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The nonlinear coupling vibration and bifurcation of a high-speed centrifugal compressor with a
labyrinth seal and two air-film journal bearings are presented in this paper. The rotary shaft and
disk are modeled as a rigid Jeffcott rotor. Muszynska’s model is used to express the seal force with
multiple parameters. For air-film journal bearings, the model proposed by Zhang et al. is adopted
to express unsteady bearing forces. The Runge-Kutta method is used to numerically determine the
vibration responses of the disk center and the bearings. Bifurcation diagrams for transverse motion
of the rotor are presented with parameters of rotation speed and pressure drop of the seal. Multiple
subharmonic, periodic, and quasiperiodic motions are presented with two seal-pressure drops. The
bifurcation characteristics show inherent interactions between forces of the air-film bearings and
the seal, presenting more complicated rotor dynamics than the one with either of the forces alone.
Bifurcation diagrams are obtained with parameters of pressure drop and seal length determined
for the sake of operation safety.

1. Introduction

The motion stability of high-speed rotor systems has drawn extensive attention throughout
the past several decades. It is now well known that the stability of the rotor’s equilibrium
can be lost as a result of the Hopf bifurcation, which leads to finite-amplitude whirls of oil-
film inside the bearings. The mechanism of oil whips developed from escalating whirling
motions has been thoroughly investigated both experimentally and theoretically (see, e.g.,
[1–4]). Several models have been developed to investigate oil-film forces of short bearings
and bearings with finite lengths [5–9]. Various studies of the oil-film forces were carried out
to present nonlinear vibrations, for example, super- and subharmonic motions, of the rotor
system related to the bearing dynamics [10–12]. Aside from the bearing forces, seal forces
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Figure 1: A Jeffcott rotor-seal-bearing system.

play significant roles in vibration and stability of air compressors and steam turbines. Seal
forces are usually generated due to the fluid-solid interaction in the clearance between the
shaft and the stator which may cause self-excited motions of the rotor. Previous investigations
showed that the seal force provides not only supportive reactions to the rotor in the
radial direction but also cross-coupling forces in the tangential direction that excites severe
vibrations in some occasions. An effective model was proposed by Muszynska to express
nonlinear seal forces based on experimental results [13, 14]. This model was later adopted by
Ding et al. [15] in their study on the Hopf bifurcation of a symmetric rotor-seal system and
by Hua et al. who numerically obtain the nonlinear vibration and bifurcation characteristics
of an unbalanced rotor-seal system [16]. Similar research was provided in Zhang et al. [17]
where subharmonic motions and bifurcation diagrams were demonstrated with parameter of
rotation speed. In spite of the numerous publications that separately dealt with rotor-bearing
and rotor-seal systems, very few literatures have been focused on the dynamics of rotor-seal-
bearing systems which is a great concern of air-compressor and steam turbine engineers. It
is worth emphasizing that the interaction between the seal and bearing excitations should
not be ignored since complicated, large-amplitude motions can be developed for rotors of
compressors and turbines.

The numerical analysis for nonlinear vibration and bifurcation behavior of a high-
speed centrifugal compressor with a labyrinth seal and two journal bearings is presented
in this paper. What differentiates the current rotor system from others is the application of
air-film bearings rather than conventional oil-film journal bearings. Practically, compressors
supported by this kind of bearings operate under circumstance where only inflammable
lubricants (i.e., air or pure water) are allowed. It should be noticed that the air-film bearings
complicate the dynamics of the rotor in two aspects: (1) since the viscosity of the air is
very small, the amplitude of whirling orbit is remarkably large, which brings rich nonlinear
characteristics into the rotor response; (2) the airflow inside the clearance of journals is much
more irregular and turbulent than the oil-film bearings, which makes most of existent theories
unable to provide realistic prediction of the bearing dynamics. In the first case, the vibration
response is strongly nonlinear and must be solved numerically with consideration of both
bearing and seal forces. In the second case, an effective model for unsteady air-film force
should be adopted to express time-varying boundaries of the film that whirls rapidly around
the journal center. In the present study, the oil-film force proposed by Zhang et al. [18, 19]
is used to model the nonlinear, unsteady air-film excitation in the current study. For the
seal force Muszynska’s model is adopted with parameters of pressure drop, rotation speed,
and seal length. The complexity in the rotor motion is demonstrated through bifurcation
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diagrams with those parameters as well as through the Poincaré maps, time history of
displacement, and rotor orbits. For seal pressure drop of 0.2 MPa the bifurcation sequence
is given with increasing rotation speed, showing subharmonic motions of periodic-1, 12, 11,
10, 9, 8, 7 and quasiperiodic motions. The results are compared to the ones without bearing
forces to present the interaction between the air-film bearing and the seal forces. Periods-4
and -11 bifurcations and quasiperiodic motion are observed with a 0.4 MPa pressure drop.
The bifurcation diagrams of motion with parameters of pressure drop and length of the
seal provide suitable values of these quantities for improvement of operation safety of the
machinery. The intricacy in the motion’s bifurcation presents complicated dynamics of the
system in contrast to the rotors with either of bearing forces or of the seal excitations.

2. Problem Modeling

A Jeffcott rotor with a rigid disk, a segment of labyrinth seal, and two supporting air-film
journal bearings is shown in Figure 1, where o1 is the geometric center of the disk; o2 and
o3 are centers of the left and right bearings. Denote by (x1, y1), (x2, y2), and (x3, y3) the
displacements of the disk center, the left bearing, and the right journal bearing, respectively.
The equation of motion of the system is expressed as follows:

m1ẍ1 +De(ẋ1 − ẋ2) +De(ẋ1 − ẋ3) +Ke1(x1 − x2) +Ke2(x1 − x3) = Fx +m1eω
2 cos ωt,

m1ÿ1 +De

(
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)
+De

(
ẏ1 − ẏ3
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(
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)
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(
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)
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2 sin ωt,

m2ẍ2 +De(ẋ2 − ẋ1) +Ke1(x2 − x1) = fx2,

m2ÿ2 +De

(
ẏ2 − ẏ1

)
+Ke1

(
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)
= fy2 −m2g,
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m3ÿ3 +De

(
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= fy3 −m3g,

(2.1)

where m1 is the mass of the disk; m2 and m3 are masses of the left and the right bearings. Ke1

and Ke2 are equivalent stiffness coefficients of the left and the right shafts; De is the factor of
viscous damping; e is the mass unbalance of the disk; Fx and Fy are directional components
of the seal force; fx2,x3 and fy2,y3 are directional force components of the left and the right
bearings, respectively. ω is the rotation speed and g is the gravitational acceleration. The
symmetry of the fluid field inside the seal clearance is destroyed as the rotor is perturbed
from its equilibrium position with a nonzero rotation speed. Muszynska’s model [13, 14] is
used to express the seal forces in both x- and y-directions, as

{
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(2.2)
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where K and D are coefficients of stiffness and damping of the air that flows through the seal
clearance, respectively; mf is the effective mass of the air; τ is the factor of average angular
speed of fluid that rotates along with the rotor, determined by

τ = τ0(1 − ε)b, (2.3)

where τ0 is the average angular speed for the unperturbed rotor; b is an empirical coefficient;

ε =
√
x3

2,3 + y2
2,3 is the nondimensional amplitude of whirling motion of the bearings. The

model of the bearing force adopted in the current study is the one proposed by Zhang et al.
[18, 19] for unsteady oil-film journal bearings, expressed as follows:

fx = −C1ε̇ − C2

(
ϕ̇ − ω

2

)
ε, fy = −C2ε̇ − C3

(
ϕ̇ − ω

2

)
ε, (2.4)

where ϕ̇ is the whirling speed of the journal; C1, C2, and C3 are damping coefficients of the
lubricant [20]. Unlike most existent bearing theories that handle time-invariant boundaries of
the lubricant film with, for example, the Gümbel condition and the π-oil-film assumption, the
unsteady force model of (2.4) is capable of dealing with time-varying boundary of the film
arising from large whirling velocity of the journal center, which is appropriate for weakly
viscous systems with air- or water-film bearings such as the present one. Introducing the
following nondimensional parameters:
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,

(2.5)

where (·)′ � d(·)/dT denotes the derivative of a quantity with respect to T, and c and δ are
clearances of the seal and the journal bearings, respectively, the equation of motion is then
rewritten as
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(2.6)

where l and r are length and radius of the bearing, respectively; μ is the dynamic viscosity of
the lubricant; superscripts L and R represent the left and the right bearings, respectively, and

C11 = C1cos2ϕ + C3sin2ϕ − 2C2 sinϕ cosϕ,

C12 = C21 = C2

(
cos2ϕ − sin2ϕ

)
+ (C1 − C3) sinϕ cosϕ,

C22 = C1sin2ϕ + C3cos2ϕ + 2C2 sinϕ cosϕ,

S0 = 6μωlr3δ−2.

(2.7)

3. Subharmonic Motions and Bifurcation Behavior

Notice that parameters K, D, and τ and coefficients C1, C2, and C3 are functions of
displacements of the disk centers and the bearings. Hence, (2.6) is a group of highly nonlinear
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Figure 2: Bifurcation diagrams of the rotor system with seal and air-film excitations. ΔP = 0.2 MPa.

ordinary differential equations that can hardly be solved through conventional perturbation
methods [21]. Instead, the vibration responses of the disk center and the two bearings are
computed by using the fourth-order Runge-Kutta method with adaptive-step control to
reduce local truncation error of every single step. The parameters selected for the current
study are

m1 = 50 kg, m2 = 3.5 kg, m3 = 3.5 kg, De = 3000 N · s/m,

Ke1 = 3.4635 × 106 N/m, Ke2 = 3.8127 × 106 N/m,

e1 = 0.2 mm, r = 0.035 m, l = 0.06 m, c = 0.3 mm, δ = 0.3 mm,

μ = 1.47 × 10−5 Pa · s, τ0 = 0.4, b = 0.45.

(3.1)

Additionally, the length and radius of the seal are 0.102 m and 0.067 m, respectively.
The system’s parameters are chosen based on a single-staged centrifugal compressor
manufactured by Shenyang Turbo-machinery Cooperation. To investigate the bifurcation we
chose the rotation speed as the parameter under two pressure drops of the seal, that is, the
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Figure 3: Motions of the rotor system with rotation speed S = 3.355.

pressure differences between the entrance and the exit of the seal. The initial displacements
and velocities of the disk center and the two are (0.01, 0).

Let pressure drop ΔP be 0.2 MPa. The bifurcation diagrams of displacement x are
illustrated in Figure 2, where S = ω/

√
(Ke1 +Ke2)/m1 is the nondimensional rotation speed.

In the current computation S = 1 corresponds to a rotation speed of 60.71 Hz or 3642.77 rpm.
It can be seen that the disk and the bearings are in motions of period-1, that is, motions

with the same frequency as the rotation speed, when the rotation is slow. The primary
resonance happens at S = 1.1272. The stability of the period-1 motions is lost at S = 2.1496,
and the motion becomes quasiperiodic. Various subharmonic motions can be observed when
the rotation speed is increased. A period-12 bifurcation takes place at S = 3.1457. Following
that, the motions become quasiperiodic again with escalating rotation speed. At S = 3.2505
the displacements undergo a period-11 bifurcation and return quasiperiodic with higher S
afterwards. A period-10 bifurcation is encountered with speed S = 3.355. The Poincaré map
of displacement x1 is presented in Figure 3(a) to show the existence of a periodic-10 motion.
The time history of x1 is illustrated in Figure 3(b), and the orbits of the disk center and the
left bearing are shown in Figures 3(c) and 3(d), respectively. Further, a period-9 bifurcation
is observed at S = 3.5389 followed by a period-8 bifurcation at S = 3.8010. The bifurcation
cascade continues at S = 4.0632 when a period-7 bifurcation takes place. Following that,
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Figure 4: Motions of the rotor system with rotation speed S = 4.352.
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Figure 5: Bifurcation diagram of the disk center with rigid supports.

quasiperiodic motions are obtained with higher rotation speed. Figures 4(a), 4(b), and 4(c)
depict the orbits of the disk center and the right bearing as well as the Poincaré map of
displacement x1 at S = 4.352, respectively.

To investigate the interaction between the bearing and the seal forces a comparative
computation is carried out for a Jeffcott rotor with two rigid supports (hence, the seal force
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Figure 6: Bifurcation diagrams of the rotor system with seal and air-film excitations. ΔP = 0.4 MPa.

is the only excitation of the system) and exactly the same geometrical and seal properties
as aforementioned. The bifurcation diagram is shown in Figure 5. For rotation speed less
than S = 1.432, the motion is period-1 with the same frequency as the rotation speed. With
an increasing speed, the motion remains quasiperiodic up to S = 3.52, where a period-8
bifurcation is observed from the disk’s displacements. The motions turns into quasiperiodic
again with advancing rotation speed. The comparison between the responses to the coupling
forces and to the seal force alone reveals rich bifurcating behavior of the system vibration: the
interaction of the seal and the air-film forces results in more period-multiple bifurcations (see
Figures 2(a) and 5).

We now change the pressure drop of the seal to 0.4 MPa. The bifurcation diagrams of
displacement x of the disk and the two journal bearings are presented in Figure 6.

It is found that the x-directional displacements of the disk and the bearings are
period-1 with small rotation speed. The primary resonance in the motion is found at
S = 1.2582. Then, the bifurcation starts and the motions become quasiperiodic. A period-
4 bifurcation takes place with speed S = 2.0709 followed by quasiperiodic motions as
the rotor is accelerated. For speed S ∈ [3.2243, 3.3816] ∪ [3.4340, 3.6437] the motions are
period-4. Figures 7(a) and 7(b) show the orbits of the disk center and the left bearing at
S = 3.4340. Figure 7(c) depicts the Poincaré map of the disk motion. The motions become
quasiperiodic with higher rotation speed. Figures 8(a) and 8(b) plot the orbits of the disk
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Figure 7: Motions of the rotor system with rotation speed S = 3.434.

center and the right bearing at S = 3.8797. The Poincaré maps of displacements x1 and x3 are
shown in Figures 8(c) and 8(d), respectively. A period-11 bifurcation is observed at S = 4.2204
followed by another series of quasiperiodic motions. With higher pressure-drop from the
entrance to the exit of the seal, some previously notified bifurcations are not observed again.
Nevertheless, the bifurcation behavior is still more complicated than the one with the seal
force only.
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Figure 8: Motions of the rotor with rotation speed S = 3.8797.

In the following analysis we adopt the pressure drop as the bifurcation parameter.
Let rotation speed ω be 1200 rad/s. The bifurcation diagrams of x-displacements of the disk
center and the left and the right bearings are presented in Figure 9. For low-pressure drops
the motions are found quasiperiodic with large amplitude until �P up to 0.048 MPa. The
motions of the disk center and the bearings then become period-1, and the amplitudes step up
with the advancing pressure drop. The synchronous motions are lost at a critical drop ΔP =
0.168 MPa without undergoing primary resonances in the motions. The vibrations afterwards
are basically quasiperiodic, and it is very difficult to distinguish the bifurcation points. The
average amplitudes of the displacements remain almost unchanged with increasing pressure
drops, showing the remarkable air-film whip in the journal bearings. This implies that the
whole system cannot be stabilized by increasing the pressure drops larger than the critical
value.

Finally, the evolution of the bifurcation in the rotor motions is investigated by taking
the length of the seal as the control parameter. Let rotation speed ω be 1200 rad/s and let
pressure drop ΔP be 0.2 MPa. The bifurcation diagrams of x-displacements of the disk center
and the left and the right bearings are depicted in Figure 10. The period-1 motion is found for
length: 0.082 m ≤ l ≤ 0.098 m, where the orbital whirling motions grow monotonously with
the increasing seal-length. Beyond this range of length, the motions are mainly quasiperiodic
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Figure 9: Bifurcation diagram of the rotor with varying pressure drop. ω = 1200 rad/s.

with considerably large amplitudes. Therefore, a suitable length of seal should be chosen
between 0.082 m and 0.098 m to keep the rotor distant from strong vibration responses that
may jeopardize the safety of the machine in operation. From the manufacturer’s point of
view, a labyrinth seal with a medium length of between 0.082 m and 0.098 m is feasible for it
can be conveniently processed, assembled, and positioned by using conventional tools.
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Figure 10: Bifurcation diagram of the rotor with varying seal-length. ω = 1200 rad/s; ΔP = 0.2 MPa.

4. Conclusions

The nonlinear coupling vibration excited by a labyrinth seal and two air-film journal bearing
is investigated through numerical simulations for high-speed centrifugal compressors. The
results obtained with various rotation speeds and seal pressure drops show complexity
of nonlinear vibration and bifurcation behavior in the displacements of the rotor system.
Further, the motions of the system reveal period-multiple bifurcations compared to the
system excited only by the seal force, presenting an intricate interaction between the seal
and the bearing forces. Suitable seal pressure drop and seal length are determined for the
sake of operation safety through the bifurcation analysis for rotor displacements as well.
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