided in the time-domain. The units of mass and the coefficients of different kinds of non-
linear stiffness are different; therefore the results drawn in this paper can only be used as a
reference to decrease the transfer of vibration and noise in vibration transfer path systems.
However, without a doubt, this paper provides an effective way to analyze the sensitivity
of non-linear vibration transfer path systems with respect to path parameters and non-linear
stiffness.
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