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Following Castillo et al. (2000) and Cockburn (2003), a general framework of constructing
discontinuous Galerkin (DG) methods is developed for solving the linear elasticity problem. The
numerical traces are determined in view of a discrete stability identity, leading to a class of stable
DG methods. A particular method, called the LDG method for linear elasticity, is studied in depth,
which can be viewed as an extension of the LDG method discussed by Castillo et al. (2000) and
Cockburn (2003). The error bounds in L2-norm, H1-norm, and a certain broken energy norm are
obtained. Some numerical results are provided to confirm the convergence theory established.

1. Introduction

This paper is focused on systematically studying discontinuous Galerkin (DG) meth-
ods for the linear elasticity problem. Since the DG method was first introduced in
1970s, these methods have been applied for solving a variety of mathematical-physical
problems including linear and nonlinear hyperbolic problems, Navier-Stokes equations,
convection-dominated diffusion problems, and so on. The DG method may be viewed
as high-order extensions of the classical finite volume method. Since no inter-element
continuity is imposed, such methods can be defined on very general meshes including
nonconforming meshes. Moreover, polynomials of arbitrary degree can be used on
each element, making these methods suitable for hp-adaptivity. We refer to [1] for an
excellent historical survey. As a generalization of the DG method proposed in [2] for the
solution of the compressible Navier-Stokes equations, some local discontinuous Galerkin
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(LDG) methods were introduced and analyzed in [3, 4] for time-dependent convection-
diffusion systems and second-order elliptic problems, respectively. After that, a unified
theory was developed for conducting error analysis for DG methods of elliptic problems
(cf. [5]). And a new framework was proposed in [6] for designing and analyzing
DG methods, where stabilization mechanism frequently used in DG methods was also
investigated. In [7], an important framework was proposed for constructing stable DG
methods.

On the other hand, linear elasticity discusses how solid objects deform and become
internally stressed on prescribed loading conditions, and is encountered extensively in
structural analysis and engineering design. By use of usual displacement-based finite-
element methods for the elasticity equation, we are able to numerically determine the
displacement field directly. However, in many engineering applications, the stress field
is a quantity of more interest. For this, we may apply mixed finite-element methods to
solve the linear elasticity system, from which the aforementioned two physical quantities
can be obtained simultaneously. Over the past four decades, there have been many efforts
along this line. But due to the symmetry constraint on the stress tensor, it is extremely
difficult to construct stable stress-displacement finite elements. In two spatial dimensions,
the first stable finite element with polynomial shape functions is presented in [8]. For
the lowest-order element, the discrete stress space is composed of certain piecewise cubic
polynomials, while the discrete displacement space consists of piecewise linear polynomials.
In three dimensions, a piecewise quadratic stress space is constructed with 162 degrees
of freedom on each tetrahedron (cf. [9]). Another approach in this direction is to use
composite elements (macroelements), in which the discrete displacement space consists
of piecewise polynomials with respect to one triangulation of the domain, while the
discrete stress space consists of piecewise polynomials with respect to a more refined
triangulation (cf. [10–13]). It is mentioned that for solving the previous problem, several
mixed elements with weakly imposed symmetry have also been developed (cf. [14–
16]).

Regarding the complexity of mixed elements given above, the discontinuous Galerkin
method is naturally a suitable alternative for numerically solving linear elasticity problems.
To the best of our knowledge, a local DG method and an interior penalty DG method for
linear elasticity are presented in [17] and [18, 19], respectively. A mixed DG method is given
in [20], which one may find is covered by our general formulation below. Moreover, a mixed
formulation is also extended to the case of nonsymmetric stress tensors (cf. [21]).

In this paper, we are going to look for new DG methods for the linear elasticity
problem. Following [4, 7], we build up a framework to construct our DG methods.
Then a discrete stability identity is established, from which we derive feasible choices
of numerical traces and get a class of stable DG methods for linear elasticity. With a
parameter taken to be zero, namely, C22 = 0, we get an LDG method. Following [5] and
using some technical arguments, we get optimal-order error estimates for the LDG method
proposed in a certain broken energy norm, H1-norm, and L2-norm, respectively. It should
be emphasized that in our formulation the symmetry of the stress tensor is preserved
automatically.

The rest of this paper is organized as follows. The basic framework of DG methods
and the determination of numerical traces are presented in Section 2. An error analysis for
the LDG method is given in Section 3. And in Section 4, some numerical results are included
to confirm our theoretical convergence orders.
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2. The DG Method for Linear Elasticity

2.1. Basic Framework for the DG Method

Assume that Ω ⊂ R
d (d = 2, 3) is a bounded polygon or polyhedron. Let σ = (σij)d×d be

the stress, let u = (u1, . . . , ud)
t be the displacement, and let f = (f1, . . . , fd)

t be the body force.
Denote by ε(u) := (εij(u))d×d the linearized strain tensor with εij(u) := (∂ui/∂xj +∂uj/∂xi)/2,
tr the trace operator, and ∇· the divergence operator. Then, the mathematical model of linear
elasticity reads (cf. [22])

Aσ − ε(u) = 0 in Ω,

−∇ · σ = f in Ω,

u = 0 on ∂Ω,

(2.1)

whereA is the fourth-order compliance tensor defined by

Aσ =
1

2μ

(
σ − λ

dλ + 2μ
(trσ)δ

)
, (2.2)

where δ := (δij)d×d is the Kronecker tensor, and the positive constants λ and μ are the Lamé
coefficients of the elastic material under consideration.

For defining our DG methods for problem (2.1), we introduce some notations first of
all. For any Banach space B, the subspace of symmetric matrix-valued function is denoted by
(B)sd×d. Given a bounded domainG ⊂ R

d and a nonnegative integerm, letHm(G) be the usual
Sobolev space consisting of all functions in L2(G) whose weak derivatives up to degree m are
also L2(G)-integrable (cf. [23]). The corresponding norm is denoted by ‖ · ‖m,G. Let Hm

0 (G) be
the closure of C∞0 (G) with respect to the norm ‖ · ‖m,G. Moreover, we simply write ‖ · ‖m for
‖ · ‖m,Ω.

Let {Th}h>0 be a regular family of triangulations of Ω (cf. [23, 24]); h := maxK∈ThhK
and hK := diam(K). Let Eh be the union of all faces (edges) of the triangulation Th and Ei

h
the

union of all interior faces (edges) of the triangulation Th. For any e ∈ Eh, he is set to be the
diameter of e. Based on the triangulation Th, let

Σ :=
{
τ ∈

(
L2(Ω)

)s
d×d

; τij |K ∈ H1(K), ∀K ∈ Th, i, j = 1, . . . , d
}
,

V :=
{

v ∈
(
L2(Ω)

)d
; vi|K ∈ H1(K), ∀K ∈ Th, i = 1, . . . , d

}
.

(2.3)

The corresponding finite element spaces are given by

Σh :=
{
τ ∈

(
L2(Ω)

)s
d×d

; τij |K ∈ S1(K), ∀K ∈ Th, i, j = 1, . . . , d
}
,

Vh :=
{

v ∈
(
L2(Ω)

)d
; vi|K ∈ S2(K), ∀K ∈ Th, i = 1, . . . , d

}
,

(2.4)
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where, for each K ∈ Th, S1(K) and S2(K) are two finite-dimensional spaces of polynomials
in K containing Pl(K) and Pk(K), respectively, with k, l ≥ 0. Here, for a nonnegative integer
m, Pm(K) stands for the set of all polynomials in K with the total degree no more than m.

To guarantee uniqueness of the solution to the LDG method to be proposed, we always
assume that

ε(Vh) ⊂ Σh, AΣh ⊂ Σh (2.5)

For a function v ∈ L2(Ω) with v|K ∈ Hm(K) for all K ∈ Th, let ‖v‖m,h be the usual broken
Hm-type norm of v defined by

‖v‖m,h =

( ∑
K∈Th

‖v‖2
m,K

)1/2

. (2.6)

If v is a vector-valued or matrix-valued function, the corresponding term ‖v‖m,h is defined
in a similar manner. For a vector or a matrix v, denote by |v| the quantity (v · v)1/2 or (v :
v)1/2. Here the symbol : stands for the double dot product operation of matrices. Throughout
this paper, we use the notation “� · · · ” to indicate “≤ C · · · ”, where C is a generic positive
constant independent of h and other parameters, which may take different values at different
appearances.

Let K+ and K− be two adjacent elements of Th. Let x be an arbitrary point of the
set e′ = ∂K+ ∩ ∂K−, and let n+ and n− be the corresponding outward unit normals at that
point. For a vector-valued function v smooth inside each element K±, let us denote by v±

the trace of v on e′ from the interior of K±. Then we define averages and jumps at x ∈ e′ as
follows:

{
p
}
=

1
2
(
p+ + p−

)
,

[
p
]
= p+n+ + p−n−,

{v} = 1
2
(
v+ + v−

)
, [v] = v+ · n+ + v− · n−,

{τ} = 1
2
(
τ+ + τ−

)
, [τ] = τ+n+ + τ−n−.

(2.7)

If x is on an edge/face e lying on the boundary ∂Ω, the above terms are defined by

{
p
}
= p,

[
p
]
= pn,

{v} = v, [v] = v · n,

{τ} = τ , [τ] = τn,

(2.8)
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where n is the unit outward normal vector on ∂Ω. We define a matrix-valued jump �·� of a
vector v as follows:

�v� =
1
2
(
v+ ⊗ n+ + n+ ⊗ v+ + v− ⊗ n− + n− ⊗ v−

)
, if x ∈ e ∈ Eih,

�v� =
1
2
(v ⊗ n + n ⊗ v), if x ∈ e ∈ Eh ∩ ∂Ω,

(2.9)

where v ⊗ n denotes the matrix whose (i, j)th component is vinj for two vectors v and n.
Now, we are ready to introduce a framework to derive DG methods for problem (2.1).

Following [4, 7], we first derive a variational formulation for problem (2.1). Taking a double
dot product with a matrix-valued function τ on both sides of the first equation of (2.1) and
integrating by parts over K, we have

∫
K

Aσ : τdx = −
∫
K

u · (∇ · τ)dx +
∫
∂K

u · (τn)ds. (2.10)

Multiplying the second equation of (2.1) by a vector-valued function v and integrating by
parts over K yields

∫
K

σ : ε(v)dx =
∫
∂K

v · (σn)ds +
∫
K

f · vdx. (2.11)

Motivated by the above two identities, we may define our DG method as follows. Find
an approximate solution (σh,uh) ∈ Σh ×Vh such that

∫
K

Aσh : τ dx = −
∫
K

uh · (∇ · τ)dx +
∫
∂K

ûh · (τn)ds, (2.12)

∫
K

σh : ε(v)dx =
∫
∂K

v · (σ̂hn)ds +
∫
K

f · vdx, (2.13)

for all (τ ,v) ∈ Σh × Vh and all K ∈ Th. Note that any function with the hat superscript
is only defined over all faces of the triangulation Th, which is called a numerical trace.
Since σh is symmetric, it is natural to choose σ̂h as a symmetric matrix-valued function.
Moreover, we only consider the case where the numerical traces are single valued over all
faces (conservation).

2.2. Numerical Traces and the LDG Method

We begin by producing a stability identity for the continuous problem (2.1), a crucial step
in constructing feasible numerical traces to get a stable DG method from (2.12)-(2.13). For
this, taking a double dot product with σ on both sides of the first equation of (2.1) and then
integrating over Ω, we have

∫
Ω
Aσ : σ dx −

∫
Ω
ε(u) : σ dx = 0. (2.14)
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Multiplying the second equation of (2.1) by u and then integrating over Ω again, we find
from the homogeneous boundary condition of u that

∫
Ω
ε(u) : σ dx =

∫
Ω

f · udx. (2.15)

Now adding these two equations gives

∫
Ω
Aσ : σ dx =

∫
Ω

f · udx. (2.16)

This is the stability identity corresponding to the continuous problem (2.1).
Next, we mimic the above derivation to get a discrete analogue of the stability identity

(2.16) for the DG method (2.12)-(2.13). Taking τ = σh in (2.12) and summing over all K ∈ Th,
we have

∫
Ω
Aσh : σh dx −

∑
K∈Th

(
−
∫
K

uh · (∇ · σh)dx +
∫
∂K

ûh · (σhn)ds
)

= 0. (2.17)

Similarly, summing up (2.13) over all K ∈ Th with v = uh, we come to

∑
K∈Th

(∫
K

σh : ε(uh)dx −
∫
∂K

uh · (σ̂hn)ds
)

=
∫
Ω

f · uh dx. (2.18)

Adding the last two equations gives

∫
Ω
Aσh : σhdx + Θh =

∫
Ω

f · uhdx, (2.19)

where

Θh :=
∑
K∈Th

∫
K

(uh · (∇ · σh) + σh : ε(uh))dx −
∑
K∈Th

∫
∂K

(ûh · (σhn) − uh · (σ̂hn))ds. (2.20)

Lemma 2.1. Assume σh and σ̂h are both symmetric, and the numerical traces σ̂h and ûh are single
valued over all e ∈ Eh. Then

∑
K∈Th

∫
∂K\∂Ω

uh · (σhn)ds =
∑
e∈Ei

h

∫
e

[σh] · {uh} + {σh} : �uh�ds, (2.21)

∑
K∈Th

∫
∂K\∂Ω

ûh · (σhn)ds =
∑
e∈Ei

h

∫
e

[σh] · ûh ds, (2.22)

∑
K∈Th

∫
∂K\∂Ω

uh · (σ̂hn)ds =
∑
e∈Ei

h

∫
e

σ̂h : �uh�ds. (2.23)
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Proof. We only prove the first identity, and the other two ones can be obtained in the similar
manners. The left-hand side of (2.21) can be rewritten as

∑
K∈Th

∫
∂K\∂Ω

uh · (σhn)ds =
∑
e∈Ei

h

∫
e

(
u+
h ·

(
σ+
hn+) + u−h ·

(
σ−hn−

))
ds. (2.24)

On the other hand,

∑
e∈Ei

h

∫
e

[σh] · {uh}ds =
∑
e∈Ei

h

∫
e

1
2
(
u+
h ·

(
σ+
hn+) + u+

h ·
(
σ−hn−

)
+ u−h ·

(
σ+
hn+) + u−h ·

(
σ−hn−

))
ds,

∑
e∈Ei

h

∫
e

{σh} : �uh�ds =
∑
e∈Ei

h

∫
e

1
2
(
n+ ·

(
σ+
hu+

h

)
+ n− ·

(
σ+
hu−h

)
+ n+ ·

(
σ−hu+

h

)
+ n− ·

(
σ−hu−h

))
ds.

(2.25)

Hence, the identity (2.21) is a direct consequence of (2.24)-(2.25).

By Lemma 2.1 and using integration by parts twice, we see that

Θh =
∑
K∈Th

(∫
K

∇ · (σhuh)dx −
∫
∂K

ûh · (σhn)ds −
∫
∂K

uh · (σ̂hn)ds
)

=
∑
K∈Th

(∫
∂K

n · (σhuh)ds −
∫
∂K

ûh · (σhn)ds −
∫
∂K

uh · (σ̂hn)ds
)

=
∑
e∈Ei

h

∫
e

([σh] · ({uh} − ûh) + ({σh} − σ̂h) : �uh�)ds

+
∫
∂Ω
(uh · ((σh − σ̂h)n) − ûh · (σhn))ds.

(2.26)

Thus, if e ∈ Ei
h
, we take

σ̂h = {σh} − C11�uh�,

ûh = {uh} − C22[σh],
(2.27)

and if e ∈ Eh ∩ ∂Ω, we take

σ̂h = σh − C11�uh�,

ûh = 0,
(2.28)

where C11 and C22 are two nonnegative continuous functions on e. When C22 = 0,
the corresponding method is called the LDG method for linear elasticity, viewed as a
generalization of the LDG method for second-order elliptic problems in [4, 7].
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For the above choice of numerical traces, we have by some direct manipulation that

Θh =
∑
e∈Ei

h

∫
e

(
C22[σh]2 + C11�uh�

2
)
ds +

∫
∂Ω
C11�uh�

2 ds ≥ 0. (2.29)

Then, the combination of (2.19) and (2.29) allows a discrete stability estimate:

‖σh‖2
0 �

∫
Ω

f · uh dx, (2.30)

which is essential in constructing a reliable DG method (cf. [7]).
Let us further show the unique solvability of problem (2.12)-(2.13) with the numerical

traces given by (2.27) and (2.28), whenever C11 > 0 and the finite element spaces Σh and Vh

satisfy condition (2.5). In fact, it suffices to verify that this DG method only has zero solution
when f = 0. By setting f = 0, the stability identity (2.19) gives

∫
Ω
Aσh : σhdx +

∑
e∈Ei

h

∫
e

(
C22[σh]2 + C11�uh�

2
)
dsds +

∫
∂Ω
C11�uh�

2 ds = 0, (2.31)

which implies that σh = 0 in Ω, �uh� = 0 on Ei
h
, and uh = 0 on ∂Ω, provided that C11 > 0.

Therefore, from (2.12) the definition of ûh (cf. (2.27) and (2.28)), and Lemma 2.1, we know
that

∫
K

τ : ε(uh)dx = 0, ∀τ ∈ Σh, (2.32)

which, due to (2.5), implies that ε(uh) = 0. By Korn’s inequality (2.34) on the discontinuous
finite element space, given below, it is easy to see that ‖uh‖1,h = 0. Then with uh = 0 on ∂Ω
and �uh� = 0, we conclude that uh = 0 in Ω, as required.

Remark 2.2. The standard Korn’s inequality states that (cf. [25])

‖v‖2
1 � ‖ε(v)‖2

0 +
∫
∂Ω
|v|2ds, ∀v ∈ H1(Ω)d. (2.33)

The following Korn’s inequality on the discontinuous finite-element space is given in [26]:

‖v‖2
1,h � ‖ε(v)‖2

0,h +
∑
e∈Eh

h−1
e ‖�v�‖2

0,e, ∀v ∈ Vh. (2.34)

As in [4, 7], the DG method (2.12)-(2.13) with the numerical traces (2.27)-(2.28)
can also be written in a mixed formulation (cf. [27]). After some direct manipulation, the
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approximate solution (σh,uh) can be characterized as the unique solution of the following
variational problem. Find (σh,uh) ∈ Σh ×Vh such that

a(σh, τ) + b(uh, τ) = 0, (2.35)

−b(v,σh) + c(uh,v) = F(v), (2.36)

for all (τ ,v) ∈ Σh ×Vh, where

a(σ, τ) :=
∫
Ω
Aσ : τdx +

∫
Ei
h

C22[σ] · [τ]ds,

b(v, τ) :=
∑
K∈Th

∫
K

v · (∇ · τ)dx −
∫
Ei
h

{v} · [τ]ds,

c(u,v) :=
∫
Eh
C11�u� : �v�ds,

F(v) :=
∫
Ω

f · vdx.

(2.37)

Remark 2.3. If we take C11 = 0 and C22 = αhse, the mixed formulation (2.35)-(2.36) will be
reduced to the one adopted in [20].

3. Error Analysis for the LDG Method

In this section, we provide an error analysis for the DG method (2.35)-(2.36) in the case C22 =
0, which is named as the LDG method in the last section. For this purpose, we are going to
derive a primal formulation for the approximate method. First we introduce a global lifting
operator r : (L2(Eh))

s
d×d → Σh defined by

∫
Ω

r(φ) : τdx = −
∫
Eh
φ : {τ}ds, ∀τ ∈ Σh, φ ∈

(
L2(Eh)

)s
d×d

. (3.1)

Moreover, for each e ∈ Eh, we introduce a local lifting operator re : (L2(e))sd×d → Σh defined
by

∫
Ω

re
(
φ
)

: τdx = −
∫
e

φ : {τ}ds, ∀τ ∈ Σh, φ ∈
(
L2(e)

)s
d×d

. (3.2)

Then it is easy to check that re(φ) is only nonzero in the triangles with e as one edge, and
there holds the identity

r(φ) =
∑
e∈Eh

re(φ|e), ∀φ ∈
(
L2(Eh)

)s
d×d

. (3.3)
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Now we express σh in terms of uh. From the first equation in Lemma 2.1 and (2.35), it follows
that

∫
Ω
Aσh : τdx = −

∑
K∈Th

∫
K

uh · (∇ · τ)dx +
∫
Ei
h

{uh} · [τ]ds

=
∑
K∈Th

∫
K

ε(uh) : τdx −
∫
Eh

�uh� : {τ}ds

=
∑
K∈Th

∫
K

ε(uh) : τdx +
∫
Ω

r(�uh�) : τdx,

(3.4)

for all τ ∈ Σh. Then by (2.5), we get

Aσh = ε(uh) + r(�uh�), (3.5)

that is,

σh = 2μ(ε(uh) + r(�uh�)) + λ tr(ε(uh) + r(�uh�))δ. (3.6)

Substituting σh from the last equation into (2.36), we get a primal formulation for the LDG
method as follows. Find uh ∈ Vh such that

ah(uh,v) =
∫
Ω

f · vdx, ∀v ∈ Vh, (3.7)

where

ah(w,v) :=
∑
K∈Th

∫
K

2μ(ε(w) + r(�w�)) : (ε(v) + r(�v�))dx

+
∑
K∈Th

∫
K

λ tr(ε(w) + r(�w�)) tr(ε(v) + r(�v�))dx +
∫
Eh
C11�w� : �v�ds.

(3.8)

Next, we consider the consistency of the method (3.7). Assume that (σ,u) ∈
(Hs+1(Ω))sd×d×Hs+2(Ω)d, where s ≥ 0 is some nonnegative integer, and u is the exact solution
of (2.1). It is easy to see that �u� = 0 on Eh. Therefore, for any v ∈ Vh, we have

ah(u,v) =
∑
K∈Th

∫
K

(
2με(u) : (ε(v) + r(�v�)) + λ tr(ε(u)) tr(ε(v) + r(�v�))

)
dx

=
∑
K∈Th

∫
K

σ : (ε(v) + r(�v�))dx.

(3.9)
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From (3.9), the definition of lifting operator r (see (3.1)), and the fact that {σ} = σ, we further
find that

ah(u,v) = ã(u,v) +
∫
Eh

�v� : {σ − Phσ}ds +
∑
K∈Th

∫
K

(σ − Phσ) : r(�v�)dx, (3.10)

where

ã(u,v) :=
∑
K∈Th

∫
K

σ : ε(v)dx −
∫
Eh

�v� : σ ds. (3.11)

Noting that [σ] = 0 in Ei
h

and using integration by parts and the same technique for deriving
(2.21), we deduce from (2.1) that

ãh(u,v) = −
∑
K∈Th

∫
K

∇ · σ dx =
∫
Ω

f · vdx. (3.12)

Hence, we know that the LDG method (3.7) is not consistent with respect to the bilinear form
ah(·, ·), but it admits the following identity:

ah(u − uh,v) =
∫
Eh

�v� : {σ − Phσ}ds +
∑
K∈Th

∫
K

(σ − Phσ) : r(�v�)dx, ∀v ∈ Vh. (3.13)

It is worth noting that the LDG method does not contain any parameter which needs
to be quantified a priori. In what follows, we choose C11 = ηeh

−1
e on each e ∈ Eh with {ηe}e∈Eh

having a uniform positive bound from above and below.
Next, we present a useful estimate for the local lifting operator re. For this, let V(h) :=

Vh +H1
0(Ω)d and define the mesh-dependent energy norm for v ∈ V(h) by

|‖v‖|2 = ‖ε(v)‖2
0,h +

∑
e∈Eh

h−1
e ‖�v�‖2

0,e. (3.14)

Lemma 3.1. For any v ∈ V(h) and e ∈ Eh, one has

‖re(�v�)‖2
0,h � h−1

e ‖�v�‖2
0,e. (3.15)

Proof. Since v ∈ H1
0(Ω)d implies that �v� = 0, it suffices to verify the result for v ∈ Vh. Taking

φ = �v� and τ = re(�v�) in (3.2), we get

‖re(�v�)‖2
0,h = −

∫
e

�v� : {re(�v�)}ds ≤ ‖�v�‖0,e‖{re(�v�)}‖0,e. (3.16)
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On the other hand, by the scaling arguments, the trace theorem, and the inverse inequality,

‖{re(�v�)}‖2
0,e � h−1

e ‖re(�v�)‖2
0,h + he|re(�v�)|21,h � h−1

e ‖re(�v�)‖2
0,h. (3.17)

Therefore, (3.15) is a direct consequence of (3.16) and (3.17).

Lemma 3.2 (boundedness). For any (w,v) ∈ V(h) ×V(h), it holds that

ah(w,v) � |‖w‖| |‖v‖|. (3.18)

Proof. According to the Cauchy-Schwarz inequality and the basic properties of r and re, we
have

ah(w,v)

�
∑
K∈Th

(∫
K

|ε(w) + r(�w�)|2dx ·
∫
K

|ε(v) + r(�v�)|2dx
)1/2

+
∫
Eh
ηeh

−1
e �w� : �v�ds

�
(
‖ε(w)‖2

0,h + ‖r(�w�)‖2
0,h

)1/2
·
(
‖ε(v)‖2

0,h + ‖r(�v�)‖2
0,h

)1/2
+
∫
Eh
ηeh

−1
e �w� : �v�ds

�
(
‖ε(w)‖2

0,h +
∑
e∈Eh
‖re(�w�)‖2

0,h

)1/2(
‖ε(v)‖2

0,h +
∑
e∈Eh
‖re(�v�)‖2

0,h

)1/2

+
∫
Eh
ηeh

−1
e �w� : �v�ds,

(3.19)

which, together with (3.15), yields

ah(w,v) � |‖w‖| |‖v‖| +
∫
Eh
ηeh

−1
e �w� : �v�ds � |‖w‖| |‖v‖|, (3.20)

as required.

Lemma 3.3 (stability). For any v ∈ Vh, it holds that

ah(v,v) � |‖v‖|2. (3.21)
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Proof. Using the Cauchy-Schwarz inequality and (3.15), we get

ah(v,v) ≥ 2μ‖ε(v) + r(�v�)‖2
0,h +

∫
Eh
ηeh

−1
e |�v�|2ds

≥ 2μ‖ε(v)‖2
0,h + 2μ‖r(�v�)‖2

0,h + 4μ
∑
K∈Th

∫
K

ε(v) : r(�v�)dx + η0

∫
Eh
h−1
e |�v�|2ds

≥ 2μ(1 − ε)‖ε(v)‖2
0,h + 2μ

(
1 − 1

ε

)
‖r(�v�)‖2

0,h + η0

∫
Eh
h−1
e |�v�|2ds

≥ 2μ(1 − ε)‖ε(v)‖2
0,h +

(
2μC1 + η0 −

2μC1

ε

)∫
Eh
h−1
e |�v�|2ds.

(3.22)

Here η0 = mine∈Ehηe, 0 < ε < 1, and C1 is the constant in (3.15). Therefore (3.21) is true if we
choose ε such that 2μC1 + η0 − 2μC1/ε > 0, that is, 2μC1/(2μC1 + η0) < ε < 1.

Now, we are in a position to give error analysis for the LDG method (3.7). The main
idea of our derivation is based on the framework on error analysis of DG methods for second-
order elliptic problems (cf. [5]). Let Qh be an L2-projection operator from V onto the finite-
element space Vh. Let Ph denote the usual L2-orthogonal projection operator onto Σh. For
simplicity, we still write Qh (resp., Ph) for Qh|K (resp., Ph|K). Using the standard scaling
arguments (cf. [24]), we can easily obtain error estimates for the operators Qh and Ph.

Lemma 3.4. Let v ∈ Hs+2(K)d, σ ∈ (Hs+1(Ω))sd×d with s ≥ 0. Then for all K ∈ Th, one has

‖v −Qhv‖0,K + hK|v −Qhv|1,K � h
min{s+1,k}+1
K ‖v‖s+2,K,

‖v −Qhv‖0,∂K � h
min{s+1,k}+1/2
K ‖v‖s+2,K,

‖σ − Phσ‖0,K � h
min{s+1,l+1}
K ‖σ‖s+1,K,

h1/2
e ‖σ − Phσ‖0,e � h

min{s+1,l+1}
K ‖σ‖s+1,K.

(3.23)

Theorem 3.5. Let (σ,u) ∈ (Hs+1(Ω))sd×d ×Hs+2(Ω)d, where s is a nonnegative integer and u is the
solution of (2.1). Let uh ∈ Vh be the solution of (3.7). Then one has

‖|u − uh|‖ � hmin{s+1,k,l+1}‖u‖s+2. (3.24)
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Proof. From the stability (3.21), the identity (3.13), the boundedness (3.18), and Lemmas 3.1
and 3.4, it follows that

|‖Qhu − uh‖|2 � ah(Qhu − uh,Qhu − uh)

= ah(Qhu − u,Qhu − uh) + ah(u − uh,Qhu − uh)

= ah(Qhu − u,Qhu − uh) +
∫
Eh

�Qhu − uh� : {σ − Phσ}ds

+
∑
K∈Th

∫
K

(σ − Phσ) : r(�Qhu − uh�)dx

� ‖|Qhu − u|‖ ‖|Qhu − uh|‖ + hmin{s+1,l+1}‖u‖s+2‖|Qhu − uh|‖,

(3.25)

that is,

‖|Qhu − uh|‖ � ‖|Qhu − u|‖ + hmin{s+1,l+1}‖u‖s+2. (3.26)

Therefore, using the triangle inequality and Lemma 3.4, we further have

‖|u − uh|‖ ≤ ‖|u −Qhu|‖ + ‖|Qhu − uh|‖

� ‖|u −Qhu|‖ + hmin{s+1,l+1}‖u‖s+2,Ω

� hmin{s+1,k,l+1}‖u‖s+2,Ω.

(3.27)

Theorem 3.6. Let (σ,u) ∈ (Hs+1(Ω))sd×d ×Hs+2(Ω)d, where s is a nonnegative integer and u is the
solution of (2.1). Let uh ∈ Vh be the solution of (3.7). Then one has

‖u − uh‖1,h � hmin{s+1,k,l+1}‖u‖s+2. (3.28)

Proof. By the triangle inequality and Korn’s inequality over Vh (cf. (2.34)), we know that

‖u − uh‖1,h � ‖u −Qhu‖1,h + ‖Qhu − uh‖1,h

� ‖u −Qhu‖1,h + |‖Qhu − uh‖|

� ‖u −Qhu‖1,h + |‖u −Qhu‖| + |‖u − uh‖|.

(3.29)

The desired result then follows from the above estimate combined with Lemma 3.4 and
Theorem 3.5.
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Theorem 3.7. Suppose that Ω is a convex bounded polygon or polyhedron. Let (σ,u) ∈
(Hs+1(Ω))sd×d×Hs+2(Ω)d, where s is a nonnegative integer and u is the solution of (2.1). Let uh ∈ Vh

be the solution of (3.7). Then one has

‖u − uh‖0 � hmin{1,k}+min{s+1,k,l+1}‖u‖s+2. (3.30)

Proof. The proof relies on the usual duality argument. Let (σ̃, ũ) be the solution of the
auxiliary problem

Aσ̃ − ε(ũ) = 0 in Ω,

−∇ · σ̃ = u − uh in Ω,

ũ = 0 on ∂Ω.

(3.31)

Formally, (3.31) is problem (2.1) with f replaced by u − uh. Since Ω is a convex bounded
polygon or polyhedron, we have an H2-regularity estimate (cf. [28])

‖ũ‖2 � ‖u − uh‖0. (3.32)

Therefore, applying an elementwise integration by parts to the second equation of
(3.31) with a test function u − uh and using the definitions of r (cf. (3.1)) and ah(·, ·), the first
equation of (3.31), and the technique to derive (2.21), we get

‖u − uh‖2
0 = −

∑
K∈Th

∫
K

(u − uh) · (∇ · σ̃)dx

=
∑
K∈Th

∫
K

σ̃ : ε(u − uh)dx −
∫
Eh
σ̃ : �u − uh�ds

= ah(ũ,u − uh) −
∑
K∈Th

∫
K

σ̃ : r(�u − uh�)dx −
∫
Eh
σ̃ : �u − uh�ds

= ah(u − uh, ũ) −
∫
Eh
{σ̃ − Phσ̃} : �u − uh�ds

−
∑
K∈Th

∫
K

(σ̃ − Phσ̃) : r(�u − uh�)dx,

(3.33)
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and with the identity (3.13), we further have

‖u − uh‖2
0 = ah(u − uh, ũ −Qhũ) + ah(u − uh,Qhũ) −

∫
Eh
{σ̃ − Phσ̃} : �u − uh�ds

−
∑
K∈Th

∫
K

(σ̃ − Phσ̃) : r(�u − uh�)dx

= ah(u − uh, ũ −Qhũ) +
∫
Eh

�Qhũ − ũ� : {σ − Phσ}ds

+
∑
K∈Th

∫
K

(σ − Phσ) : r(�Qhũ − ũ�)dx

−
∫
Eh
{σ̃ − Phσ̃} : �u − uh�ds −

∑
K∈Th

∫
K

(σ̃ − Phσ̃) : r(�u − uh�)dx.

(3.34)

Therefore, it follows from the boundedness (3.18), the regularity (3.31), and Lemmas 3.1 and
3.4 that

‖u − uh‖2
0 � |‖u − uh‖| |‖ũ −Qhũ‖| + h|‖u − uh‖| ‖σ̃‖1

+ hmin{s+1,l+1}‖u‖s+2

(∑
e∈Eh

h−1
e ‖�Qhũ − ũ�‖2

0,e

)1/2

� hmin{1,k}
(
|‖u − uh‖| + hmin{s+1,l+1}‖u‖s+2

)
‖ũ‖2

� hmin{1,k}
(
|‖u − uh‖| + hmin{s+1,l+1}‖u‖s+2

)
‖u − uh‖0.

(3.35)

This, along with Theorem 3.5, immediately leads to

‖u − uh‖0 � hmin{1,k}
(
|‖u − uh‖| + hmin{s+1,l+1}‖u‖s+2

)
� hmin{1,k}+min{s+1,k,l+1}‖u‖s+2. (3.36)

We would like to end this section with some results on the optimality of our estimates
derived. If we choose S1(K) and S2(K) to be Pl(K) and Pk(K), respectively, it is easy to check
that the first condition of (2.5) implies k − 1 ≤ l. Therefore, we can obtain the following result
from the previous theorems directly.

Corollary 3.8. Let (σ,u) ∈ (Hs+1(Ω))sd×d ×Hs+2(Ω)d, where s is a nonnegative integer and u is
the solution of (2.1). Let uh ∈ Vh be the solution of (3.7) with S1(K) = Pl(K) and S2(K) = Pk(K)
for all K ∈ Th. Then one has the following optimal error estimates:

‖|u − uh|‖ � hmin{s+1,k}‖u‖s+2,

‖u − uh‖1,h � hmin{s+1,k}‖u‖s+2.
(3.37)
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Figure 1: ‖u − uh‖0 in the ln-ln scale for several choices of k and l.
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Figure 2: |u − uh|1,h in the ln-ln scale for several choices of k and l.

In addition, if Ω is a convex bounded polygon or polyhedron,

‖u − uh‖0 � hmin{1,k}+min{s+1,k}‖u‖s+2. (3.38)
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Figure 3: |‖u − uh‖| in the ln-ln scale for several choices of k and l.

4. Numerical Results

In this section, we report a numerical example to illustrate the theoretical results. Let Ω =
(−1, 1) × (−1, 1), λ = 0.3, μ = 0.35, and

f(x1, x2) = 2μ
(

3 − x2
1 − 2x2

2 − 2x1x2, 3 − 2x2
1 − x

2
2 − 2x1x2

)t

+ λ
(

2 − 2x2
2 − 4x1x2, 2 − 2x2

1 − 4x1x2

)t
.

(4.1)

It is not difficult to check that the exact solution of (2.1) is

u(x1, x2) =
((

1 − x2
1

)(
1 − x2

2

)
,
(

1 − x2
1

)(
1 − x2

2

))t
. (4.2)

We use a quasiuniform triangulation Th over Ω. For any K ∈ Th, we take S1(K) = Pl(K) and
S2(K) = Pk(K) where k, l ≥ 0. On each edge e, ηe is set to be 1. The numerical results of the
LDG method for a few choices of k and l are shown in Table 1 and Figures 1, 2, and 3. We
observe that, when k = 1, the numerical convergence rates of ‖u−uh‖0, |u−uh|1,h, and |‖u−uh‖|
are O(h2), O(h), and O(h), respectively. However, there is no convergence when k = 0. These
phenomena agree with theoretical results in Theorems 3.5–3.7. When k = 1, accuracies of the
numerical results are nearly the same as those for l = 0 and l = 1. It goes without saying that
it is more convenient to simulate for l = 0 than for l = 1.
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Table 1: Numerical errors of LDG method for several choices of k and l. The theoretical convergence rates
of ‖u − uh‖0, |u − uh|1,h, and ‖|u − uh|‖ are O(hk+min{1,k}), O(hk), and O(hk), respectively.

k, l h 2−1 2−2 2−3 2−4 2−5

k = 1, l = 1 ‖u − uh‖0 0.11271 0.03173 0.00827 0.00205 0.00050
|u − uh|1,h 1.04389 0.52475 0.26098 0.12990 0.06477
|‖u − uh‖| 0.97179 0.48304 0.23833 0.11806 0.05872

k = 1, l = 0 ‖u − uh‖0 0.09448 0.02371 0.00570 0.00128 0.00026
|u − uh|1,h 1.03341 0.51585 0.25644 0.12773 0.06373
|‖u − uh‖| 1.04905 0.51847 0.25572 0.12673 0.06305

k = 0, l = 0 ‖u − uh‖0 0.77564 0.70692 0.67276 0.65756 0.65067
|u − uh|1,h 3.37310 3.37310 3.37310 3.37310 3.37310
|‖u − uh‖| 3.24274 3.22244 3.21906 3.21822 3.21790
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discontinuous Galerkin method for elliptic problems,” SIAM Journal on Numerical Analysis, vol. 38,
no. 5, pp. 1676–1706, 2000.

[5] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of discontinuous Galerkin
methods for elliptic problems,” SIAM Journal on Numerical Analysis, vol. 39, no. 5, pp. 1749–1779,
2001/02.
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