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We apply the theory of Weierstrass elliptic function to study exact solutions of the generalized
Benjamin-Bona-Mahony equation. By using the theory of Weierstrass elliptic integration, we get
some traveling wave solutions, which are expressed by the hyperbolic functions and trigonometric
functions. This method is effective to find exact solutions of many other similar equations which
have arbitrary-order nonlinearity.

1. Introduction

The nonlinear phenomena in the scientific work or engineering fields are more and more
attractive to scientists. To depict and analyze such nonlinear phenomena, the nonlinear
evolutionary equations are playing an important role and their solitary wave solutions are
the main interests of mathematicians and physicists.

To obtain the traveling wave solutions of these nonlinear evolution equations, many
methods were attempted, such as the inverse scattering method, Hirota’s bilinear transfor-
mation, the tanh-sech method, extended tanh method, sine-cosine method, homogeneous
balance method, and exp-function method. With the aid of symbolic computation system,
many explicit solutions are easily obtained, and many interesting works deeply promote the
research of nonlinear phenomena.

The present work is interested in generalized Benjamin-Bona-Mahony (BBM)
equation:

U + auy, + (bu" + cu2”>ux + ktyrx = 0. (1.1)
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In the above equation, the first term of left side represents the evolution term while
parameters b and c represent the coefficients of dual-power law nonlinearity, a and k are the
coefficients of dispersion terms, n is the power law parameter, and variable u is the wave
profile. In [1], Biswas used the solitary wave ansatz and obtained an exact 1-soliton solution
of (1.1). In order to find more exact solutions of some nonlinear evolutionary equations, the
Weierstrass elliptic function was introduced. For example, Kuru [2, 3] discussed the BBM-like
equation, and Estévez et al. [4] analyzed another type of generalized BBM equations. In [5],
Deng et al. also applied the similar method to the study of a nonlinear variant of the PHI-four
equation. In this paper, we will apply the method to the generalized Benjamin-Bona-Mahony
equation.

The rest of this paper is organized as follows. In Section 2, we first outline the
Weierstrass elliptic function method. In Section 3, we give exact expression of some traveling
wave solutions of generalized Benjamin-Bona-Mahony (BBM) equation (1.1) by using the
Weierstrass elliptic function method. Finally, some conclusions are given in Section 4.

2. Description of the Weierstrass Elliptic Function Method

When we search for the solutions of some evolutionary equations, we will meet the following
ordinary differential equation:

Ao\ >
<d_(g> = Py(¢) = aop” +4a19’ + 6a29° + 4azp + as. (2.1)

In [6], Whittaker and Watson introduced two invariants:
= apas —4araz + 3a§, 3 = aparas +2a1a2a3 — ag - aoag - a%a4, (2.2)

and a discriminant A = gg - 27g§ ; then the solutions of differential (2.1) have the following
form:

1 1 -1
(6) = 9o + 7Py (90) (@(9; 2,83) - ﬂPw(q’o)) , (2.3)

where ¢y is one of the roots of the polynomial Py(¢), and P, (¢o), Py (o), respectively, denote
the first and second derivative of Py(¢) with respect to ¢ at the . Particularly, if A = g5 -
27g3 = 0, then the Weierstrass elliptic function (6; g, g3) satisfies these conditions:

p(6:126%,-8b%) = b+ 3bsinh(V/3b0),
(2.4)
p(6:126%8b%) = ~b + 3bsin? (V/3b0).

Once we get the solution of (2.1) with the form of (2.3), we will get the exact expressions of
solutions of many partial differential equations. Suppose that A = g3 —27g2 = 0; it is obvious
that if g > 0, g3 > 0, then there exist period solutions of original evolutionary equation,
otherwise if g» > 0, g3 <0, then there exist solitary solutions.
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3. Discussion on Generalized BBM Equation (1.1)

Let u(x,t) = u(¢), ¢ = x —vt,so (1.1) is carried to

u yku' =D, (3.1)

b n+1 c
(@-ou+ w5

where D is an integral constant. We introduce the transformation that

k(n+1)\"
u@) = () we, (2)
so that (3.1) is changed to
w" — U_aW+W"+1+ Ck(n+1)zw2n+1 — 2( b >1/n (3 3)
k b2(2n +1)  k\k(n+1) ' ’

Let B= (v -a)/k, C=-ck(n+1)?/b*(2n+1), and Ry = (D/k)(b/k(n +1))'"; then (3.3) is
transformed to the following form:

W" = BW - W™ + CW?"1 4 R;. (3.4)

By multiplying each side of (3.4) by W', integrating once again, we get that

2 C
(W) = BW W g W 2R+ Ry >

where R; is the other integration constant.
Let W = ¢?; then the above equation is changed to

dp\* B , 2 C 2R, R,
-r - _ = ., npt2 = 2npt2 M 2-p 2 2(1-p)
(%) =57 G Gt e e 09

Only if all the power of ¢ appearing in the right side of (3.6) are the integers and are
between 0 and 4, can we guarantee the integrability of (3.6). Therefore, if R = R, = 0, then
p = £1/n. We choose the only case that if p = —1/n, then

de\*> ,_ ., 2n? n*C
<d_§> =n B(p —mlp+n+1. (37)

The polynomial P(¢) has two roots: ¢y = ((n+1):i:\/(n +1)[BC(n+2)*+ (n+1)])/Bn+1)(n+
2). For simplicity, let A = \/(n +1)[BC(n+2)* + (n+1)], then o= ((n+1)£1)/B(n+1)(n+2)

n4B2 11633

gzZT, g3:—m, A =0. (38)
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Then at the point ¢g = ((n + 1) £ 1)/B(n + 1)(n + 2), the nonzero solutions of (3.7) are

2
9(6;8,8) = nB + 1nZB csc h2<\/ﬁn9>, (if B>0),

12 4 2
(3.9)
2B 1 -B
96, 9,9) = 111_2 - Z”zBCSC2<\/;”9>/ (if B<0).
The solutions of the ordinary differential equation are
(n+1)+ [A -21 cosh2<<\/§/2>n6>] .
9le) = Bin+ 1)(n+2) ;. (fB>0),
(3.10)
(n+1) % [L-21cos?((vV-B/2)n0)|
9(e) = Bn+ D)(n+2) ;. (ifB<0),

where B = (v—-a)/k, C=—-ck(n+1)?/b*@n+1), Ry = (D/k)(b/k(n +1))/". Therefore, the
solutions of partial differential equation are

1/n
k(n+1) B(n+1)(n+2) i
L) = , f B>0),
ue b (n+1):|:[)L—Z)Lcosh2<<\/1§/2>n6>] (r5=0
(3.11)
1/n
() = k(n+1) B(n+1)(n+2) . (fB<0),

b 1)+ [)L ~2) cos2<(\/$/2)ne)]

where B = (v—-a)/k,C = —ck(n+1)*/b*(2n+1), and R, = (D/k)(b/k(n +1))"/".

Remark 3.1. We have checked that (3.11) is the solution of (1.1). From the above discussion,
we find more solutions than the work of [1].

4. Conclusions

From the above discussion, we find the traveling wave solutions of the generalized BBM
equation, which are expressed by the hyperbolic functions and trigonometric functions,
without the aid of symbolic computations. In addition, the method is effective to find exact
solutions of many other similar equations which have arbitrary-order nonlinearity.
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