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Chaotic dynamical systems are ubiquitous in nature and most of them does not have an explicit
dynamical equation and can be only understood through the available time series. We here briefly
review the basic concepts of time series and its analytic tools, such as dimension, Lyapunov
exponent, Hilbert transform, and attractor reconstruction. Then we discuss its applications in a
few fields such as the construction of differential equations, identification of synchronization and
coupling direction, coherence resonance, and traffic data analysis in Internet.

1. Introduction

Chaotic dynamical systems are ubiquitous in nature such as the tornado, stock market,
turbulence, and weather. Their functions are different in different situations. For example,
in the case of tornado, the chaotic behavior is harmful to human beings and need to be
avoided or controlled. But in the case of the activities in human brain, the chaotic behaviors
are useful and necessary to sustain the normal functions of brain. Thus, it is an important task
to understand chaos and let it serve human society better.

The chaos has been studied for a long time. It is usually believed that Poincaré is the
first one who studied chaos. In the later 19th century, Poincaré studied the restricted three-
body problem where one body is negligible small, compared to the other two. Poincaré found
that the solution of this simple system is very complicated and cannot be given precisely. Then
in 1963, Lorenz revealed the “butterfly effect” in studying the weather prediction and is thus
recognized as the father of chaos. But the formal use of chaos is from the paper of “Period
three implies chaos” by Li and Yorke in 1975. After that, chaos have been widely studied and a
lot of important concepts has been introduced, such as the dimensions, Lyapunov exponents,
Fourier transform and Hilbert transform, and attractor reconstruction.
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The most striking feature of chaos is the unpredictability of its future. This feature is
usually called as the “sensitivity dependence on initial conditions” or “butterfly effect.” For
example, if two initial conditions have a small difference δx, their difference after time t will
be δxeλt with λ > 0, that is, exponential separation. Thus, a tiny difference or even a cutoff
error will be blown up quickly and results in a big difference in the near future. “Similar
causes have similar effects” is invalid in chaotic systems except for short periods. A system is
called chaotic system, provided that its maximum Lyapunov exponent is positive.

Mathematically, chaos can be produced by both discrete and continuous equations [1–
6]. The discrete systems can be expressed as

xn+1 = f(xn) (1.1)

such as the Logistic map, Henon map, standard map, tent map, circle map, and Ikeda map.
The continuous systems can be expressed as differential equation

dx(t)
dt

= F(x(t)) (1.2)

with three or more degrees of freedom x(t) = [x1(t), x2(t), x3(t), . . . , xm(t)]. Typical chaotic
flows are the Lorenz equation, Rössler equation, Duffing’s equation, Chua’s circuit, and so
forth. The discrete map and continuous flow are not unrelated but have a close relationship.
The discrete map (1.1) can be considered as a projection of flow (1.2) on a specific Poincaré
surface of section. Letting δt = 1 and taking limit, (1.1) will be transformed into (1.2). On the
other hand, (1.2) can be transformed into (1.1) by integration, that is, xn+1 = xn+

∫ t+Tn
t F(x(t))dt

with Tn being the returning time to the Poincaré section. A common point between the
discrete and continuous systems is that both are deterministic. That is, each initial condition
uniquely determines the time evolution. Thus, the chaos is usually called “deterministic
chaos” and can be considered as some kind of randomness produced by deterministic system.
A necessary condition for (1.1) and (1.2) to show chaos is that the functions f and F must be
nonlinear.

There are infinite unstable periodic orbits in chaos, which form invariant sets [1, 2].
An invariant set is the image of itself under time evolution. Once a trajectory is located in
these invariant sets, it will stay there forever. Comparing with the dense chaotic orbits, the
invariant sets are seldom and its measure is zero. In experimental situations or in numerical
simulations, as there is always noise or cutoff error, an arbitrary trajectory will never stay at
these invariant sets. The invariant sets are thus not observed in general. Given a long enough
time, a trajectory will lose memory on its initial condition and eventually settle on a restricted
geometry, called stable attractor. Once a trajectory enters the attractor, it will stay in it forever
if there is no external perturbation. The trajectory will go through all the phase points there
with its nature measure except the unstable periodic orbits. That is, the attractor is also an
invariant set. This property is called ergodicity in chaotic attractor.

Mathematically, there are a lot of measures such as the Lebesgue measure, Hausdorff
measure, counting measure, and natural measure. Suppose that the relative probability for
a continuous variable x to appear at some location is described by the probability density
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P(x). The measure μ(D) is the probability to find x in an area D, that is, μ(D) =
∫
DP(x)dx.

The average of a function f(x) is

〈f(x)〉 =
∫
f(x)P(x)dx =

∫
f(x)dμ(x). (1.3)

When the measure μ is an invariant measure and the average of function f(x) on μ equals
the average on time, μ becomes an ergodic measure with

〈
f(x)

〉
= lim

T→∞

1
T

∫T

0
f(x)dt =

∫
f(x)dμ(x). (1.4)

This measure does not include those unstable periodic orbits in the attractor and is called as
natural measure. To use this measure, one waits until all transients have been wiped off and
looks for an invariant probability measure describing the distribution of typical orbits. Thus,
in the natural measure, we say that the chaotic trajectories are ergodic. Based on this property,
many quantities are more conveniently defined as averages over the natural measure in phase
space. Because of the nonperiodicity of chaotic trajectory, the attractor is usually called as
“strange attractor,” in contrast to the attractors of fixed point and periodic orbits.

Practically, we usually do not have the dynamical equations (1.1) and (1.2), like the
earthquake, brain and stock market, and so forth, thus the details of the system equations
in the phase space and the asymptotic invariant set that determines what can be observed
through experimental probes are unknown. What we can obtain is some time series from
one or at best a few of the dynamical variables of the system, which poses a big challenge
to characterize the chaotic systems. An interesting question is how one go from one or a few
time series to the multivariate state or phase space which is required for chaotic motions to
occur?

Fortunately, this problem has been intensively studied in the past decades and has now
formed a subject called data mining or data analysis [7–11]. The basic assumption is that the
measured time series comes from the attractor of the unknown system with ergodicity, which
contains the information of the attractor. Then one can use the measured time series to figure
out the properties of attractor such as its dimension, its dynamical skeleton, and its degree of
sensitivity on initial conditions. The delay-coordinate embedding technique established by
Takens [12] provides a practical solution to this task.

Suppose that an experiment is conducted and one time series sn = s(nΔt) is measured,
where Δt is the sampling interval. Such a time series can be, for instance, a voltage signal from
a physical or biological experiment, or the concentration of a substance in a chemical reaction,
or the amount of instantaneous traffic at a point/node in the Internet, and so on. In principle,
the measured time series comes from an underlying dynamical system with (1.1) and (1.2),
with or without the influence of noise. Most commonly, the time series is a consequence of
scalar measurements of some quantity which depends on the current state of the system,
taken at a fixed sampling time:

sn = s(x(nΔt)) + ηn, (1.5)



4 Mathematical Problems in Engineering

where, more often than not, the measurement function s is unknown as F, x is the m-
dimensional variable and ηn is the measurement noise. Let us neglect the effect of noise at
this level of presentation. Equation (1.5) becomes

sn = s(x(nΔt)), n = 1, . . . ,N. (1.6)

The total recording time is then T =NΔt. In general, T should be sufficiently large so that the
full dynamics are exhibited in the time series. This is what we have in hand. In the following
we will show how to extract the information on the unknown attractor from (1.5) or (1.6).

2. Basic Concepts and Analytic Tools of Chaotic Time Series

To characterize the attractor, some basic concepts have been introduced such as dimensions
and Lyapunov exponents [1, 2]. These quantities are invariant under the evolution operator
of the system and thus are independent of changes in the initial conditions of the orbit, and
both are independent of the coordinate system in which the attractor is observed. Therefore,
we can evaluate them from experimental data. The advantage of these quantities is that
each one of them will turn a sequence of data into a single number, which is convenient
for comparison between different time series.

As an attractor is generally located in a finite area, its trajectory shows some kinds of
oscillatory behavior, that is, recurrence. To show the oscillatory behavior from a given scalar
time series, a convenient way is to transform it into a 2-dimensional vector by the Hilbert
transform. To obtain the attractor of the corresponding time series, we have to reconstruct an
auxiliary phase space by an embedding procedure, that is, the delay embedding technique.

2.1. Dimensions

Dimension quantifies the self-similarity of a geometrical object [7, 8]. For a homogeneous
object, its dimension is a fixed number; while for a heterogeneous object, its different parts
may have different dimensions and need to be characterized by the multifractal dimension.
We here focus on the homogeneous objects. In this situation, a finite collection of points is zero
dimensional, lines have dimension one, surfaces two and bulks three, and so forth. A chaotic
attractor usually has a fractal dimension, that can be characterized by several ways. Three
of them are convenient for numerical calculation, which are the box-counting dimension,
information dimension, and correlation dimension.

For calculating the box-counting dimension D0, we divide the attractor into
spheres/boxes of radius ε and ask how many boxes do we need to cover all the points in
the data set. If we evaluate this number N(ε) as a function of ε as it becomes small, then we
define the box-counting dimension by

D0 = lim
ε→ 0

lnN(ε)
ln(1/ε)

. (2.1)

Take Henon map xn+1 = yn + 1 − 1.4x2
n, yn+1 = 0.3xn as an example. Its attractor is shown

in Figure 1(a), where the square lattice has length ε. We count the number of square lattice
which contains at least one point of the trajectory and then obtain one point in Figure 1(b).
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Figure 1: (a) The attractor of Henon map; (b) the slope of the straight line represents the box-counting
dimension D0.

Then we change the ε in Figure 1(a) into ε/2 and do the same process to obtain another
point in Figure 1(b). In this way, we get Figure 1(b) in which the slope of the straight line is
D0 ≈ 1.27.

The shortage of box-counting dimension is that it treats all the boxes with points of
the trajectory as the same, no matter how many points in each box. Information dimension
overcomes this shortage and is defined in terms of the relative frequency of visitation of a
typical trajectory by

D1 = lim
ε→ 0

H(ε)
ln(1/ε)

, (2.2)

where

H(ε) = −
N(ε)∑

i=1

Pi lnPi. (2.3)

Pi is the relative frequency with which a typical trajectory enters the ith box of the covering.
Comparing with the definition of D0, we see that the box-counting dimension is weight-free
while the information dimension is weighted on the visiting frequency in the specific boxes.
When Pi is a constant, D1 will become D0.

When dimension is high, the calculation of both D0 and D1 will be time consuming
and a convenient dimension for this case is the correlation dimension D2. Comparing with
the box-counting dimensionD0 and the information dimensionD1, the correlation dimension
D2 is much easier to be calculated and is defined by

D2 = lim
ε→ 0

ln
∑N(ε)

i=1 P 2
i

ln ε
. (2.4)
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The sum in the numerator of (2.4) can be expressed as the following correlation sum [9]:

C(ε) =
2

N(N − 1)

N∑

j=1

N∑

i=j+1

Θ
(
ε −

∣
∣xi − xj

∣
∣), (2.5)

where Θ(·) is the Heaviside function, Θ(x) = 1 for x ≥ 0 and 0 otherwise, and |xi − xj | stands
for the distance between points xi and xj . Thus the sum just counts the pairs (xi, xj) whose
distance is smaller than ε. Then (2.4) becomes

D2 = lim
ε→ 0

lnC(ε)
ln ε

. (2.6)

As (2.5) is very easy to be calculated, the correlation dimension D2 has been widely used in
time series analysis.

In practice, the sum in the equation of C(ε) also depends on the embedding dimension
m as x(t) depends on the embedding space. The correlation dimension can be calculated in
two steps. First one has to determine the correlation sum C(ε), for the range of ε available
and for several embedding dimensions m. Then we inspect C(m, ε) for the signatures of
self-similarity. If these signatures are convincing enough, we can compute a value for the
dimension. Grassberger and Procaccia demonstrated that if the embedding dimension and
the number of data points are large enough and if the data are sufficiently noise-free, then the
function lnC(ε) versus ln ε has a linear region, called the scaling region [13, 14]. The slope
of the function in that linear region is D2. Due to such reasons, the correlation dimension D2

usually is estimated by examining the slope of the linear portion of the plot of lnC(ε) versus
ln ε for a series of increasing values of m.

2.2. Lyapunov Exponents

Lyapunov exponent is the most important quantity to chaotic systems as a positive maximal
Lyapunov exponent is a strong signature of chaos. In the contrary, a zero maximal Lyapunov
exponent denotes a limit cycle or a quasiperiodic orbit and a negative maximal Lyapunov
exponent represents a fixed point. An m-dimensional system has m Lyapunov exponents
with λ1, λ2, . . . , λm in descending order.

Consider a dynamical system described by (1.2). Taking variation of both sides of (1.2)
yields the following equation governing the evolution of the infinitesimal vector δx in the
tangent space at x(t):

dδx
dt

=
∂F
∂x
· δx. (2.7)

Solving for (2.7) gives

δx(t) = Atδx(0), (2.8)
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Figure 2: Schematic illustration of how to numerically calculate the maximal Lyapunov exponent.

where At = exp(
∫
(∂F/∂x)dt) is a linear operator that evolves an infinitesimal vector at time 0

to time t. The mean exponential rate of divergence of the tangent vector is then given by

λ[x(0), δx(0)] = lim
t→∞

1
t

ln
∣
∣
∣∣
δx(t)
δx(0)

∣
∣
∣∣. (2.9)

The Lyapunov exponents are given as

λi ≡ λ[x(0), ei], (2.10)

where ei is an m-dimensional basis vector. Obviously, each Lyapunov exponent is an average
of the local divergence rates over the whole attractor. For chaotic system, values of λi do not
depend on the choice of the initial condition x(0) because of the ergodicity.

To check whether a time series is chaotic or not, one needs to calculate the λ1, that is,
the maximal Lyapunov exponent λmax. This task is much easier than the calculation of all the
λi. The reason is that a chaotic trajectory will automatically go to its maximum expending
direction. This property can be conveniently used to calculate the λmax. Similarly, a chaotic
trajectory will automatically go to its maximum contracting direction if we let it do backward
evolution with t → −t, which can be used to calculate the smallest Lyapunov exponent λm.
Numerically, one can calculate the λmax as follows. Choose two very close initial points and let
their distance be d0 	 1. After integrating the dynamical system for a small time interval τ ,
their distance will become di. Considering that the attractor has a finite size, it is very easy for
the trajectory to reach the boundary of attractor. Once it happens, the distance di will not be
exponentially growing. A convenient way to overcome this problem is to do renormalization,
which makes the evolution begin at a small distance again. In detail, we choose a new point
at the end of one trajectory and let their distance be d0. Doing the integration again, we can
get another di. In this way we have

λmax = lim
n→∞

1
nτ

n∑

i=1

ln
di
d0
. (2.11)

Figure 2 shows its schematic illustration.
The approach shown in Figure 2 can be also applied to the case of discrete

systems. Consider an m-dimensional map x(i) (i = 1, 2, . . . , m). Let {xn(i)} be its state
at time n. We make a new state {x′n(i)} by adding a small perturbation {dx(i)}. That is,
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Figure 3: Schematic illustration of how to calculate the maximal Lyapunov exponent from time series or
experimental data.

{x′n(i) = xn(i) + dx(i)}. Let both {xn(i)} and {x′n(i)} evolve for a time period to obtain their
distance {dxn(i)}. Then the maximal Lyapunov exponent λmax can be given by

λmax = lim
N→∞

1
N

N∑

n=1

ln
‖dxn‖
‖dxn−1‖

, (2.12)

where ‖dxn‖ =
√∑m

i=1[dxn(i)]
2.

Practically, we cannot use the above approach to experimental data or time series as
there may not always have a pair of points with distance d0 at time t = nτ . Thus we need
to do some modification on it. The detailed process is as follows. Because of the recurrence
of chaotic trajectory, one can always find two close points with distance d0(t0) at time t0.
Then follow their trajectory to time t1 and measure their distance d1(t1). The evolution time
is t1 − t0. After that, we do renormalization to find a new beginning point. Considering that
the candidates for choosing are not sufficient, we choose one from them by the following
two rules: (1) the distance d0(t1) must be small; (2) to keep the direction of the maximal
expending, the angle between d0(t1) and d1(t1) must be small. Figure 3 shows its schematic
illustration. In this way we have

λmax = lim
N→∞

1
tN − t0

N∑

k=1

ln
d1(tk)
d0(tk−1)

. (2.13)

Experimental data are generally contaminated by noise. Its influence can be minimized
by using an averaging statistics when computing Lyapunov exponents. The concrete process
can be taken as follows. Choose a point x(0) and select all its neighbors with distance smaller
than ε. The size of the neighborhood should be as small as possible, but large enough such
that on average each reference point has at least a few neighbors. Compute the average over
the distances of all neighbors to the reference part of the trajectory as a function of the relative
time. Substitute this average into (2.11) or (2.13) to get the maximal Lyapunov exponent λmax.
To calculate more Lyapunov exponents from data except the λmax, see [15, 16] for details.

2.3. Fourier Transform and Hilbert Transform

Fourier spectral analysis is traditionally the time series analysis method and very powerful in
revealing the periodicity of time series. Its basic idea is that most signals, and all engineering
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signals, can be represented as a sum of sine waves. By Fourier transform, a time series is
transformed into a frequency spectrum, that is, from real space to frequency domain or
Fourier space. The Fourier transform establishes a one-to-one correspondence between the
signal at certain times (time domain) and how certain frequencies contribute to the signal.
Thus, instead of describing the statistical properties of a signal in real space one can ask
about its properties in Fourier space.

The Fourier transform of a function s(t) is given by

s̃(ω) =
1√
2π

∫∞

−∞
s(t)e2πiωtdt (2.14)

and that of a finite, discrete time series by

s̃k =
1√
N

N∑

n=1

sne
2πikn/N. (2.15)

Here, the frequencies in physical units are ωk = k/NΔt, where k = −N/2, . . . ,N/2 and Δt is
the sampling interval.

A necessary condition for the Fourier analysis to be meaningful is that the time series
should be piecewise stationary. However, a chaotic time series has a broad-band power
spectra for which the Fourier spectrum gives no indication about the deterministic origin,
let alone the fundamental invariants of the underlying dynamical system. For chaotic time
series, a powerful approach is the Hilbert transform [10].

Consider a time series x(t). One performs a mathematical transform to obtain the
corresponding imaginary part x̃(t), yielding the following complex signal ψ(t):

ψ(t) = x(t) + ix̃(t) = A(t)eiφ(t). (2.16)

ψ(t) is called analytic signal and the value of x̃(t) is obtained from x(t) through a transform
called Hilbert transform:

x̃(t) = P.V.
[

1
π

∫∞

−∞

x(t′)
t − t′dt

′
]
, (2.17)

where P.V. stands for the Cauchy principal value for the integral.
The Hilbert transform is closely related to the Fourier transform and their relationship

can be seen clearly as follows. Observe that if the real signal x(t) has a Fourier transform S(ω),
then the complex signal, ψ(t), the spectrum of which is composed of positive frequencies of
S(ω) only, is given by the inverse transform of S(ω), where the integration goes only over the
positive frequencies:

ψ(t) =
2√
2π

∫∞

0
S(ω)eiωtdω. (2.18)
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The factor of 2 is inserted so that the real part of the analytic signal is x(t), not one half of that.
The explicit form of ψ(t) can then be obtained in terms of the real signal x(t). Because

S(ω) =
1√
2π

∫∞

−∞
x(t)e−iωtdt, (2.19)

the complex signal can be written as

ψ(t) =
1
π

∫∞

0

∫∞

−∞
x
(
t′
)
e−iω(t−t

′)dt′dω. (2.20)

The following mathematical identity [17]:

∫∞

0
eiωτdω = πδ(τ) +

i

τ
(2.21)

gives

ψ(t) =
1
π

∫∞

−∞
x
(
t′
)
[
πδ

(
t − t′

)
+

i

t − t′
]
dt′, (2.22)

which yields

ψ(t) = x(t) + i
1
π

∫∞

−∞

x(t′)
t − t′dt

′, (2.23)

which is the analytic signal corresponding to the real signal x(t). The imaginary part of (2.23)
is just the Hilbert transform (2.17).

The analytic signal ψ(t) corresponds geometrically to a rotation with amplitude and
phase as follows:

A(t) =
√
x(t)2 + x̃(t)2, φ(t) = arctan

(
x̃(t)
x(t)

)
. (2.24)

By the phase variable φ(t) we can obtain an instantaneous frequency ω(t)

ω(t) =
dφ(t)
dt

=
x(t) ˙̃x(t) − ẋ(t)x̃(t)

A2(t)
, (2.25)

where ˙̃x(t) and ẋ(t) denote the derivatives of x̃(t) and x(t) to t, respectively. Note that the
instantaneous frequency ω(t) is fundamentally different from the concept of frequency in the
Fourier transform defined in the base of simple harmonic functions. Here ω(t) measures the
rate of rotation in the complex plane of analytic signal and is very useful in detecting the
phase synchronization.
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2.4. Attractor Reconstruction

Reconstruction of phase space is so important that we can do nothing without doing it.
For example, our just introduced dimensions and Lyapunov exponents are very important
concepts to the description of chaotic attractor. However, their calculations depend on the
trajectory in attractor. For a measured time series, it is just a scalar measurement from one
or a few variables of the attractor but not a trajectory. Thus, we need firstly to figure out the
trajectory from the given time series. How to do that is a big challenge. Fortunately, the delay-
coordinate embedding technique laid by Takens [12] gives the mathematical foundation to
solve this problem. He showed that if the dynamical system and the observed quantity are
generic, then the delay-coordinate map from a d-dimensional smooth compact manifold M
to Rm, m > 2d, is a diffeomorphism on M. That is, under fairly general conditions, the
underlying dynamical system can be faithfully reconstructed from time series in the sense
that a one-to-one correspondence can be established between the reconstructed and the true
but unknown dynamical systems.

Takens’ delay-coordinate method goes as follows. From a measured time series
s(k) = s(t0 + kΔt) with Δt being the sampling interval, the following vector quantity of m
components is constructed:

u(t) = {s(t), s(t + τ), . . . , s(t + (m − 1)τ)}, (2.26)

where t = t0 + kΔt, τ is the delay time which is an integer multiple of Δt, and m is the
embedding dimension. Clearly, what time lag τ to use and what dimension m to use are the
central issues of this reconstruction based on delay-coordinate embedding. Let us discuss
under what condition of τ and m, the reconstructed vector u(t) can represent the true
trajectory of the unknown attractor.

2.4.1. Embedding Dimension

To have a faithful representation of the true dynamical system, the embedding dimension
should be large enough. Takens’ theorem provides a lower bound for m. Let us figure out this
bound. We note that in a space of dimension m one subspace of dimension d1 and another
subspace of dimension d2 generically intersect in subspaces of dimension

dI = d1 + d2 −m. (2.27)

If this is negative, then there is no intersection of the two subspaces. Figure 4 shows examples.
In Figure 4(a) we have d1 = d2 = 1 and m = 2, thus we obtain dI = 0, which means
that the intersection set consists of points, and the intersections are generic because small
perturbations cannot remove them. In Figure 4(b) we have d1 = d2 = 1 and m = 3, thus we
obtain dI = −1 < 0, which means that two one-dimensional curves do not intersect generally
in a three-dimensional space. In Figure 4(c) we have d1 = 1, d2 = 2, and m = 3, thus we
obtain dI = 0 again, which means that the intersections are generic. To obtain a one-to-one
correspondence between points on the invariant sets in the actual and reconstructed phase
spaces, self-intersection must not occur. Otherwise, there will be two directions at the self-
intersection, which will destroy the one-to-one correspondence.
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(a) (b)

(c)

Figure 4: Schematic illustration of intersection of the two subspaces. (a) d1 = d2 = 1 and m = 2; (b)
d1 = d2 = 1 and m = 3; (c) d1 = 1, d2 = 2 and m = 3.

When we ask about the intersection of two subspaces of the same dimension dA,
namely, the orbit with itself, then intersections fail to occur when 2dA −m < 0 or

m > 2dA. (2.28)

The question of unfolding a set of dimension dA from projections to lower dimensions
concerns self-intersections of the set with itself as the projections are made. So the relevant
criterion for unfolding a single object is m > 2dA. We wish m be an integer and let the lowest
m which satisfies the unfolding condition m > 2dA be the embedding dimension mE. Thus,
we have mE = int(2dA + 1), where int(·) means taking integer. For example, the box counting
dimension of the strange attractor for the Lorenz model is dA ≈ 2.06 which would lead us to
anticipate mE = 5 to unfold the Lorenz attractor.

In some situations, the needed embedding dimension is very large such as the EEG
(electroencephalogram) data. As large embedding dimension requires long time series (105 ∼
106 points) and are thus computationally expensive, we hope to relax the condition m > 2dA,
especially for calculating some statistical quantities such as Lyapunov exponents and fractal
dimension. To reduce the cost of calculation, we may choose dA < m < 2dA, provided that the
self-intersections is neglectable. Schroer et al. show that, provided that the dimension m of
measurement space is large than the information dimension D1 of the underlying dynamics,
a prediction based on the reconstructed self-intersecting attractor is possible most of the time
[18].
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2.4.2. Time Delay

The embedding theorem is silent on the choice of time delay to use in constructing m-
dimensional data vectors. Considering that the s(t), s(t + τ), . . . , s(t + (m − 1)τ) in (2.26) are
serving as independent variables in the reconstruction space, they should be independent
from each other and thus the delay time τ needs to be chosen carefully. In this sense, the
chosen of τ should satisfy three conditions.

(1) It must be some multiple of the sampling time τs, since we only have data at those
times.

(2) If τ is too short, the coordinates s(t) and s(t + τ) will not be independent enough
and the reconstructed attractor will be accumulated around the diagonal line. That
is, we will not have seen any of the dynamics unfold in that time.

(3) Finally, since chaotic systems are intrinsically unstable, if τ is too large, any
connection between the measurements s(t) and s(t + τ) is numerically tantamount
to being random with respect to each other.

Therefore, the delay time τ should be large enough so that s(t) and s(t + τ) are rather
independent, but not so large that they are completely independent in a statistical sense. This
is a difficult problem and can be solved by the mutual information whose first minimum is
the good candidate of τ .

2.4.3. Mutual Information I(τ)

For a measured data s(t), we create a histogram for the probability distribution of the data.
Denote by pi the probability that the signal assumes a value inside the ith bin of the histogram,
and let pij(τ) be the probability that s(t) is in bin i and s(t + τ) is in bin j. Then the mutual
information for time delay τ reads

I(τ) =
∑

i,j

pij(τ) ln pij(τ) − 2
∑

i

pi ln pi. (2.29)

In the special case of τ = 0 the joint probabilities pij = piδij and the expression yields the
Shannon entropy of the data distribution. Apart from this degenerate case, the value of the
mutual information is independent of the particular choice of histogram, as long as it is fine
enough. In the limit of large τ , s(t) and s(t + τ) have nothing to do with each other and pij
thus factorizes to pipj and the mutual information becomes zero. The mutual information
I(τ) between measurements s(n) and time lagged measurements s(n + T) is both easy to
evaluate directly from the time series s(n) and easy to interpret. A very nice property of
average mutual information is that it is invariant under smooth changes of coordinate system.

Fraser and Swinney suggest that one use the function I(τ) as a kind of nonlinear
autocorrelation function to determine the optimal τ [19]. The first minimum of I(τ) marks the
time lag value to use in time delay reconstruction of phase space where s(t+τ) adds maximal
information to the knowledge we have from s(t), or, in other words, the redundancy is least.
Let us take the Lorenz system ẋ = σ(y − x), ẏ = γx − y − xz, ż = −bz + xy as an example.
Figure 5(a) shows how the mutual information I(τ) changes with τ when the parameters are
taken as σ = 16, γ = 45.92, b = 4. It is easy to see that the first minimum of I(τ) occurs at
τ = 10. Figures 5(b) to 5(d) represent the reconstructed attractors by τ = 1, 10, 20, respectively.
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Figure 5: (a) The mutual information I(τ) versus the time delay τ for Lorenz system; (b) to (d) represent
the cases where the attractors are reconstructed by τ = 1, 10, 20, respectively.

Obviously, Figure 5(c) reconstructed by the first minimum of τ = 10 reflects the structure of
double-scroll best.

The time delay can be also chosen by other methods such as the autocorrelation
function [7]. It is pointed out the delay spanned window (m − 1)τ , rather than τ and m
separately, is a crucial issue for the attractor reconstruction. The reason is that the window
(m − 1)τ determines the characteristics of the correlation integral whose linear part gives
the correlation dimension D2. However, the first minimum of mutual information is not
consistently successful in identifying the optimal window [20]. The optimal window length
for successful embedding τw should satisfy τw ≥ τp with τp being the mean orbital period of
the underlying chaotic system and is approximated from the oscillations of the time series
[21].

3. Modeling and Forecasting: Applications of
Chaotic Time Series Analysis

The time series analysis has been widely applied in all the fields where the dynamical
equations are unknown and only one or a few data are available. The most popular
application is to calculate the dynamical parameters which partially reflect the properties
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of the attractor. For example, from a time series one can first use the delay-coordinate
embedding technique to reconstruct the phase space and then calculate its dimensions and
Lyapunov exponents and so forth. by the methods introduced in the previous section. As this
part is relatively easy and straightforward, we will not focus on it in this section. We would
like to introduce a few typical cases where the time series analysis is necessary and useful
tool to tell more information on the system, not only limited to the attractor.

3.1. Constructing Dynamical Equations

The most important question of time series analysis may be that: Is it possible to figure
out the ordinary differential equations (ODEs) from a scalar time series, which govern the
behavior of the system? This problem has been well studied and the answer is yes. A lot of
methods have been developed to solve this problem. We here introduce two of them, that is,
the standard approach and synchronization approach

3.1.1. The Standard Approach

This approach assumes every ODE can be written in a standard form [22, 23]

ẏ1 = y2,

ẏ2 = y3,

...

ẏD = f
(
y1, y2, . . . , yD

)
,

(3.1)

where y1 is an observable, f is a polynomial of an order K:

f
(
y1, y2, . . . , yD

)
=

K∑

l1,l2,...,lD

cl1,l2,...,lD

D∏

j=1

y
lj
j ,

D∑

j=1

lj ≤ K. (3.2)

For example, the Rössler system ẋ = −y − z, ẏ = x + ay, ż = b + z(x − c) can be rewritten as
ẋ = y, ẏ = z, ż = ab − cx + x2 − axy + xz+ (ac − 1)y + (a− c)z− (y/(a+ c − x))(x + b − ay + z).
The Lorenz system ẋ = σ(y − x), ẏ = γx − y − xz, ż = −bz + xy can be rewritten as ẋ = y,
ẏ = z, ż = bσ(γ − 1)x − b(σ + 1)y − (b +σ + 1)z−x2y −x3σ + (y/x)[(σ + 1)y + z]. Then the task
is to determine the coefficient from the data.

Reference [24] points that the above method is inefficient in many situations. In
particular, universal models often contain a large number of coefficients and demonstrate
divergent solutions. For solving this problem, [24] gives a modified approach as follows. Its
main idea is to let the function f depend explicitly on time and takes the form

f
(
y1, y2, . . . , yD, t

)
=

K∑

l1,l2,...,lD

(cl1,l2,...,lD + al1,l2,...,lD cosωt + bl1,l2,...,lD sinωt)
D∏

j=1

y
lj
j ,

D∑

j=1

lj ≤ K,

(3.3)
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where the linear terms cosωt and sinωt is chosen for simple and effective approximation. In
general, using higher powers of cosωt and sinωt are also possible. For (3.3), we still have one
parameter to be determined, that is, the driving frequency ω or driving period T . The idea
to find T is as follows [25]. First, a sufficiently big value of a polynomial order K is selected.
Second, an initial estimate T = T ∗ of the period value is found (this estimate can be derived
as a location of a peak in the power spectrum of the observed series). At this value of T , one
obtains the values of cl1,l2,...,lD , al1,l2,...,lD , bl1,l2,...,lD , and an approximation error ε by the linear
least squares method. Then, the trial value of T is varied through a certain range near the
initial estimate T = T ∗ and approximation is performed for each of the trial values. The graph
of ε(T) has a sharp and deep minimum which corresponds quite precisely to the “true” value
of the driving period.

3.1.2. Synchronization Approach

Recently, Sorrentino and Ott proposed an adaptive strategy that, by using synchronization, is
able to obtain a set of ODE that describes the unknown real system [26]. They assume that the
ODEs governing the system dynamics are expressible or approximately expressible in terms
of polynomials of an assigned degree. Then they extract the whole set of parameters of the
unknown system from knowledge about the dynamical evolution of its state vector and its
first derivative. The detailed steps are as follows [26].

Consider a system ẋ = F(x) with x = (x1, x2, . . . , xm)
T and F(x) =

[f1(x),f2(x), . . . , fm(x)]
T , where fi(x) is a degree two polynomial

fi(x) =
m∑

j=1

m∑

k=1

aijkxjxk +
m∑

j=1

bijxj + ci. (3.4)

For example, in the case of Rössler system, m = 3 and f1 = −x2 − x3, f2 = x1 + 0.165x2, f3 =
0.2 + (x1 − 10)x3, all the coefficients (aijk, bij , and ci) are zero, except a313 = 1, b12 = −1, b13 =
−1, b21 = 1, b22 = 0.165, b33=−10, and c3 = 0.2. Although the system function F is unknown, it
is appropriate to try to model the dynamics of the true system by ẋ′ = F ′(x′) with

f ′i
(
x′
)
=

m∑

j=1

m∑

k=1

a′ijkx
′
jx
′
k +

m∑

j=1

b′ijx
′
j + c

′
i. (3.5)

Then the task is how to make a′
ijk
, b′ij , c

′
i evolve to the true coefficient aijk, bij , ci. To accomplish

this goal, we envision coupling the true system to the model system (3.4). It is then hoped
that when the synchrony is achieved, the model coefficients will be a good approximation to
the corresponding coefficients of the real system.

The coupling from the true system to the model is designed as follows:

ẋ′ = F ′
(
x′
)
+ Γ

(
H(x) −H

(
x′
))
. (3.6)

The quantity H is in general an n ≤ m vector of n observable scalar quantities that are
assumed to be known functions of the system state x(t). Γ is an n × m constant coupling
matrix. Here we assume H(x) = x and Γ = γIm, where γ is a scalar quantity and Im is the
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identity matrix of dimensionm. To obtain the synchronized solution x(t) = x′(t), we introduce
a potential

Ψi =
〈[
ẋi − f ′i(x

′
1, x

′
2, . . . , x

′
m)

]2
〉

v
, i = 1, 2, . . . , m, (3.7)

where 〈G(t)〉v denotes the sliding exponential average v
∫ t
e−v(t−t

′)G(t′)dt′. Note that Ψi

is a function of time and also of the coefficients a′ijk, b
′
ij , and c′i. Also note that if

x1(t), x2(t), . . . , xm(t) are chaotic, then the quantities fi(x1(t), x2(t), . . . , xm(t)), i = 1, 2, . . . , m,
vary chaotically as well. It is easy to see that the potential satisfies Ψi ≥ 0. Once Ψi = 0, we
have synchronization and the coefficients are obtained.

To make Ψi = 0, we let the parameters a′
ijk
, b′ij , and c′i adaptively evolve according to

the following gradient descent relations:

da′
ijk(t)

dt
= −βa

∂Ψi

∂a′
ijk

,

db′ij(t)

dt
= −βb

∂Ψi

∂b′ij
,

dc′i(t)
dt

= −βc
∂Ψi

∂c′i

(3.8)

βa, βb, βc > 0. Our hope is that a′
ijk
, b′ij , and c′i will converge under this evolution to the true

parameter values, aijk, bij , ci.
We consider the first equation of (3.8). Let (f ′i)jk denote f ′i(x

′
1, x

′
2, . . . , x

′
m) evaluated at

a′ijk = 0, we have f ′i(x
′
1, x

′
2, . . . , x

′
m) = a′ijkx

′
jx
′
k + (f ′i)jk. Substituting this into the right-hand

side of the first equation of (3.8), we obtain

da′ijk(t)

dt
= −2βa

〈
a′ijkx

′2
j x
′2
k + (f ′i)jkx

′
jx
′
k − ẋix

′
jx
′
k

〉

v

. (3.9)

Similarly letting (f ′i)j denote f ′i(x
′
1, x

′
2, . . . , x

′
m) evaluated at b′ij = 0, the second equation of

(3.8) gives

db′ij(t)

dt
= −2βb

〈
b′ijx

′2
j + (f ′i)jx

′
j − ẋix

′
j

〉

v
. (3.10)

Finally, we consider the third equation of (3.8) with (f ′i) denote f ′i(x
′
1, x

′
2, . . . , x

′
m) evaluated

at c′i = 0. Then

dc′i(t)
dt

= −2βc
〈
c′i + (f ′i) − ẋi

〉
v.

(3.11)

We here consider the case where βa,b,c are very large. For this situation the solutions
a′
ijk
, b′ij , and c′i rapidly converge to the minimum of the potentials, indicating we can set the
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averages 〈· · · 〉v on the right-hand side of (3.9)–(3.11) to zero. We further consider that the
average 〈· · · 〉v is performed over a time scale v−1, which is much larger than the time scale Ts
for variation in x(t), in which case a′

ijk
, b′ij , and c′i vary slowly compared to x(t). Under these

conditions, (3.8) and (3.9)–(3.11) then yield

m∑

l=1

m∑

n=l

a′iln

〈
x′lx

′
nx
′
jx
′
k

〉

v
+

m∑

l=1

b′il

〈
x′lx

′
jx
′
k

〉

v
+c′i

〈
x′jx

′
k

〉

v
=
〈
ẋix

′
jx
′
k

〉

v
, j =1, . . . , m; k=j, . . . ,m,

m∑

l=1

m∑

n=l

a′iln

〈
x′lx

′
nx
′
j

〉

v
+

n∑

l=1

b′il

〈
x′lx

′
j

〉

v
+ c′i

〈
x′j

〉

v
=
〈
ẋix

′
j

〉

v
, j = 1, . . . , m,

m∑

l=1

m∑

n=l

a′iln
〈
x′lx

′
n

〉
v
+

n∑

l=1

b′il
〈
x′l
〉
v
+ c′i = 〈ẋi〉v.

(3.12)

Equation (3.12) constitutes a system of M = [(m2/2) + (3m/2) + 1]m linear equations
for the M quantities a′ijk, b

′
ij , and c′i. In practice, it is inconvenient to explicitly calculate the

integrals for these quantities in terms of the form

I(t) = 〈G(t)〉v = v
∫ t

e−v(t−t
′)G

(
t′
)
dt′ (3.13)

at every time step. Instead we will use the fact that I(t) satisfies the differential equation

dI

dt
+ vI = vG(t) (3.14)

and obtain I(t) as a function of time by solving (3.14). Thus the adaptive system for finding
estimates of the quantities aijk, bij , and ci is (3.6) for x′(t) and (3.12) for a′

ijk
, b′ij , and c′i, where

the various terms in (3.12) are of the form I(t) = 〈G(t)〉v obtained by integrating (3.14).
Sorrentino and Ott have applied this method to both the Rössler and Lorenz systems and
confirmed that it works well [26].

3.2. Detecting the Phase Locking

Another important application of time series analysis is in biology and medical sciences. It is
found that in living systems, synchronization is often essential in normal functioning, while
abnormal synchronization can lead to severe disorders. For example, the EEG data from
human brain shows that synchronization under normal conditions seems to be essential for
the binding problem; whereas epilepsies are related to abnormally strong synchronization
[27–29]. In principal, the synchronization relationship between two time sequences may be
phase synchronization (PS), generalized synchronization (GS), Lag synchronization (LS),
and complete synchronization (CS), and so forth, depending on the coupling strength [30].

For two coupled identical systems, one may observe CS where there is an invariant
synchronization manifold [31]. And for two coupled nonidentical systems, it may show PS
and then LS when coupling is increasing [32]. At PS, their frequencies are locked whereas
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their amplitudes remain chaotic and uncorrelated [33–35]. And at LS, the corresponding
variables become identical after the transformation of time shift. For two coupled different
systems, we may observe GS when coupling is large enough [36–45], where there is a
functional relation between their states.

CS is very easy to be detected by directly checking the identity between the measured
two time series. However, it is not so easy to detect the PS, LS and GS. To detect PS, we first
need to calculate the phase φ1,2 from the two time series by the Hilbert transform. If they
satisfy the condition

∣
∣nφ1 − �φ2

∣
∣ < const, (3.15)

where n, � are integers, the two time series are phase-locking or in PS. To check LS, we
calculate a similarity function S:

S2(τ) =

〈
[x2(t + τ) − x1(t)]2

〉

[〈
x2

1(t)
〉〈
x2

2(t)
〉]1/2

, (3.16)

which is a time-averaged difference between the variables x1 and x2 taken with the time shift
τ . Then we search for its minimum σ = minτS(τ). If there exists a τ0 with σ = 0, we have LS,
that is, x2(t+τ) = x1(t). Figure 6 shows the similarity function S for two coupled nonidentical
Rössler systems

ẋ1,2 = −ω1,2y1,2 − z1,2 + k(x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 + ay1,2,

ż1,2 = −b + z1,2(x1,2 − c),

(3.17)

where ω1,2 = 0.97 ± 0.02, a = 0.165, b = 0.2, c = 10. From Figure 6 we see that the LS is
possible for k ≥ 0.15.

To check GS, there is a convenient method, that is, the auxiliary system approach
[38]. The idea is as follows. Consider two coupled systems ẋ = F(x), ẏ = G(y, x). Then we
construct an auxiliary response system y′ identical to y, link it to the driving system x in the
same way as y is linked to x. That is, ẏ′ = G(y′, x). Instead of checking the relationship between
x and y, we check the relationship between y and y′. If there is an identical synchronization
between y and y′, then we have a GS between x and y. Unfortunately, this method fails for
the time series where the dynamical equations are unknown. An alternative approach to
detect the GS is to estimate the maximal conditional Lyapunov exponent λRmax. There is GS
if λRmax < 0. The conditional Lyapunov exponent is determined by the variational equation of
the response system at δx = 0

δẏ = DyG(y, x)δy, (3.18)

whereDyG denotes the Jacobian matrix with respect to the y variable. For a dynamical system
with no explicit driving and response parts, the GS can be determined by the transverse
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Figure 6: The dependence of the similarity function S on the time lag for different coupling strengths.

Lyapunov exponent which is from the variational equation on the invariant manifold x = y.
Its detail can be found in [41, 46].

For the case of nonstationary time series, we do not have a fixed relationship like
the CS, PS, LS, and GS for all the time, that is, the synchronized relation may change with
time such as in the EEG data with epileptic seizure. An approach based on the permutation
entropy may be useful for this case [47, 48]. Let us briefly introduce the concept of entropy.
In probability theory, entropy quantifies the uncertainty associated to a random process.
Consider an experiment with outcome S = {s1, s2, . . . , sn}. Assume that the probability of
si is pi with

∑
i pi = 1. If s1 has a probability very close to 1, then in most experiments

the outcome would be s1 thus the result is not very uncertain. One does not gain much
information from performing the experiment. One can quantify the “surprise” of the outcome
as information = − ln (probability). The entropy associated to the experiment is

H = −
∑

pi ln pi (3.19)

which is simply the expectation value of the information produced by the experiment.
Entropy quantifies the information content, namely, the amount of randomness of a signal.

For two measured scalar time series data xi(nΔt), yi(nΔt), n = 1, 2, . . . , we divide
the long time series into segments with fixed finite length τ . Then in each segment denoted
as τj (j = 1, 2, . . .), we use the technique of sliding window analysis to partition the time
series data into short sequences of a given length m = 3. Each shifting in the time series
corresponds to a new short sequence. For example, xi(nΔt), xi((n + 1)Δt), xi((n + 2)Δt) and
xi((n+ 1)Δt), xi((n+ 2)Δt), xi((n+ 3)Δt) are different sequences. For a time series with length
N, the total short sequences in one segment will be N − m + 1. Inside a short sequence,
we distinguish it as a pattern by the natural position order. Hence we have four different
patterns for m = 3, such as xi(nΔt) < xi((n + 1)Δt) < xi((n + 2)Δt), xi(nΔt) < xi((n + 1)Δt) >
xi((n+2)Δt), xi(nΔt) > xi((n+1)Δt) < xi((n+2)Δt), and xi(nΔt) > xi((n+1)Δt) > xi((n+2)Δt).
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Using pi (i = 1, . . . , 4) to denote the probability that one of the patterns appears in the time
series of a segment, we can define the permutation entropy H(τj) as

H
(
τj
)
= −

4∑

i=1

pi ln pi. (3.20)

Because the time series is always changing with time,H(τj) changes with time period interval
τj and will be determined by the local topological structure of the time series. For two
time series with GS, we cannot expect them to have the same permutation entropy H(τj)
in the corresponding time period τj because they are not identity, but we would expect
the corresponding H(τj) have similar changing tendency. That is, we require the changing
tendency of H(τj) will be in step if there is GS between the two time series xi(nΔt) and
yi(nΔt). By this way we can figure out the degree of GS [47, 48].

3.3. Inferring Coupling Direction

Sometimes, knowing the synchronized relationship between two time series is not enough,
and we need to know more information about them such as which one is the driving
system and which one is the response system. For example, in the prediction and control
of epileptic seizure, we need to find out the focus. This problem has been well studied
in the past decade and a number of approaches have been proposed, such as the cross-
correlation functions, cross-spectral analysis, Granger causality, the nearest neighbors, and
phase dynamical modeling [49–53]. We here introduce typical three of them: the Granger
causality, the nearest neighbors, and the phase dynamical modeling.

3.3.1. Granger Causality

Granger causality is based on the notion of predictability [49]. In general, in a coupled system
that involves two interacting fields, Granger causality tests whether past values of one field
(X) statistically help to predict the current values of the other field (Y ) better than using past
values of Y alone. Should past values of X contain information about current values of Y
beyond that contained in the preceding Y sequence (or any other variables contained in the
information set), variability in theX field is said to “Granger causal” variability in the Y field.
Similarly, we can test whether previous values of Y cause variability in the present values of
X.

Consider two time series {xn} and {yn}. If there is a causal relation between process y
and process x, the prediction of signal {xn} can be improved by incorporation into the model
the past of signal {yn}. As a result, we have a “joint”/bivariate autoregressive (AR) model

xn = f(xn−1, . . . , xn−d1) + g
(
yn−1, . . . , yn−d2

)
, (3.21)

where f and g are polynomials that can be determined from the current data. d1 is the
correlation length to the previous values, and d2 describes “inertial” properties of the
influence. If d2 = 1, then the influence is instantaneous, otherwise it is nonlocal in time.
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Different values of d1 and d2 need to be tested in order to select those values that provide
the most faithful results. In the framework of linear AR, we have

xn = α0 +
d1∑

i=1

αixn−i +
d2∑

i=1

βiyn−i. (3.22)

In (3.22) the coefficients αi and βi are selected in order to minimize the mean square error

ε2
xy =

1
N

∑

n

[

xn −
(

α0 +
d1∑

i=1

αixn−i +
d2∑

i=1

βiyn−i

)]2

. (3.23)

The null hypothesis that yn does not Granger cause xn is supported when βi = 0, which
reduces (3.23) to

xn = α0 +
d1∑

i=1

αixn−i, (3.24)

where the coefficients αi are selected in order to minimize the mean square error

ε2
x =

1
N

∑

n

[

xn −
(

α0 +
d1∑

i=1

αixn−i

)]2

. (3.25)

When ε2
xy appears to be less than the ε2

x, it is assumed that process y influences process x.
This model leads to the well-known alternative test statistics, the Granger-Sargent test [54]

S2
xy =

ε2
x − ε2

xy

ε2
xy

. (3.26)

Thus, the influence of {yn} on {xn} is characterized by the value of the normalized prediction
improvement S2

xy and the reverse influence of {xn} on {yn}, S2
yx is described by an equation

similar to (3.26) in which x and y should be interchanged.

3.3.2. The Nearest Neighbor Approach

This method is based on the existence of GS and is a nonlinear prediction approach [55–57].
Since many features of real data such as EEG signals cannot be generated by linear models, it
is generally argued that nonlinear measures are likely to give more information than the one
obtained with conventional linear approaches. The main idea is that for a driver/response
system with y = G(x), the response system y will follow the driver system x. Therefore, the
nearest neighbors of x will have corresponding nearest neighbors of y but the inverse does
not work. Based on this feature, the direction of coupling can be figured out.

Consider two time series {xn} and {yn}. Let us reconstruct delay vectors xn =
(xn, . . . , xn−(m−1)τ) and yn = (yn, . . . , yn−(m−1)τ), where n = 1, . . . ,N, m is the embedding
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Figure 7: Schematic illustration for the indices of the nearest neighbors in x and y state space, respectively,
where the number 1, 3 denote the rn,j and 1′, 3′ the sn,j .

dimension, and τ denotes the time lag. Let rn,j and sn,j , j = 1, . . . , k, denote the time indices of
the k nearest neighbors of xn and yn, respectively. Figure 7 shows the schematic illustration
with k = 1. For each xn, the square mean Euclidean distance to its k neighbors is defined as

R
(k)
n (X) =

1
k

k∑

j=1

(
xn − xrn,j

)2
, (3.27)

and the Y-conditional squared mean Euclidean distance is defined by replacing the nearest
neighbors by the equal time partners of the closest neighbors of yn,

R
(k)
n (X | Y) = 1

k

k∑

j=1

(
xn − xsn,j

)2
. (3.28)

If the point cloud {xn} has an average squared radius R(X) = (1/N)
∑N

n=1 R
(N−1)
n (X),

then R
(k)
n (X | Y) ≈ R

(k)
n (X) 	 R(X) if the system is strongly correlated, while R

(k)
n (X |

Y) ≈ R(X) � R
(k)
n (X) if they are independent. Accordingly, we can define an interdependent

measure S(k)(X | Y) as [28, 56, 57]

S(k)(X | Y) = 1
N

N∑

n=1

R
(k)
n (X)

R
(k)
n (X | Y)

. (3.29)

Since R(k)
n (X | Y) ≥ R(k)

n (X) by construction, we have

0 < S(k)(X | Y) ≤ 1. (3.30)

Low values of S(k)(X | Y) indicate independence between X and Y, while high values indicate
synchronization. This dependence becomes maximal when S(k)(X | Y) → 1.

The opposite dependence S(k)(X | Y) is defined in complete analogy. It is in general not
equal to S(k)(Y | X). Both S(k)(X | Y) and S(k)(Y | X) may be of order 1. Thus, X can depend on
Y, and at the same time Y can depend on X. If S(k)(X | Y) > S(k)(Y | X), that is, if X depends
more on Y than vice versa, we say that Y is more “active” than X.
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This approach is good at the case of only two coupled systems. For the case of
multiple coupled systems, we need to pay attention to not only the values of S(k)(X | Y) or
S(k)(Y | X) but also their difference. Take a ring of three unidirectionally coupled oscillators
as an example. We will obtain that both the values of S(k)(X | Y) and S(k)(Y | X) between
the oscillators 1 and 2 are greater than zero, but it does not means that their coupling is
bidirectional. That is, the indirect coupling should be also considered.

3.3.3. Phase Dynamical Modeling

This approach is presented by Rosenblum and Pikovsky [58] and widely applied in real
situations [59, 60]. The main idea is to use a general property that a weak coupling affects
the phases of interacting oscillators, whereas the amplitudes remain practically unchanged.
In detail, consider a case of weak coupling where the dynamics can be reduced to those of
two phases φ1,2:

φ̇1 = ω1 + q1
(
φ1

)
+ ε1f1

(
φ1, φ2

)
+ ξ1(t),

φ̇2 = ω2 + q2
(
φ2

)
+ ε2f2

(
φ2, φ1

)
+ ξ2(t),

(3.31)

where the small parameters ε1,2 	 ω1,2 characterize the strength of coupling and the
random terms ξ1,2 describe noisy perturbations that are always present in real-world systems.
Functions q1,2, f1,2 are 2π-periodic in all arguments. If the coupling is bidirectional, both ε1

and ε2 will be greater than zero. In the case of an unidirectional driving, say from system 1 to
system 2, we have ε1 = 0 and ε2 > 0. System (3.31) describes the phase dynamics of weakly
coupled noisy limit cycle oscillators, Josephson junctions, and phase locked loops, as well as
phase dynamics of weakly coupled continuous-time chaotic systems [58].

The coupling direction is represented by the ratio between ε1 and ε2, thus the goal is
to estimate the ratio from the measured time series. To do it, we first extract the phase φ1,2(tk)
from data by Hilbert transform approach, where tk = kδt, δt is the sampling interval, k =
1, . . . ,N. Then we compute for each time point the increments Δ1,2(k) = φ1,2(tk + τ) −φ1,2(tk),
τ is a time delay. These increments can be considered as generated by some unknown two-
dimensional noisy map Δ1,2(k) = F1,2[φ1,2(k), φ2,1(k)]+η1,2(k). Next, we fit (in the least mean
square sense) the dependencies of Δ on φ1 and φ2 using a finite Fourier series as the probe
function:

F1,2 =
∑

m,l

Am,le
imφ1+ilφ2 . (3.32)

The sum in (3.32) is taken to the terms with |l| ≤ 3 for m = 0, |m| ≤ 3 for l = 0, and |m| = |l| = 1.
The results of fitting are used to quantify the cross-dependencies of phase dynamics of two
systems by means of the coefficients c1,2 defined as

c2
1,2 =

∫ ∫2π

0

(
∂F1,2

∂φ2,1

)2

dφ1dφ2. (3.33)
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Finally, the directionality index is introduced as

r =
c2 − c1

c2 + c1
. (3.34)

In the case of unidirectional coupling r = ±1, while for nearly symmetrical coupling r is close
to zero.

3.4. Other Applications

3.4.1. Coherence Resonance Induced by Noise

When two chaotic systems are coupled bidirectionally, there will be a synchronization when
the coupling strength is strong enough. However, when there is noise in the system, the
synchronization manifold will be destroyed from time to time, resulting in some kind of
bursting. It is revealed that the time intervals of bursting will show some regularity, which
can be enhanced by an optimal external noise and results in a phenomenon called coherence
resonance [61, 62]. Coherence resonance is referred to the fact that noise can actually be
utilized to improve the temporal regularity of the bursting time series, in the absence of an
external periodic signal.

Consider two coupled Lorenz systems

ẋ1,2 = 10
(
y1,2 − x1,2

)
+ k(x2,1 − x1,2) +Dξx(t),

ẏ1,2 = 28x1,2 − y1,2 − x1,2z1,2 +Dξy(t),

ż1,2 = −8
3
z1,2 + x1,2y1,2 +Dξz(t),

(3.35)

where k is the coupling strength, ξx,y,z(t) are independent Gaussian noise, and D quantifies
the noise strength. When D = 0, there is a synchronized manifold for k > kc ≈ 3.92 [61].
But for D > 0, the difference between the two systems exhibits on-off intermittence. Take
two time series from the variable y of the two coupled systems and let |Δy| denote their
difference. Figure 8 shows the time series of |Δy| for three typical D. It is easy to see that the
bursting interval, denoted by T in Figure 8(b), shows different behaviors in the three panels
of Figure 8.

To show the regularity of time series |Δy|, Figure 9 shows the corresponding power
spectra. From this figure we see that there are no peak in the spectra for both the small and
large D, indicating a lack of temporal regularity in the bursting time series. A pronounced
peak does exist at the intermediate noise level (see Figure 9(b)), indicating the existence of
a strong time-periodic component in the time series. This apparent temporal regularity can
be quantified by the characteristics of the peak at a nonzero frequency ωp in the spectrum. In
particular, we utilize the quantity βs = Hωp/Δω, where H is the height of the spectral peak,
Δω is the half width of the peak [63]. By its definition, a high value of βs indicates a strong
temporal regularity in the bursting time series. This phenomenon can be also described by
another quantity βT = 〈T〉/

√
Var(T), where 〈T〉 and Var(T) are the average and variance of

the interval T [64]. Both quantities βs and βT show a bell shape on the noise strength D, that
is, a resonance on D, which has been confirmed by experiment [62].
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Figure 8: Intermittency of time series |Δy| from synchronization manifold.
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Figure 9: Power spectra of time series |Δy| corresponding to Figure 8.
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Figure 10: Average packets per node for different status in an Internet model.

3.4.2. Correlation of Traffic Data in Internet

Undoubtedly, the internet has become a very important tool in our daily life [65–68]. The
operations on the internet, such as browsing World Wide Web (WWW) pages, sending
messages by email, transferring files by ftp, searching for information on a range of
topics, and shopping, have benefited us a lot. Therefore, sustaining its normal and efficient
functioning is a basic requirement. However, the communication in the internet does not
always march/go freely. Similar to the traffic jam on the highway, the intermittent congestion
in the internet has been observed [69]. Once it happens, the accumulated packets in Internet
will increase linearly with time. Figure 10 shows three status from an Internet model [70],
where the top, middle and bottom curves denote the phases of congestion, busy/buffer
and free, respectively. From Figure 10 it is easy to see that there exist erratic fluctuation,
heterogeneity, and nonstationarity in the data. These features make the correlation difficult
to be quantified.

A conventional approach to measure the correlation in this situation is by the
detrended fluctuation analysis (DFA), which can reliably quantify scaling features in the
fluctuations by filtering out polynomial trends. The DFA method is based on the idea that
a correlated time series can be mapped to a self-similar process by integration [71–74].
Therefore, measuring the self-similar feature can indirectly tell us information about the
correlation properties. The DFA method has been successfully applied to detect long-range
correlations in highly complex heart beat time series [71], stock index [72], physiological
signals [73], and particle condensation [74].

The DFA method is a modified root-mean-square (rms) analysis of a random walk and
its algorithm can be worked out as the following steps.

(1) Start with a time series s(j), where j = 1, . . . ,N, and N is the length of the data, and
integrate s(j) to obtain

y(i) =
i∑

j=1

[
s
(
j
)
− 〈s〉

]
, (3.36)

where 〈s〉 = (1/N)
∑N

j=1 s(j).
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(2) Divide the integrated profile y(i) into boxes of equal length m. In each box, we fit
y(i) to get its local trend yfit by using a least-square fit.

(3) The integrated profile y(i) is detrended by subtracting the local trend yfit in each
box:

Ym(i) ≡ y(i) − yfit(i). (3.37)

(4) For a given box size m, the rms fluctuation for the integrated and detrended signal
is calculated

F(m) =

√√
√
√ 1
N

N∑

i=1

[Ym(i)]
2. (3.38)

(5) Repeat this procedure for different box size m.

For scale-invariant time series with power-law correlations, there is a power-law relationship
between the rms fluctuation function F(m) and the box size m:

F(m) ∼ mα. (3.39)

The scaling α represents the degree of the correlation in the signal; the signal is uncorrelated
for α = 0.5 and correlated for α > 0.5. Using the DFA method to the data in Figure 10,
we find that the values of α for the three curves from top to bottom are 1.3, 0.7, and 0.5,
respectively, indicating that the data of congestion phase are correlated while data of free
phase are uncorrelated.

Except the above applications, there are many other fields of time series analysis such
as chaos controlling, testing for nonlinearity with surrogate data, EEG data analysis and
multifractals, and stock market analysis, which have gotten widely interesting from both
physics and engineers [7–9].

4. Conclusions

The chaos theory and its time series analysis have been well studied in the past decades. A lot
of important results have been achieved. This paper is contributed to the brief summary of
chaotic time series analysis. The concepts, such as dimension, Lyapunov exponents, Hilbert
transform, and attractor reconstruction, have been discussed. Several applications of time
series analysis have been explained in detail, such as constructing dynamical equations,
detecting the phase locking, inferring coupling direction, and coherence resonance induced
by noise and correlation of traffic data in Internet. These are only a few of the applications of
time series analysis, and a lot of other applications are not included here, such as the analysis
of transient chaotic time series. Even in these mentioned fields, new techniques and methods
are continuously showing up.
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