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Aim of the present work is to investigate the effect of radiation on steady mixed convection
boundary layer flow of viscous, incompressible, electrically conducting fluid past a semi-infinite
magnetized vertical porous plate with uniform transpiration and variable transverse magnetic
field along the surface. The equations governing the flow magnetic and temperature field are
reduced to dimensionless convenient form using the free variable transformations and solved
numerically by using finite difference method. Effects of physical parameters like Prandtl number,
Pr, the conduction-radiation parameter Rd, magnetic field parameter S, magnetic Prandtl number
Pm, mixed convection parameter λ, and the surface temperature, θw on the local skin friction
coefficient Cfx, local Nusselt number, Nux, and coefficient of magnetic intensity, Mgx against the
local transpiration parameter ξ are shown graphically. Later, the problem is analysed by using
series solution for small and large values of ξ, and the results near and away from the leading edge
are compared with numerical results obtained by finite difference method and found to be in good
agreement.

1. Introduction

Thermal radiation effects on magnetohydrodynamics of an electrically conducting fluid
flows are important in the context of space technology and processes involving high
temperature. Physical interests of theses flows encountered in many engineering problems
and industrial areas such as propulsion devices for missiles, aircraft, satellites, nuclear
power plants, take place at high temperature and radiation effects play a significant role
in designing them. One physical interest in this flow lies in the possibility of using
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such a field to shield a body from excessive heating and radiations. Here the literature
survey is being started with the history of the work done by other authors along
nonmagnetized, magnetized and then with porous surface and the radiation effects on these
surface.

Greenspan and Carrier [1] was the first who investigated the flow of viscous,
incompressible and electrically conducting fluid in the presence of a symmetrically oriented
semi-infinite flat plate in which magnetic field assumed to be coincident with the ambient
fluid velocity field. In this investigation fourier transformation together with asymptotic
analysis had been incorporated and found that the velocity gradient at the plate approaches
zero due to increase in the applied magnetic field intensity. Further contributions to the
problem was added by Davies [2, 3] considering the fact that the flow is opposed by
magnetodynamic pressure gradient along an nonmagnetized plate and concluded that
for the magnetic field parameter (or Chandrashekhar number) S � 1 the drag coefficient
vanishes. Gribben [4] then considered an axisymmetric magnetohydrodynamic flow of an
incompressible, viscous, electrically conducting fluid near a stagnation point considering
that the magnetic field lines are circles and parallel to the surface. Later, Gribben [5] who
investigated the magnetohydrodynamic boundary layer in steady incompressible flow
under the influence of an external magnetic dynamic pressure gradient using the asymptotic
analysis and found that the skin friction decreases with the increase of magnetic field. The
boundary layer flow and heat transfer of hydromagnetic flow of viscous incompressible
fluid flows past an electrically insulated semi-infinite flat plate in the presence of a uniform
magnetic field parallel to the plate has been investigated by Ramamoorthy [6] numerically
and found that the presence of the magnetic field increases both the momentum and thermal
boundary layer thicknesses. On the other hand Tan andWang [7] studied the effect of applied
magnetic field on temperature distribution as well as on the recovery temperature due to
the flow of a viscous incompressible electrically conducting fluid past a solid plane surface
subject to uniform heat flux. They concluded that the values of recovery factor decreaseswith
the increase of both magnetic field parameter S and magnetic Prandtl number Pm. Hildyard
[8] found that the magnetic-field boundary condition used by Gribben was inappropriate
and hence making the necessary correction obtained the appropriate asymptotic solutions
for large and small values of the magnetic Prandtl number, Pm. Later, Chawla [9] studied
the effect of free stream fluctuations on the flow over a semi-infinite plate, with an aligned
magnetic field, using von Kármán-Pohlhausen technique and solution for low and high
frequency ranges are developed. But, Ingham [10] studied the boundary layer flow on a
semi-infinite flat plate placed at zero incidence to a uniform stream of electrically conducting
gas with an aligned magnetic field at large distances from the plate. In this analysis the
author observed that increasing magnetic field for a given Mach number, or decreasing the
Mach number for a given magnetic field thickens the momentum and thermal boundary
layer.

In all the above investigations, the surface along which the flow of the fluid
were considered as nonmagnetized. In recent technological development it is necessary
to distorted the attention towards magnetized surface, Glauert [11], first, studied the
magnetohydrodynamic boundary layer in uniform flow past a magnetized plate for the
small and large values of magnetic Prandtl number, Pm. The observation from this
investigation, shows that the velocity and magnetic fields are valid for small value of
magnetic field parameter S and for both smaller or larger value of magnetic Prandtl number
Pm.



Mathematical Problems in Engineering 3

Chawla [12] studied the magnetohydrodynamics boundary layer in uniform flow
past a semi-infinite magnetize plate, and a magnetic field fluctuating about a nonzero
mean in the stream direction, is applied to the plate. He comments that in order to create
a fluctuating magnetic field, one needs to join the plate in the manner of Glauert [11]
with d.c and a.c generators placed in series. However, Chawla assuming the amplitude
of the oscillating transverse magnetic field is much smaller than the uniform magnetic
field at the surface. He also considered the basic steady flow using Karman-Pohlhausen
technique, and obtained approximate solutions to both steady and oscillating part of the
flow.

The effects of thermal radiation in different geometries have been discussed by
several authors. In this respect, Ali et al. [13] focus on the effect of radiation interaction
in boundary layer flow over horizontal surface. Arpaci [14], Cheng and Özişik [15],
Sparrow and Cess [16] and highlight the thermal radiation effect with free convection
from a heated vertical semi-infinite plate. Soundalgekar et al. [17] have studied radiation
effects on free convection flow past a semi-infinite plate using the Colgey-Vincenti
equilibrium model. Hossain and Takhar [18] have analyzed the effect of radiation using
Rosseland diffusion approximation which leads to nonsimilar solutions for the forced and
free convection flow of an optically dense viscous incompressible fluid past a heated
vertical plate with uniform free stream velocity and surface temperature. The effect of
conduction-radiation on oscillating natural convection boundary layer flow of optically
dense viscous incompressible fluids along a vertical plate has been studied by Roy
and Hossain [19]. Aboeldahab and Gendy [20] studied MHD free convection flow of
gas past a semi-infinite vertical plate with variable thermophysical properties for high
temperature difference by taking into consideration radiation effects and solved the problem
numerically using the shooting method. Effects of thermal radiation on unsteady free
convection flow past a vertical porous plate with Newtonian heating have recently been
demonstrated by Mebine and Adigio [21], who obtained the analytical results by using
the Laplace transform technique. Palani and Abbas [22] studied the combined effect of
MHD and radiation on free convection flow past an impulsively started isothermal plate
with Rosseland diffusion and solved the dimensionless governing equations numerically
using the finite element method. Convective boundary layer flows are often controlled
by injecting (blowing) or suction (withdrawing) fluid through porous bounding heating
surface. This can lead to enhanced heating or cooling of system and can help to delay
the transition from laminar to turbulent flow. Eichhorn [23], for example, obtained those
power law variations in surface temperature and transpiration velocity which give rise
to a similarity solution for the flow from a vertical surface. The case of uniform suction
and blowing through an isothermal vertical wall was investigated first by Sparrow
and Cess [24], they obtained a series solution which is valid near the leading edge.
The problem was considered in more detail by Merkin [25], who obtained asymptotic
solutions, valid at large distances from the leading edge, for both the suction and
blowing. Using the method of matched asymptotic expansions, the next order correction
to the boundary layer solution for this problem was obtained by Clarke [26], who
obtained the range of applicability of the analysis by not invoking the the Boussinesq
approximation. The effect of strong suction and blowing from general body shapes which
admit a similarity solution has been given by Merkin [25]. A transformation of the
equations for general blowing and wall temperature variations has been discussed by
Vedhanayagam et al. [27]. The case of heated isothermal horizontal surfacewith transpiration
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has been discussed in some detail by Clarke and Riley [28] and then by Lin and Yu
[29].

The above literature survey shows no existence of any study on the effects of thermal
radiation on boundary layer flow of an electrically conducting fluid under both magnetic and
buoyancy force along a magnetized porous plate. Hence in the present article the problem
investigated is the thermal radiation effects on hydromagnetic mixed convection laminar
boundary layer flow of a viscous, incompressible and electrically conducting fluid along a
magnetized permeable surface with a variable magnetic field applied in stream direction
at the surface. The boundary layer equations for the momentum, energy and magnetic
field are reduced to convenient form for integration using appropriate transformations.
The solutions of the transformed boundary layer equations are then simulated employing
two methods, namely, (i) finite difference method and the (ii) asymptotic series solution
for small and large value of local transpiration parameter ξ = (V0x/ν)/Re1/2x that
depends on the surface mass-flux, V0, as well as the distance x measured from the
leading edge of the plate. The pertinent physical parameters that dominate the flow
and other physical quantities, such as the local skin-friction Cfx, rate of heat transfer,
Nux and the magnetic intensity Mgx at the surface are the magnetic field parameter,
S, and,conduction-radiation parameter Rd, Prandtl number Pr and the magnetic Prandtl
number Pm and mixed convection parameter λ also with the surface temperature parameter
θw.

2. Formulation of the Mathematical Model

We consider the radiation interaction on the laminar two-dimensional magnetohydrody-
namic mixed convection flow of an electrically conducting, viscous and incompressible fluid
past a uniformly heated vertical porous plate. The x-axis is taken along the surface and y-axis
is normal to it. A schematic diagram illustrating the flow domain and the coordinate system
is shown in Figure 1. In Figure 1 δM and δT stands for momentum and thermal boundary
layer thicknesses. It is assumed that the surface temperature Tw of the plate is greater than
the ambient fluid temperature T∞
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Figure 1: The coordinate system and flow configuration.

where
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(2.6)

where u and v are fluid velocity components in x- and y-direction, respectively,Hx and Hy

are the x- and y-components of magnetic field, qr is the radiative heat flux in the y-direction,
α, μ ρ, ν and γ are the thermal diffusion, magnetic permeability, density, kinematic coefficient
of viscosity and magnetic diffusivity of the medium. The solution of the above equations
should satisfy the following boundary conditions:

u(x, 0) = 0, v(x, 0) = ±V0, Hx(x, 0) = Hw(x), T(x, 0) = Tw,

u(x,∞) = U∞(x), Hx(x,∞) = 0, T(x,∞) = T∞.
(2.7)

The nonlinearity of the momentum, hydromagnetic and energy equation makes it
difficult to obtain a closed mathematical solution to the problem. However, by
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introducing the following nondimensional dependent and independent variables we
have,
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where ΔT is the temperature difference. By using expression (2.8) in (2.1)–(2.15), we have
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where ReL is the Reynolds number, GrL the Grashof, number, Rd is the Plank number
(radiation-conduction parameter), L the reference length, λ is the mixed convection
parameter, Pr the Prandtl number and S the magnetic field parameter (also known as
Chandrasekhar number), Pm is the magnetic Prandtl number, and α is the thermal diffusion.
The corresponding boundary condition take the form:

u(x, 0) = 0, v(x, 0) = SL, Hx(x, 0) = Hw(x), θ(x, 0) = Tw(x),

u(x,∞) = 1, Hx(x,∞) = 0, T(x,∞) = 0.
(2.15)

In the above conditions SL = (V0L/ν)Re−1/2L is the transpiration parameter.
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3. Method of Solutions

To get the set of equations in convenient form for integration, we will introduce the following
one parameter group of transformation for the dependent and independent variables:

u = U(ξ, Y), v = x1/2(V + ξ), ϕ = x1/2φ, θ = x−1θ(ξ, Y),

Y = x−1/2y, ξ = SLx
1/2, Hx =

∂ϕ

∂y
, Hy = −∂ϕ

∂x
.

(3.1)

The ξ is the local distribution of the surfacemass-flux. Here for suction (or withdrawal)
ξ is positive and for injection (or blowing) of fluid ξ is negative and for solid surface ξ is zero.
We further assume that the surface temperature Tw(x) = x −1 and the normal component of
the magnetic field at the surfaceHw(x) = x

−1/2. where ϕ is the potential function that satisfies
(2.11). By using this group of transformations, which satisfies equation of continuity and by
using in (2.9)–(2.13): we have set of equations:
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The appropriate boundary conditions satisfied by the above system of equations are

U(ξ, 0) = V (ξ, 0) = 0, φ′(ξ, 0) = 1, θ(ξ, 0) = 1,

V (ξ,∞) = 1, φ′(ξ,∞) = 0, θ(ξ,∞) = 0.
(3.6)

Once we know the solutions of the above equations, we readily can obtain the values
of skin-friction, heat transfer and the normal magnetic intensity at the surface from the
following relations in terms of skin-friction, Nusselt number and magnetic intensity from
the following relations:

Re1/2x Cfx = f ′′(ξ, 0),

Re−1/2x Nux = −
(
1 +

4
3Rd

)
θ′(ξ, 0),

Re1/2x Mgx = −g(ξ, 0).

(3.7)
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Now we will discretize the expressions (3.1)–(3.4) with boundary conditions given in (3.5),
we have a new system of discretised form of equations as follows:

A1Ui+1,j + B1Ui,j +C1Ui−1,j = D1, (3.8)

where
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where (H1)i,j = (∂φ/∂y)i,j and (H2)i,j = (∂φ/∂ξ)i,j .
Similarly for hydromagnetics equation we have

A2φi+1,j + B2φi,j + C2φi−1,j = D2,

A2 =
1
Pm

+
1
2
(
Vi,j − ξi − YjUi,j

)
ΔY,

B2 = − 2
Pm

− 1
2

(
1 +

ξi
Δξ

)
Ui,jΔY 2,

C2 =
1
Pm

− 1
2

(
Vi,j − ξi − 1

2
YjUi,j

)
ΔY,

D2 = −1
2
ξi
Δξ

Ui,jφi,j−1ΔY 2,

(3.10)

and the discretised form of energy equation is of the form

A3θi+1,j + B3θi,j +C3θi−1,j = D3, (3.11)
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velocity can be calculated directly using equation of continuity (3.2) as shown below:

Vi,j = Vi−1,j − 1
2

(
ξ
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Δξ

− Yj
)
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1
2
ξ
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Δξ
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2
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where i and j denote the grid points along the X and Y directions, respectively. In order to
find the numerical solution we have discretised the expressions (3.2)–(3.5) with boundary
conditions (3.6) by using finite difference method, using backward difference for x-direction
and central difference for y-direction out of which we get a system of tri-diagonal algebraic
equations. These tri-diagonal equations are then solved by Gaussian elimination technique.
The computation is started at ξ = 0.0, and then marches downstream implicitly. Once we
know the solution of these equations, physical quantities of interest such as the coefficient of
skin-friction, the coefficient of magnetic intensity, and the coefficient of rate of heat transfer
at the surface may be calculated from

Re1/2x Cfx = f ′′(ξ, 0), MgxRe
1/2
x = −φ(ξ, 0), Nux

Re1/2x

= −
(
1 +

4
3Rd

)
θ′(ξ, 0). (3.14)

4. Results and Discussions

In present investigation we have obtained the solutions of the nonsimilar boundary layer
(3.2)–(3.5) with boundary conditions (3.6) that governs the flow of a viscous incompressible
and electrically conducting fluid past a magnetized vertical porous plate with surface
temperature by using the method discussed in the preceding section for a wide range of
physical parameters, S, conduction-radiation parameter Rd, surface temperature θw, Prandtl
number Pr, and mixed convection parameter λ, magnetic Prandtl number Pm, against
ξ. Below we discuss the effects of the aforementioned physical parameters of the flow
fields as well as on the local skin-friction coefficient Re1/2x Cfx, the coefficient of surface
magnetic intensity Re1/2x Mgx and rate of heat transfer Re−1/2x Nux on the surface of the
plate.
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Table 1: Numerical values of CfxRe1/2x obtained for Rd = 1.0, 10.0, and θw = 1.1 when Pm = 0.1, Pr = 0.1,
λ = 1.0, and S = 0.1 against ξ by two methods.

ξ
Rd = 1.0 Rd = 10.0

FDM Asymptotic FDM Asymptotic
0.05 1.62225 1.622809sm 1.55037 1.55809sm
0.1 1.66669 1.66423sm 1.59222 1.59423sm
0.2 1.75771 1.75652sm 1.67797 1.67652sm
0.4 1.94733 1.94108sm 1.85681 1.85108sm
0.8 2.35008 2.350021sm 2.23701 2.23021sm
1.0 2.55973 — 2.43497 —
3.0 4.70172 — 4.45669 —
4.0 5.71434 — 5.41609 —
5.0 6.68702 — 6.34363 —
6.0 7.63595 7.63883Lr 7.25476 7.25883Lr
7.0 8.57192 8.57900Lr 8.15909 8.15900Lr
8.0 9.49946 9.499912Lr 9.06043 9.06912Lr
9.0 10.92063 10.99922Lr 9.96012 9.96174Lr
10.0 11.33623 11.39390Lr 10.85958 10.85930Lr

Table 2: Numerical values of MgxRe
1/2
x obtained for Rd = 1.0, 10.0, and θw = 1.1 when Pm = 0.1, Pr = 0.1,

λ = 1.0, and S = 0.1 against ξ by two methods.

ξ
Rd = 1.0 Rd = 10.0

FDM Asymptotic FDM Asymptotic
0.05 1.35080 1.35110sm 1.37691 1.37118sm
0.1 1.30772 1.30005sm 1.33024 1.33005sm
0.2 1.22683 1.22780sm 1.24886 1.24780sm
0.4 1.08388 1.08330sm 1.10133 1.10330sm
0.8 0.85853 0.85429sm 0.86924 0.84291sm
1.0 0.76950 — 0.77777 —
3.0 0.32395 — 0.32414 —
4.0 0.23978 — 0.23970 —
5.0 0.18862 — 0.18855 —
6.0 0.15474 0.15667Lr 0.15470 0.215667Lr
7.0 0.13068 0.13286Lr 0.13065 0.13206Lr
8.0 0.11269 0.12500Lr 0.11268 0.11500Lr
9.0 0.09874 0.10111Lr 0.09873 0.11111Lr
10.0 0.08758 0.092741Lr 0.08750 0.081000Lr

4.1. Skin Friction, Magnetic Intensity Coefficient, and Rate of Heat Transfer

In first attempt we have obtained the solution of the nonsimilar boundary layer equations
governing the mixed convection flow of a viscous incompressible and electrically conducting
fluid along a vertical magnetized porous plate against ξ. Tables 1, 2, and 3 exhibiting the
effects of radiation parameter or Planks number Rd = 1.0, 10.0 and for the fixed value of
buoyancy force parameter λ = 1.0, magnetic Prandtl number Pm = 0.1 and Prandtl number
Pr = 0.1, magnetic force parameter S, and surface temperature θw = 1.1 on coefficients
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Table 3: Values of Nux/Re1/2x against ξ for Rd = 1.0, 10.0, and θw = 1.1 when Pm = 0.1, Pr = 0.1, λ = 1.0,
and S = 0.1 against ξ by two methods.

ξ
Rd = 1.0 Rd = 10.0

FDM Asymptotic FDM Asymptotic
0.05 0.29162 0.29725sm 0.34621 0.34725sm
0.1 0.29321 0.29901sm 0.34935 0.34824sm
0.2 0.29636 0.29954sm 0.35558 0.35654sm
0.4 0.30251 0.30559sm 0.36789 0.36559sm
0.8 0.31429 0.31369sm 0.39189 0.39369sm
1.0 0.31992 — 0.40360 —
3.0 0.37116 — 0.51618 —
4.0 0.39612 — 0.57401 —
5.0 0.42193 — 0.63503 —
6.0 0.44887 0.44860Lr 0.69949 0.69860Lr
7.0 0.47695 0.47170Lr 0.76723 0.76170Lr
8.0 0.50613 0.50480Lr 0.83791 0.83480Lr
9.0 0.53636 0.53790Lr 0.91119 0.91790Lr
10.0 0.56757 0.563100Lr 0.98672 0.98310Lr
sm stand for small ξ, where Lr for large ξ.

of skin friction Re1/2x Cfx, rate of heat transfer Re−1/2x Nux and magnetic intensity Re1/2x Mgx
at the surface. From Tables 1, 2, and 3, it can easily be seen that an increase in radiation
parameter Rd leads to decrease in coefficient of local skin friction and increases in the rate of
heat transfer, magnetic intensity at the surface. This phenomenon can easily be understood
from the fact that when radiation parameter Rd increases, the ambient fluid temperature
decreases and Roseland mean absorption coefficient increases which reduce the skin friction
and enhance the rate of heat transfer and magnetic intensity at the surface. In Figures 2(a),
2(b), and 2(c), where it is observed that with the increase of radiation parameter Rd the skin
friction decreases and rate of heat transfer and magnetic intensity at the surface increases.
In Figures 3(a), 3(b), and 3(c) it can be seen that the increase in buoyancy force parameter
λ = 0.0, 2.5, 5.0, 7.5, 10 the coefficient of skin friction, heat transfer increases and magnetic
intensity at the surface decreases. It is very interesting fact that forced convection is dominant
mode of flow and heat transfer when buoyancy parameter λ → 0 but with the increase of
λ the buoyancy force acts like pressure gradient and increase the the fluid motion, hence the
coefficients of skin friction, heat transfer andmagnetic intensity increaseswith the streamwise
distance ξ.

Figures 4(a), 4(b), and 4(c) are representing the effects of different values of Prandtl
number Pr = 0.01, 0.1, 0.71, 7.0, and for fixed value of buoyancy force parameter λ = 1.0,
magnetic field parameter S = 0.4 and magnetic Prandtl number Pm = 0.1, radiation
parameter Rd = 1.0, surface temperature θw = 1.1, on the coefficients of skin friction, rate
of heat transfer and magnetic intensity at the surface. In these figures, it is observed that with
increase of Prandtl number Pr the coefficient of skin friction decreases, coefficient of heat
transfer andmagnetic intensity at the surface increases. It is very pertinent tomention that the
increase in the Prandtl number Pr increases the kinematic viscosity (which ratio of dynamic
viscosity to density of the fluid) of the fluid and decreases the thermal diffusion which causes
the increase in momentum boundary layer thickness and due to rise in temperature thermal
boundary layer becomes thinner. So, these factors are responsible for the aforementioned
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Figure 2: Numerical solution of (a) skin friction coefficient and (b) coefficient of rate of heat transfer (c)
coefficient of magnetic intensity at the surface against ξ for different values of radiation parameter Rd =
1.0, 5.0, 10.0, 20.0, 50.0, Pm = 0.1, Pr = 7.0, and S = 0.8, θw = 1.1, λ = 1.0.

phenomena. In Figures 5(a), 5(b), and 5(c) the effects of different values of magnetic Prandtl
number Pm by keeping other parameters fixed on coefficients of skin friction, heat transfer
and magnetic intensity are displayed. From these figures it is shown that the increase in
magnetic Prandtl number Pm = 1.0, 10.0, 100.0 increase the coefficients of skin friction, heat
transfer and decrease the coefficient of magnetic intensity at the surface. It is also noted that
the increase in coefficients of skin friction, heat transfer very remarkable for large values
of magnetic Prandtl Pm, that is, for Pm = 10.0, 100.0 as compared with magnetic intensity
at the surface. The reason is that with the increase of magnetic Prandtl number Pm the
magnetic diffusion γ decreases or product of magnetic permeability, electrical conductivity
and kinematic viscosity at the surface increases and hence the momentum and thermal
boundary layer thicknesses decreases due to which coefficients of skin friction and heat
transfer increases and magnetic intensity at the surface decreases.
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Figure 3: Numerical solution of (a) skin friction coefficient and (b) coefficient of rate of heat transfer (c)
coefficient of magnetic intensity at the surface against ξ for different values of mixed convection parameter
λ = 0.0, 2.5, 5.0, 7.5, 10.0 when Pm = 0.5, Pr = 0.1, S = 0.1, Rd = 10.0, and θw = 1.1.

4.2. Velocity, Temperature and Magnetic Profiles

Now we will discuss the effects of different physical parameters on the profiles of the
velocity, temperature and the transverse component of magnetic field against similarity
variable η for transpiration parameter ξ = 10.0. The effects of mixed convection parameter
λ = 0.0, 2.5, 5.0, 7.5, 10.0, for two values of magnetic field parameter S = 0.0, 0.8 and for fixed
value of magnetic Prandtl number Pm = 1.6, Pr = 0.1, ξ = 0.5, radiation parameter Rd = 10.0,
and surface temperature θw = 1.1 on velocity, temperature and transverse component of
magnetic field profiles are shown in Figures 6(a), 6(b), and 6(c). The dotted and solid lines in
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Figure 4: Numerical solution of (a) skin friction coefficient and (b) coefficient of rate of heat transfer
(c) coefficient of magnetic intensity at the surface against ξ for different values of Prandtl number
Pr = 0.01, 0.1, 0.71, 7.0 when Pm = 0.1, S = 0.4, Rd = 1.0, θw = 1.1 and λ = 1.0.

Figures 6(a)–6(c) shown the effects of parameter λ for S = 0 (absence of magnetic field)
and S = 0.8 (presence of magnetic field), respectively. It is concluded that the velocity
profile is influenced considerably and increase when the value of λ increases and there is
no any significant changes shows in the absence of magnetic field as shown by dotted lines
in Figure 5(a). In Figure 6(b) it is shown that the temperature decreases with the increase of λ
and there is no changes seen for magnetic field parameterS = 0 and S = 0.8. From Figure 6(c),
we note that with the increase of parameter λ the effects of transverse component of magnetic
field decreases against η.
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Figure 5: Numerical solution of (a) skin friction coefficient and (b) coefficient of rate of heat transfer (c)
coefficient of magnetic intensity at the surface against ξ for different values of magnetic Prandtl number
Pm = 1.0, 10.0, 100.0 when Pr = 0.1, S = 2.0, Rd = 1.0, θw = 1.1, and λ = 1.0.

Figures 7(a), 7(b), and 7(c) are based on the effects of the magnetic field parameter
S on the velocity, temperature and component of transverse magnetic field profiles. These
figures clearly show that with the increase of magnetic force parameter S the velocity profile
decreases and the temperature, transverse component of magnetic field profile increases.
In Figures 8(a), 8(b), and 8(c) it is noted that the increase in transpiration parameter ξ
increase velocity profile and decrease the temperature and transverse component of magnetic
field profiles. From these figures it is also concluded that the momentum boundary layer
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thickness decreases and thermal boundary layer thickness increases which indicates that
transpiration destabilizes the boundary layer. Finally, in Figures 9(a), 9(b), and 9(c) it is
shown that with the increase of radiation parameter Rd and keeping other parameters fixed
the velocity and temperature distribution decreases and transverse component of magnetic
field increases.

4.3. Asymptotic Solutions for Small and Large ξ

Now we are heading in finding the solution of the present problem for small and large value
of transpiration parameter ξ. To do this we first reduce the equations (2.1)–(2.7) to convenient
form by introducing the following transformations:

ψ = x1/2
[
f
(
η, ξ
)
+ ξ
]
,

ϕ = x−1/2φ
(
η, ξ
)
, θ = x−1θ

(
η, ξ
)
,

η = x−1/2, ξ = sx1/2,

(4.1)

where, η is the similarity variable, ξ be the local transpiration parameter and ψ, φ are the
function which satisfy the equations of conservation of mass and magnetic field such that:

u =
∂ψ

∂y
, v = −∂ψ

∂x
, Hx =

∂ϕ

∂y
, Hy = −∂ϕ

∂x
. (4.2)

For withdrawal of fluid ξ > 0 whereas for blowing of fluid through the surface of the plate
ξ < 0. Throughout the present computations, value of ξ has been considered positive.

By using (4.1) and (4.2) in (2.1)–(2.15), we will obtain the following dimensionless
local nonsimilarity equations:

f ′′′ +
1
2
(
ff ′′ − Sφφ′′) + ξf ′′ + λθ =

1
2
ξ

[
f ′ ∂f

′

∂ξ
− f ′′ ∂f

∂ξ
− S
(
φ′∂φ

′

∂ξ
− φ′′∂φ

∂ξ

)]
, (4.3)

1
Pm

φ′′ +
1
2
(
fφ′ − f ′φ

)
+ ξφ′ =

1
2
ξ

[
f ′ ∂φ
∂ξ

− φ′ ∂f
∂ξ

]
, (4.4)

1
Pr

[
1 +

4
3Rd

(1 + Δθ)3
]
θ′′ +

1
2
fθ′ + f ′θ + ξθ′ =

1
2
ξ

[
f ′ ∂θ
∂ξ

− θ′ ∂f
∂ξ

]
, (4.5)

where, S = μH2
0/ρU

2
0, Pm = υ/γ , respectively, are known as magnetic field parameter and

magnetic Prandtl number and Δ = θw − 1. The corresponding boundary conditions becomes

f(0, ξ) = 0, f ′(0, ξ) = 0, φ′(0, ξ) = 1, θ(0, ξ) = 1,

f ′(∞, ξ) = 1, φ′(∞, ξ) = 0, θ(∞, ξ) = 0.
(4.6)
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Figure 6: (a) velocity and (b) temperature (c) transverse component of magnetic field profile against η at
ξ = 0.5 for different values of mixed convection parameter λ = 0.0, 2.5, 5.0, 7.5, 10.0 when S = 0.0, 0.8 and
for Pr = 0.1, and Pm = 1.6, Rd = 10.0, θw = 1.1.

It can be seen from equations (4.3)–(4.5) that for ξ = 0.0, the set of equations become similar
by nature, solutions of which can easily be obtained by standard shooting method, otherwise
these equations are locally nonsimilar, solution methodology of which will be discussed in
the following sections. Once we know the solution of these equations, physical quantities of
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interest such as, the skin-friction coefficient, Cfx, and the magnetic intensity Mgx, and the rate
of heat transfer Nux at the surface may be calculated from

Re1/2x Cfx = f ′′(ξ, 0),

Re1/2x Mgx = −φ(ξ, 0),

Re−1/2x Nux = −
(
1 +

4
3Rd

)
θ′(ξ, 0).

(4.7)

4.3.1. Solution for Small ξ

Since near the leading edge ξ is small (ξ � 1), solutions to the equations (4.3)–(4.5) with
boundary conditions (4.6)may be obtained by using the perturbationmethod.We can expand
all the depending functions in powers of ξ, we consider that

f
(
ξ, η
)
=

∞∑
i

ξifi
(
η
)
, φ

(
ξ, η
)
=

∞∑
i=0

ξiφi
(
η
)
, θ

(
ξ, η
)
=

∞∑
i=0

ξiθi
(
η
)
. (4.8)

Substituting (4.8) into expression (4.3)–(4.5), and taking the terms only up to O(ξ2) we
will get the system of equations together with boundary conditions (4.6) which is given as
follows:

f ′′′
0 +

1
2
(
f0f

′′
0 − Sφ0φ

′′
0

)
+ λθ0 = 0,

1
Pm

φ′′
0 +

1
2
(
f0φ

′
0 − φ0f

′
0
)
= 0,

[
1 + α(1 + Δθ0)3

]
θ′′0 + 3αΔ(1 + Δθ0)2θ

′2
0 +

Pr
2
f0θ

′
0 + Prf ′

0θ0 = 0,

f0(0, ξ) = 0, f ′
0(0, ξ) = 0, φ′

0(0, ξ) = 1, θ0(0, ξ) = 1,

f ′
0(∞, ξ) = 1, φ′

0(∞, ξ) = 0, θ0(∞, ξ) = 0,

f ′′′
1 +

1
2
(
f0f

′′
1 − f ′

0f
′
1 − S

(
φ0φ

′′
1 − φ′

0φ
′
1

))
+
(
f ′′
0f1 − Sφ′′

0φ1
)
+ f ′′

0 + λθ1 = 0,

1
Pm

φ′′
1 +

1
2
(
f0φ

′
1 − f ′

1φ0
)
+
(
f ′
0φ1 − f1φ′

0
)
+ φ′

0 = 0,
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[
1 + α(1 + Δθ0)3

]
θ′′1 + 3αΔ(1 + Δθ0)2

(
θ1θ

′′
0 + 2θ′0θ

′
1

)

+6αΔ2θ1(1 + Δθ0)θ
′2
0 +

Pr
2
(
f0θ

′
1 + f

′
0θ1
)
+ Pr

(
f1θ

′
0 + θ0f

′
1

)
+ Prθ′0 = 0,

f1(0, ξ) = 0, f ′
1(0, ξ) = 0, φ′

1(0, ξ) = 0, θ1(0, ξ) = 0,

f ′
1(∞, ξ) = 0, φ′

1(∞, ξ) = 0, θ1(∞, ξ) = 0,

f ′′′
2 +

1
2

(
f0f

′′
2 − f ′2

1 − S
(
φ0φ

′′
2 − φ

′2
1

))
+
(
f1f

′′
1 − f ′

0f
′
2 − S

(
φ1φ

′′
1 − φ′

0φ
′
2

))

+
3
2
(
f ′′
0f2 − Sφ′′

0φ2
)
+ f ′′

1 + λθ2 = 0,

1
Pm

φ′′
2 +

1
2
(
f0φ

′
2 − f ′

0φ2
)
+
(
f1φ

′
1 − f ′

1φ1
)
+
3
2
(
φ′
0f2 − f ′

0φ2
)
+ φ′

1 = 0,

[
1 + α(1 + Δθ0)3

]
θ′′2 + 3αΔθ′′1θ1(1 + Δθ0)2

+3αΔθ′′0
[
θ′′2 + Δ

(
2θ2θ0 + θ21

)
+ Δ2θ0

(
θ2θ0 + θ21

)]

+3αΔ
[(
2θ′2θ

′
0 + θ

2
1

)
(1 + Δθ0)2 + 4Δθ′1θ1θ0(1 + Δθ0) + Δθ20

(
2θ2 + Δ

(
2θ2θ0 + θ21

))]

+
Pr
2
(
f0θ

′
2 + θ1f

′
1

)
+
(
θ′1f1 + f

′
2θ0
)
+
3Pr
2
f2θ

′
0 + Prθ′1 = 0,

f2(0, ξ) = 0, f ′
2(0, ξ) = 0, φ′

2(0, ξ) = 0, θ2(0, ξ) = 0,

f ′
2(∞, ξ) = 0, φ′

2(∞, ξ) = 0, θ2(∞, ξ) = 0.

(4.9)

It is pertinent to mentioned that (4.9) are coupled and nonlinear, so the solutions of these
equations can be obtained by the Nachtsheim-Swigert iteration technique together with the
sixth-order implicit Runge-Kutta-Butcher initial value solver. After knowing the values of the
functions f ′′, φ and θ′ and their derivatives we can calculate the values of the coefficient of
skin friction, surface magnetic intensity and heat transfer in the region near the leading edge
against ξ from the following expansion for S = 0.1, λ = 1.0, Pm = 0.1, Pr = 0.1, and radiation
parameter Rd = 1.0, 10.0, and θw = 1.1, respectively.

Re1/2x Cfx =
(
1.59195 + 1.12282ξ + 1.01047ξ2 + · · ·

)
,

Re1/2x Mgx = −
(
1.43230 + 1.02251ξ + 1.34209ξ2 + · · ·

)
,

Re−1/2x Nux = −
(
0.21749 − 0.00475ξ + 0.09878ξ2 · · ·

)
.

(4.10)
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Figure 7: (a) velocity and (b) temperature (c) transverse component of magnetic field profile against η at
ξ = 0.5 for different values magnetic field parameter S = 0.0, 0.8, 1.6 when λ = 1.0 and for Pr = 0.1, and
Pm = 1.0, Rd = 10.0, θw = 1.1.

The numerical results thus obtained or entered in Tables 1, 2, and 3 for coefficients
of skin friction, rate of heat transfer and magnetic intensity at the surface. We can see that
from these tables the series solution are in excellent agreement with that of finite difference
solutions even for ξ ε[0, 1].
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Figure 8: (a) velocity and (b) temperature (c) transverse component of magnetic field profile against η
for different values transpiration parameter ξ = 2.0, 1.0, 2.0, 4.0, 8.0, 10.0, when S = 0.4, λ = 1.0, and for
Pr = 0.1, Pm = 2.0, Rd = 10.0, θw=1.1

In Table 4 the comparison of the solutions obtained by finite difference method and
that of Glauert [11] analytically has been given for the coefficient of skin friction andmagnetic
intensity at the surface. It is observed that for Pm = 1.0, 10.0, radiation parameter Rd = ∞,
and the variation in magnetic field parameter S decrease the skin friction and the skin
friction approaches to zero as S → 1.1 and the local magnetic intensity Mgx increases
with the increase of magnetic field parameter S. From this table it can be seen that the
present method and the analytical results obtained by Glauert [11] are in good agreement.



22 Mathematical Problems in Engineering

η

V
(η
,ξ
)

0 5 10 15 20

0.5

1

0

1.5

2

Pr = 0.1
S = 0.4

θw = 1.1

λ = 1
ξ = 2

Pm = 0.1

(a)

η

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Pr = 0.1
S = 0.4

θw = 1.1

λ = 1
ξ = 2

θ
(η
,ξ
) Pm = 0.1

(b)

η

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Pr = 0.1
S = 0.4

θw = 1.1

λ = 1
ξ = 2

φ
′ (
η
,ξ
)

Rd = 0.1
Rd = 0.5
Rd = 1

Rd = 5
Rd = 10

Pm = 0.1

(c)

Figure 9: (a) velocity and (b) temperature (c) transverse component of magnetic field profile against η
for different values radiation parameter Rd = 0.1, 0.5, 1.0, 5.0, 10.0 when S = 0.4, λ = 1.0 and for ξ = 2.0,
Pr = 0.1, Pm = 0.1, θw = 1.1.

For magnetic Prandtl number Pm = 10.0 the coefficients of skin friction and magnetic
intensity at the surface are also noted in excellent agreement. Further, we see that for small
value of magnetic Prandtl number Pm = 0.1, and for magnetic field parameter S = π
as in the case of Glauert [11] the separation occur at the surface. In Table 5 the value of
coefficient of skin friction obtained by other authors Glauert [11] for large magnetic Prandtl
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Table 4: Values of Re1/2x Cfx and Re1/2x Mgx obtained by Glauert [2] and present authors while Rd = ∞,
Pm = 1.0 and 10.0 against different values of S.

S
Pm = 1.0 Pm = 10.0

Present Glauret [2] Present Glauret [2]

f ′′(0) g(0) f ′′(0) g(0) f ′′(0) g(0) f ′′(0) g(0)

0.0 0.3321 2.1290 0.3321 2.1797 0.3321 0.9525 0.3321 1.0095

0.1 0.3067 2.1713 0.3025 2.2448 0.3188 0.9631 0.3182 1.0238

0.2 0.2806 2.2191 0.2729 2.3099 0.3050 0.9744 0.3044 1.0380

0.4 0.2257 2.3372 0.2138 2.4402 0.2770 0.9995 0.2767 1.0665

0.6 0.1657 2.5066 0.1547 2.5704 0.2479 1.0285 0.2491 1.0950

0.8 0.0972 2.8017 0.0955 2.7006 0.2176 1.0629 0.2214 1.1235

1.0 0.0014 4.8488 0.0364 2.8308 0.1857 1.1051 0.1938 1.1520

1.1 0.0000 6.0423 0.0068 2.8959 0.1691 1.1302 0.1799 1.1662

Table 5: Values of Re1/2x Cfx when Rd = ∞, S = 0.1 and 0.05 at ξ = 0.0 against Pm obtain by Glauert [2] and
Devies [3] and the present authors.

s = 0.0 s = 0.8

Pm Present Glauert [2] Pm Present Davies [3]

0.1 0.2888 0.2669 0.1 0.3106 0.3140

1.0 0.3067 0.3016 0.2 0.3107 0.3157

2.0 0.3109 0.3078 0.3 0.3153 0.3173

4.0 0.3145 0.3128 0.5 0.3172 0.3194

6.0 0.3164 0.3152 0.7 0.3183 0.3204

8.0 0.3177 0.3167 0.9 0.3191 0.3204

10.0 0.3186 0.3178 — — —

— — — — — —

50 0.3238 0.3237 — — —

75 0.3248 0.3247 — — —

100 0.3254 0.3254 — — —

number Pm by keeping Rd = ∞ and Davies [2] for small magnetic Prandtl number by
taking magnetic field parameter S = 0.1 and sufficiently small S = 0.05 are entered and
compare with present results and found to be in good agreement. Here we notice that
the agreement between present results and results obtained by Glauert [11], Davies [2]
are in excellent agreement. The results entered in Table 6 are those obtained from heat
transfer in hydromagnetics by Ramamoorthy [6] considering Eckert number equal to zero
and radiation parameter Rd = ∞are compared with the present results. From this table
it can be seen that the numerical results obtained for different values of magnetic field
parameter S and for Pm = 0.1, Pr = 1.0, λ = 0.5 are very closed the results obtained by
Ramamoorthy.
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Table 6: Values of Re−1/2x Nux for different S when Rd = ∞, Pm = 0.1, Pr = 1.0, and λ = 0.5 obtained by
present authors and Ramamoorthy [6].

S Present [6]

0.1 0.64551 0.65048

0.3 0.61994 0.61958

0.5 0.59112 0.57693

4.3.2. Solution for Large ξ

Now, attention is given in finding the solution of equations (4.3)–(4.6) when ξ is large. The
order of magnitude analysis of various terms in these equations shows that f ′′′ and ξf ′′

are largest terms in (4.3) and φ′′ and ξφ′ in (3.14) and θ′′ and ξθ′ in (4.5). In the respective
equations, both the terms have to be balanced in magnitude and the only way to do this, is
to assume that η is small and hence its derivative is large. It is essential to find appropriate
scaling for f , φ and θ. On balancing f ′′′ and ξf ′′ in (4.3) and φ′′ and ξφ′ in (4.4) and θ′′,
ξθ′ in (4.5), it is found that η = O(ξ−1), f = O(ξ−1), and φ = O(ξ−1). Therefore, following
transformations may be introduced

f
(
η
)
= ξ−1f

(
η
)
, η = ξη, φ

(
η
)
= ξ−1φ

(
η
)
, θ

(
η
)
= θ
(
η
)
. (4.11)

By using (4.10), the transformed equation will take the form:

f
′′′
+ f

′′
+ λξ−2θ =

1
2f

⎡
⎣f ′ ∂f

∂ξ
− f ′′∂f

∂ξ
− S
⎛
⎝φ

′ ∂φ
′

∂ξ
− φ′′∂φ

∂ξ

⎞
⎠
⎤
⎦, (4.12)

1
Pm

φ
′′
+ φ

′
=

1
2
ξ−1
[
f
′ ∂φ
∂ξ

− f ′ ∂f
∂ξ

]
, (4.13)

1
Pr

[
1 +

4
3Rd

(1 + Δθ)3
]
+ θ

′
=
1
2
ξ−1
[
f
′∂θ
∂ξ

− θ′ ∂f
∂ξ

]
. (4.14)

The regular perturbation of the functions f , φ and θ in power of ξ−2 is given as follows:

f
(
ξ, η
)
=

1∑
m=0

ξ−2mfm
(
η
)
, φ

(
ξ, η
)
=

1∑
m=0

ξ−2mφm
(
η
)
, θ

(
ξ, η
)
=

1∑
m=0

ξ−2mθm
(
η
)
. (4.15)
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By substituting (4.14) into (4.11)–(4.13), and equating like power of ξ and by dropping bars
we have the following set of equations:

O(ξ0):

f ′′′
0 + f ′′

0 = 0,

1
Pm

φ′′
0 + φ

′
0 = 0,

[
1 + α(1 + Δθ0)3

]
θ′′0 + 3αΔ(1 + Δθ0)2θ

′2
0 + Prθ′0 = 0.

(4.16)

The boundary conditions regarding to the perturbation series expansion are of the following
form:

f0(0) = 0, f ′
0(0) = 0, φ′

0(0) = 1, θ0(0) = 1,

f ′
0(∞) = 1, φ′

0(∞) = 0, θ0(∞) = 0.
(4.17)

O(ξ−2):

f ′′′
1 + f ′′

1 + λθ0 = 0,

1
Pm

φ′′
1 + φ

′
1 = 0,

[
1 + α(1 + Δθ0)3

]
θ′′1 + 3αΔ(1 + Δθ0)2

(
θ1θ

′′
0 + 2θ′0θ

′
1

)
+ 6αΔ2θ1(1 + Δθ0)θ

′2
0 + Prθ′1 = 0.

(4.18)

And the boundary conditions regarding to the perturbation series expansion are of the
following form:

f1(0) = 0, f ′
1(0) = 0, φ′

1(0) = 0, θ1(0) = 0,

f ′
1(∞) = 0, φ′

1(∞) = 0, θ1(∞) = 0.
(4.19)

From the solutions of (4.15)–(4.16) and (4.17)–(4.18), we obtain

f0
(
η
)
= η + e−η − 1,

f ′′
0 (0) = 1,

φ0
(
η
)
= − 1

Pm
e−ηPm,
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φ0(0) = − 1
Pm

,

θ′0
(
η
)
=
[
1 +

4
3Rd

(1 + Δθ0)3
]
Pre−ηPr,

θ′0(0) =
[
1 +

4
3Rd

(1 + Δθ0)3
]
Pr,

f ′′
1

(
η
)
=
λe−ηPr(Pr − 1) + Prλe−η − λe−η

2(Pr − 1)
,

f ′′
1 (0) =

λ(Pr − 1) + Prλ − λ
2(Pr − 1)

,

φ1
(
η
)
= 0,

φ1(0) = 0,

θ′1
(
η
)
= 0,

θ′1(0) = 0. (4.20)

Since, now, we know the values of f ′′
0 (0), φ0(0), and θ′0(0), and f ′′

1 (0), φ1(0), and θ′1(0) from
the above solutions we calculate the friction coefficient, Re1/2x Cfx, local rate of heat transfer,
Re−1/2x Nux, and the local magnetic intensity, Re1/2x Mgx at the surface from the following
expressions:

Re1/2x Cfx � ξ + λ(Pr − 1) + Prλ − λ
2(Pr − 1)

ξ−1,

Re1/2x Mgx � ξ

Pm
,

Re−1/2x Nux �
[
1 +

4
3Rd

(1 + Δθ0)3
]
Prξ.

(4.21)

Numerical value of the local skin friction coefficient, surface magnetic intensity and
the local rate of heat transfer are obtained from the relations (4.21) for different values of
magnetic field parameter S and magnetic Prandtl number Pm and radiation parameter Rd,
and surface temperature θw, Prandtl number Pr, respectively, in the down stream region
are entered in Tables 1, 2, and 3, respectively. From these tables it can be seen that for
large value of transpiration parameter ξ the skin friction Re1/2x Cfx approaches to ξ and the
values of coefficient magnetic intensity Re1/2x Mgx approaches to ξ/Pm and Nusselt number
Re−1/2x Nux approaches to [1 + (4/3Rd)(1 + Δθ0)

3]Prξ. The comparison of the present results
with the numerical results obtained by FDM shows excellent agreement in the down stream
region.
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5. Conclusion

The physical parameters such as mixed convection parameter λ, transpiration parameter
ξ, magnetic field parameter S, magnetic Prandtl number Pm and radiation parameter Rd,
Prandtl number Pr and surface temperature θw exerts significant influence on coefficients
of skin friction Re1/2x Cfx, heat transfer Re−1/2x Nux and magnetic intensity Re1/2x Mgx at the
surface.

(i) The coefficient of skin friction decreases, and the coefficient of rate of heat transfer
and magnetic intensity at the surface increases with the increase of radiation
parameter Rd.

(ii) The coefficients of skin friction, heat transfer increases and magnetic intensity at the
surface decreases with the increase of mixed convection parameter λ by keeping
radiation parameter Rd, surface temperature θw, magnetic Prandtl Pm, magnetic
force parameter S fixed. The momentum and thermal boundary layer thicknesses
decreases and velocity and temperature profiles increases with the increase of the
mixed convection parameter λ. It is also noted that the increase in mixed convection
parameter λ reduce the transverse component of magnetic field profile.

(iii) The increase in Prandtl number Pr reduce the coefficient of skin friction and
enhance the coefficient of heat transfer and magnetic intensity at the surface.

(iv) The coefficient of skin friction, heat transfer increases and the coefficient of
magnetic intensity decreases with the increase of magnetic Prandtl number Pm.

(v) The transpiration parameter ξ play a significant role in boundary layer, due to
increase in transpiration parameter ξ the momentum and thermal boundary layer
thicknesses decreases and the transverse component of magnetic field profile also
reduced.

(vi) It is also concluded that an increase of the conduction radiation parameter Rd
decrease the local velocity as well as temperature distribution and enhance the
transverse component of magnetic field at the surface.

Nomenclature

U0: Reference velocity, m · s−1
U∞: Free stream velocity, m · s−1
H0: Reference magnetic field velocity
H∞: Free stream magnetic field
S: Magnetic field parameter
f : Transformed stream function
Pm: Magnetic Prandtl number
Rex: Local Reynolds number
Grx: Local Grashof number
Cfx: Skin friction
Hx: Magnetic field along the surface
Hy: Magnetic field normal to the surface
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Nux: Local Nusselt number
Mgx: Magnetic intensity at the surface
u: Dimensional axial velocity, m · s−1
v: Dimensional normal velocity, m · s−1
Tw: Wall temperature, K
T∞: Ambient fluid temperature, K
V0: Surface mass flux
Rd: Plank number (radiation-conduction

parameter)
x: Axial distance, m
y: Normal distance, m
g: Acceleration due to gravity, m · s−2.

Greek Letters

ψ: Fluid Stream function, m2 · s−1
φ: Transformed stream function for magnetic field
ξ: Transpiration parameter
α: Thermal diffusivity, m2 · s−1
λ: Mixed convection parameter
μ: Dynamical viscosity, Kg ·m−1 · s−1
η: Similarity transformation
ν: Kinematic viscosity, m2 · s−1
θ: Dimensionless temperature function
θw: Surface temperature ratio to the ambient fluid
ρ: Density of the fluid, Kg ·m−3

σ: Electrical conductivity, S(siemens) ·m−1

σs: Stefan-Boltzman constant
γ : Magnetic diffusion
β: Coefficient of cubical expansion
μ: Magnetic permibility.

Subscripts

w: Wall condition
∞: Ambient condition.

References

[1] H. P. Greenspan and G. F. Carrier, “The magnetohydrodynamic flow past a flat plate,” Journal of Fluid
Mechanics, vol. 6, pp. 77–96, 1959.

[2] T. V. Davies, “The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past
a semi-infinite flat plate. I. Uniform conditions at infinity,” Proceedings of the Royal Society of London A,
vol. 273, pp. 496–508, 1963.

[3] T. V. Davies, “The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a
semi-infinite flat plate. III. The influence of an adverse magneto-dynamic pressure gradient,” vol. 273,
pp. 518–537, 1963.



Mathematical Problems in Engineering 29

[4] R. J. Gribben, “Magnetohydrodynamic stagnation-point flow,” Quarterly Journal of Mechanics and
Applied Mathematics, vol. 18, no. 3, pp. 357–384, 1963.

[5] R. J. Gribben, “Magnetohydrodynamic boundary layers in presence of pressure gradient,” Proceedings
of the Royal Society of London A, vol. 287, pp. 123–141, 1965.

[6] P. Ramamoorthy, “Heat transfer in hydromagnetics,” The Quarterly Journal of Mechanics and Applied
Mathematics, vol. 18, pp. 31–40, 1965.

[7] C. W. Tan and C. C. T. Wang, “Heat transfer in aligned-field magnetohydrodynamic flow past a flat
plate,” International Journal of Heat and Mass Transfer, vol. 11, no. 2, pp. 319–329, 1967.

[8] L. T. Hildyard, “Falkner-Skan problem in magnetohydrodynamics,” Physics of Fluids, vol. 15, no. 6,
pp. 1023–1027, 1972.

[9] S. S. Chawla, “Magnetohydrodynamic oscillatory flow past a semi-infinite flat plate,” International
Journal of Non-Linear Mechanics, vol. 6, no. 1, pp. 117–134, 1971.

[10] D. B. Ingham, “The magnetogasdynamic boundary layer for a thermally conducting plate,”Quarterly
Journal of Mechanics and Applied Mathematics, vol. 20, no. 3, pp. 347–364, 1967.

[11] M. B. Glauert, “The boundary layer on amagnetized plate,” Journal of Fluid Mechanics, vol. 12, pp. 625–
638, 1962.

[12] S. S. Chawla, “Fluctuating boundary layer on a magnetized plate,” Proceedings of the Cambridge
Philosophical Society, vol. 63, p. 513, 1967.

[13] M. M. Ali, T. S. Chen, and B. F. Armaly, “Natural convection radiation interaction in boundary layer
flow over horizontal surface,” AIAA Journal, vol. 22, no. 12, pp. 1797–1803, 1984.

[14] V. S. Arpaci, “Effect of thermal radiation on the laminar free convection from a heated vertical plate,”
International Journal of Heat and Mass Transfer, vol. 15, pp. 1243–1252, 1972.
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