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We develop a sufficient descent method for solving large-scale unconstrained optimization prob-
lems. At each iteration, the search direction is a linear combination of the gradient at the current
and the previous steps. An attractive property of this method is that the generated directions
are always descent. Under some appropriate conditions, we show that the proposed method
converges globally. Numerical experiments on some unconstrained minimization problems from
CUTEr library are reported, which illustrate that the proposed method is promising.

1. Introduction

In this paper, we consider the unconstrained optimization problem

min f(x), x ∈ �n , (1.1)

where f : �n → � is a continuously differentiable function, and its gradient at point xk

is denoted by g(xk), or gk for the sake of simplicity. n is the number of variables, which is
automatically assumed to be large. Large-scale optimization is one of the important research
areas both in optimization theory and algorithm design. There exist some kinds of effective
methods available for solving (1.1), as for instance, inexact Newton, limited memory quasi-
Newton, conjugate gradient, spectral gradient, and subspace methods [1–4].

The iterative formula the method is given by

xk+1 = xk + αkdk, (1.2)
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where αk is a steplength, and dk is a search direction. Generally, we say that dk is a descent
direction of f at xk if d�

k
gk < 0. Furthermore, if there exists a positive constant C > 0 such that

d�
kgk ≤ −C‖gk‖2, then dk is often called a sufficient descent direction. The descent property is

very important for the iterative method to be global convergent, especially for the conjugate
gradient method [5]. Unfortunately, for the earliest spectral gradient method [6] and the PRP
conjugated gradient method, their generated directions are not always descent. Therefore, in
the last years, much effort has been done to smooth away the drawback and develop new
methods, for example, [7].

As is wellknown, if Armijo line search is used, the standard PRP method can cycle
infinitely without approaching any optimal point when solving nonconvex minimization
problems. To overcome this drawback, Hager and Zhang [8] made a slight modification on
the PRP formula. Consequently, the resulting method own the remarkable property: for any
line search, the generated direction always satisfies the sufficient descent condition d�

kgk ≤
−(7/8)‖gk‖2. Moreover, Zhang et al. [9] further studied the PRP formula and proposed a
three-term modified PRP method, in which the generated directions satisfy

d�
kgk = −∥∥gk

∥
∥2
, (1.3)

and this property is independent of any line search. Additionally, for improving the
numerical performance of the standard FR method, Zhang et al. [10] developed a modified
FR method where the direction also satisfy (1.3).

Although much progress has been made in designing a sufficient descent direction
in a conjugate gradient method, it seemingly receive little attention in other methods. Very
recently, An et al. [5] proposed a robust technique to construct a sufficient descent direction
for unconstrained optimization. The descent direction is a linear combination of the steepest
descent direction and the projection of the original direction, that is,

dk = −gk + λk

(

I − gkg
�
k

∥
∥gk

∥
∥2

)

dk, (1.4)

where λk is a scalar and dk is an original direction. Based on the definition of dk, it is easy
to deduce that the sufficient descent condition (1.3) holds. This technique has been applied
to the PSB updated formula and showed that the resulting method converges globally and
superlinearly for an uniformly convex function. Moreover, the direction in [11] is truly a
special case of (1.4).

We note that (1.4) can be considered as a general form of a nonlinear conjugate
gradient method, in which

dk = −gk + βkdk−1, (1.5)

where βk is a scalar. Comparing with (1.4), we see that the scalar βk takes the place of the
coefficient matrix of dk. In this paper, we further study the sufficient descent technique
(1.4), and propose a simple sufficient descent method for solving unconstrained optimization
problems. Our motivation is simple, we choose dk as the gradient of the previous step in (1.4).
The search direction in this proposed method always satisfies a sufficient descent condition.



Mathematical Problems in Engineering 3

Under some conditions, we show that the algorithm converges globally by using a special
line search. The performance of the method on some CUTEr test problems indicates that it is
encouraging.

We organize this paper as follows. In the next section, we construct the sufficient
descent direction. In Section 3, we state the steps of our new algorithm with a special line
search. We also report some experiments on some large-scale unconstrained optimization
problems. Finally, we conclude this paper with some remarks in the last section. Throughout
this paper, the symbol ‖ · ‖ denotes the Euclidean norm of a vector.

2. New Search Direction

This section aims to state the new direction formula and investigate its properties. Now, if we
take gk−1 as dk and set λk ≡ 1 in (1.4), we get

dk = −gk +
(

I − gkg
�
k

∥
∥gk

∥
∥
2

)

gk−1. (2.1)

Obviously, the direction is a linear combination of the gradient at the current and the previous
steps. Additionally, to obtain the global convergence of PRP method, Cheng [11] introduced
a descent direction defined as

dk = −gk + βPRPk

(

I − gkg
�
k

∥
∥gk

∥
∥
2

)

dk−1. (2.2)

We note that (2.2) is only a special choice of (1.4), in which dk is replaced by dk−1 and λk is
chosen as the scalar βPRP

k
. If we denote

Hk = I − gkg
�
k

∥
∥gk

∥
∥2

, (2.3)

then it is easy to see that for any y /= 0, we have

y�Hky = y�HkH
�
ky =

∥
∥
∥H�

ky
∥
∥
∥

2
≥ 0, (2.4)

which indicates thatHk is a symmetric and positive semidefinite matrix.

3. Sufficient Descent Method

As we have stated in the previous section, the directions in (2.1) satisfy a sufficient descent
condition. In this section, we list our algorithm and establish its global convergence.

Firstly, we state the steps of the simple sufficient descent method. In order to
achieve the global convergence of our method, we consider the backtracking line search of
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Grippo and Lucidi (GL) [12]. That is, for given δ ∈ (0, 1), β > 0, ρ ∈ (0, 1), find the first jk
(j = 1, 2, . . .) such that αk = βρjk satisfies

f(xk + αkdk) ≤ f(xk) − δα2
k‖dk‖2. (3.1)

Now, we are ready to state the steps of the Simple Sufficient Descent (SSD) method.

Algorithm 3.1 (SSD). We have the following steps.

Step 1. Given x0 ∈ �n . Let 0 < δ < 1, and d0 = −g0. Set k := 0.

Step 2. If ‖gk‖ = 0, then stop.

Step 3. Compute dk by (2.1).

Step 4. Find the steplength αk satisfying (3.1). Let xk+1 = xk + αkdk.

Step 5. Set k := k + 1, go to Step 2.

The remainder of this section is devoted to investigate the global convergence of
Algorithm 3.1. We first state some assumptions.

Assumption 3.2. Function f is continuously differentiable and the level set F = {x ∈ �
n |

f(x) ≤ f(x0)} is bounded.

Assumption 3.3. The gradient of f is Lipschitz continuous, that is, there exists a constant L > 0
such that

∥
∥g(x) − g

(

y
)∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ �n . (3.2)

We first prove the following lemma.

Lemma 3.4. Let the sequence {xk} be generated by Algorithm 3.1. Suppose that Assumptions 3.2 and
3.3 hold. Then,

∞∑

k=0

∥
∥gk

∥
∥
2

‖dk‖2
< ∞. (3.3)

Proof. We have the following cases.

Case 1. Consider firstly the GL line search (3.1). If αk /= β, then ρ−1αk may not satisfy (3.1).
That is,

f
(

xk + ρ−1αkdk

)

> f(xk) − δρ−2α2
k‖dk‖2. (3.4)
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By the mean value theorem and Assumption 3.3, there exists θk ∈ (0, 1) such that

f
(

xk + ρ−1αkdk

)

− f(xk) = ρ−1αkg
(

xk + θkρ
−1αkdk

)�
dk

= ρ−1αkg
�
kdk + ρ−1αk

(

g
(

xk + θkρ
−1αkdk

)� − gk

)

dk

≤ ρ−1αkg
�
kdk + Lρ−2α2

k‖dk‖2,

(3.5)

where L > 0 is the Lipschitz constant of g. Substituting the last inequality into (3.4), we get

αk ≥ − 1
ρ−1(L + δ)

∥
∥gk

∥
∥
2

‖dk‖2
= c1

∥
∥gk

∥
∥
2

‖dk‖2
. (3.6)

This implies that there is a constant M > 0 such that

∥
∥gk

∥
∥
4

‖dk‖2
≤ M

(

f(xk) − f(xk+1)
)

. (3.7)

Case 2. If α = β, then we have

∥
∥gk

∥
∥
4

‖dk‖2
≤ ∥
∥gk

∥
∥
2 ≤ ‖dk‖2 ≤ δ−1β−2

(

f(xk) − f(xk−1)
)

, (3.8)

which shows that (3.7) holds with M = δ−1β−2. Moreover, (3.7) indicates the lemma claims.

Theorem 3.5. Let {xk} be generated by Algorithm 3.1 with GL backtracking line search (3.1). Then

lim inf
k→∞

∥
∥gk

∥
∥ = 0. (3.9)

Proof. From Assumption 3.3, we know that there exists a positive constant γ such that

∥
∥gk

∥
∥ ≤ γ. (3.10)

By the definition of dk in (2.1), we have

‖dk‖ ≤ ∥
∥gk

∥
∥ +

∥
∥Hkgk−1

∥
∥ ≤ ∥

∥gk
∥
∥ +

∥
∥gk−1

∥
∥ ≤ 2γ, (3.11)

which shows that ‖dk‖ is bounded. We get from (3.1) that

∞∑

k=0

α2
k‖dk‖2 < ∞. (3.12)
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Consequently, we have

lim
k→∞

αk‖dk‖ = 0. (3.13)

For the sake of contradiction, we suppose that (3.9) does not hold. Then there is a constant
ε > 0 such that ‖gk‖ ≥ ε for all k ≥ 0.

If lim infk→∞αk > 0, we get from (3.13) that lim infk→∞‖dk‖ = 0, which shows
lim infk→∞‖gk‖ = 0. This contradicts the assumption (3.9).

If lim infk→∞αk = 0, that is, there is an infinite index set K such that

lim
k∈K,k→∞

αk = 0. (3.14)

It follows from the line search step in Algorithm 3.1 that when k ∈ K is sufficiently large,
ρ−1αk does not satisfy (3.1). Then from the first part of the proof of Lemma 3.4 we see that
(3.6) holds. Since ‖dk‖ is bounded and limk∈K,k→∞αk = 0, (3.6) implies lim infk→∞‖gk‖ = 0.
This also yields a contradiction. The proof is complete.

4. Numerical Results

In this section, we test the feasibility and effectiveness of the Algorithm SSD. The algorithm
is implemented in Fortran77 code using double precision arithmetic. All runs are performed
on a PC ( Intel Pentium Dual E2140 1.6GHz, 256MB SDRAM)with Linux operations system.
The algorithm stops if the infinity-norm of the final gradient is below 10−5, that is

∥
∥∇f(x)

∥
∥ ≤ 10−5. (4.1)

The iteration is also stopped if the number of iterations exceeds 10000 or the number of
function evaluations reaches 20000. Our experiments are performed on the subset of the
nonlinear unconstrained problems from CUTEr [13] collection. The second-order derivatives
of all the selected problems are available. Since we are interested in large problems, we refined
this selection by considering only problems where the number of variables is at least 50. The
parameter in line search (3.1) is taken as: β = 1, ρ = 0.1, and δ = 10−4. The numerical results
of the algorithms SSD are listed in Table 1. The columns have the following meanings:

Problem: name of the test problem,

Dim: dimension of the test problem,

Iter: number of iterations,

Nf: number of function evaluations,

Time: CPU time in seconds,

Fv: final function value,

Norm-2: l2-norm of the final gradient, and

Norm-0: ∞-norm of the final gradient.
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Table 1: Test results for SSD method.

Problem Dim Iter Nf Time Fv Norm-2 Norm-0
ARGLINA 200 2 3 0.01 0.2000000E + 03 0.15350E − 12 0.28232E − 23
ARWHEAD 5000 12 34 0.03 0.5550005E − 12 0.80345E − 05 0.89063E − 10
BROWNAL 200 3175 5126 1.40 0.1475222E − 08 0.29801E − 05 0.93967E − 10
BROYDN7D 5000 5986 9664 20.09 0.1815779E + 04 0.17731E − 05 0.20076E − 10
BRYBND 5000 105 160 0.28 0.3534654E − 11 0.29153E − 05 0.29287E − 10
DIXMAANA 3000 140 190 0.11 0.1000000E + 01 0.24750E − 06 0.93362E − 10
DIXMAANB 3000 130 179 0.10 0.1000000E + 01 0.30449E − 06 0.61730E − 10
DIXMAANC 3000 120 166 0.10 0.1000000E + 01 0.10046E − 05 0.86335E − 10
DIXMAAND 3000 139 188 0.11 0.1000000E + 01 0.15385E − 05 0.77064E − 10
QDRTIC 5000 1095 1757 1.72 0.2290216E − 10 0.95704E − 05 0.94807E − 10
DQRTIC 5000 196 282 0.11 0.3480734E − 06 0.68218E − 06 0.46755E − 10
EDENSCH 2000 87 136 0.06 0.1200328E + 05 0.38002E − 05 0.97655E − 10
ENGVAL1 5000 70 120 0.12 0.5548668E + 04 0.37840E − 05 0.82778E − 10
FLETCBV2 5000 0 1 0.00 −0.5002682E + 00 0.79960E − 07 0.19455E − 10
MANCINO 100 26 56 0.71 0.3102390E − 17 0.91840E − 06 0.23394E − 10
QUARTC 5000 196 282 0.11 0.3480734E − 06 0.68218E − 06 0.46755E − 10
SCHMVETT 5000 255 386 1.12 −0.1499400E + 05 0.68017E − 05 0.67249E − 10
SENSORS 100 56 184 0.85 −0.2101781E + 04 0.46106E − 05 0.35706E − 10
SPMSRTLS 4999 3489 5629 8.74 0.1833147E − 08 0.90139E − 05 0.96204E − 10
TOINTGSS 5000 91 132 0.11 0.1000400E + 02 0.76757E − 05 0.60378E − 10
VARDIM 200 1 2 0.00 0.1479114E − 30 0.44409E − 15 0.59165E − 30
VAREIGVL 50 67 106 0.00 0.1042896E − 10 0.38234E − 05 0.87845E − 10
EG2 1000 4 5 0.00 −0.9989474E + 03 0.13514E − 05 0.18263E − 11
MOREBV 5000 172 279 0.22 0.1462269E − 08 0.42417E − 05 0.88342E − 10
TOINTGOR 50 1432 2303 0.02 0.1373905E + 04 0.49818E − 05 0.88106E − 10
TOINTQOR 50 247 376 0.00 0.1175472E + 04 0.55492E − 05 0.88045E − 10

In addition, we also present extensive numerical results of the state-of-the-art
algorithm CG DESCENT [8, 14]. CG DESCENT is a conjugate gradient descent method for
solving large-scale unconstrained optimization problems. A new nonmonotone line search
were used in CG DESCENT which makes this algorithm very efficient. The Fortran code
can be obtained from http://www.math.ufl.edu/∼hager/. When running of CG DESCENT,
default values are used for all parameters. The results are summarized in Table 2.

Observing the tables, we see that SSDworks well, as it reached a stationary point based
on the stopping criterion (4.1) for almost all these test problems. Although SSD requires large
number of iterations or function evaluations, it needs less time consuming comparatively.
However, the numerical comparisons tell us that the state-of-the-art algorithm CG DESCENT
performs a little better than SSD, but for some specific problems, the enhancement of SSD is
still noticeable. The numerical experiments also show that SSD can potentially used to solve
unconstrained optimization problems with higher dimensions.

5. Concluding Remarks

In this paper, motivated by a descent technique, we have proposed a simple sufficient descent
method for solving large-scale unconstrained optimization problems. At each iteration, the
generated directions are only related to the gradient information of two successive points.
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Table 2: Test results for CG DESCENT.

Problem Dim Iter Nf Ng Time Fv Norm-2
ARGLINA 200 1 3 2 0.01 0.20000E + 03 0.21133E − 06
ARWHEAD 5000 9 19 12 0.02 0.00000E + 00 0.83931E − 06
BROWNAL 200 4 15 13 0.01 0.14731E − 08 0.11790E − 05
BROYDN7D 5000 1444 2885 1453 5.13 0.19785E + 04 0.68854E − 05
BRYBND 5000 31 64 34 0.10 0.14292E − 10 0.65055E − 05
DIXMAANA 3000 8 17 9 0.01 0.10000E + 01 0.15586E − 05
DIXMAANB 3000 9 19 10 0.00 0.10000E + 01 0.35546E − 06
DIXMAANC 3000 10 21 11 0.01 0.10000E + 01 0.70236E − 06
DIXMAAND 3000 11 23 12 0.01 0.10000E + 01 0.32593E − 05
DQDRTIC 5000 7 15 8 0.02 0.41826E − 14 0.18957E − 06
DQRTIC 5000 32 65 33 0.02 0.28560E − 04 0.30250E − 05
EDENSCH 2000 29 56 33 0.02 0.12003E + 05 0.74432E − 05
ENGVAL1 5000 23 45 32 0.05 0.55487E + 04 0.53164E − 05
FLETCBV2 5000 0 1 1 0.01 −0.50027E + 00 0.79960E − 07
MANCINO 100 11 23 12 0.30 0.20215E − 17 0.97074E − 06
QUARTC 5000 32 65 33 0.02 0.28560E − 04 0.30250E − 05
SCHMVETT 5000 35 63 46 0.19 −0.14994E + 05 0.90275E − 05
SENSORS 100 23 55 40 0.19 −0.21085E + 04 0.29929E − 05
SPMSRTLS 4999 186 379 195 0.51 0.19502E − 08 0.82452E − 05
TOINTGSS 5000 3 7 4 0.01 0.10002E + 02 0.60471E − 05
VARDIM 200 28 57 29 0.00 0.27052E − 22 0.20805E − 08
VAREIGVL 50 52 142 90 0.00 0.40508E − 10 0.71079E − 05
EG2 1000 3 7 4 0.00 −0.99895E + 03 0.81318E − 05
MOREBV 5000 32 65 34 0.04 0.10103E − 08 0.89736E − 05
TOINTGOR 50 107 206 121 0.00 0.13739E + 04 0.88894E − 05
TOINTQOR 50 28 55 31 0.00 0.11755E + 04 0.49970E − 05

Under some mild conditions, we have shown that this method is global convergent. The
numerical results indicate that it works well on some selected problems from CUTEr library.
We think there are several other issues that could be lead to improvements. A first point
that should be considered is probably the choice of a nonmonotone line search technique.
We have adopted the monotone scheme of Grippo and Lucidi (3.1), but this is not the only
possible choice, and the framework developed in [15, 16] may allow one to achieve a better
performance. Similar to [5], another important point that should be further investigated is a
modification of the search direction without violating the nice sufficient descent property. To
this end, it is interesting to note that this method is capable of solving nonlinear systems of
equations without Jacobian information and cheaply computing.
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