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Global synchronization in adaptive coupling networks is studied in this paper. A new simple
adaptive controller is proposed based on a concept of asymptotically stable led by partial
state variables. Under the proposed adaptive update law, the network can achieve global
synchronization without calculating the eigenvalues of the outer coupling matrix. The update law
is only dependent on partial state variables of individual oscillators. Numerical simulations are
given to show the effectiveness of the proposed method, in which the unified chaotic system is
chosen as the nodes of the network with different topologies.

1. Introduction

Synchronization in complex networks of identical chaotic oscillators has been studied
extensively and deeply in various fields of science and engineering in the last few years
[1–18]. Some effective methods have been proposed to investigate the stability of the
synchronous state of linearly coupled networks. In [2], Pecora and Carroll developed a
useful approach, called the Master Stability Function, to the local synchronization for any
linear coupling networks. Based on the calculation of the eigenvalues of the outer coupling
matrix, this method has been widely used in local stability studies of synchronization in
linearly coupled complex networks [3–6]. Global synchronization based on the eigenvalues
of the outer coupling matrix was also obtained for undirected [1] and directed [7] networks.
These studies show that both local and global synchronization mainly depend upon the
eigenvalues of the outer coupling matrix. However, the eigenvalues can be calculated
only for simple coupling schemes. For more complicated networks, it becomes a difficult
task.
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In [8–10], an alternate way is developed to achieve network synchronization, which
does not depend on explicit knowledge of the eigenvalues of the outer coupling matrix.
This approach combines the Lyapunov function approach with graph theoretical reasoning.
It guarantees global synchronization, not just local stability, and is also valid for time-
varying networks. In [11–18], adaptive control strategy is used to guarantee local and global
synchronization in complex networks. Especially in [11], Zhang et al. present a concept of
xk-leading asymptotically stable, and study the synchronization in complex networks with
adaptive coupling. In [12], Huang studies the global synchronization in an adaptive weighted
network, but the coupling strengths between two connected nodes are vector functions.

In [11], however, leading asymptotically stable is achieved by only one state variable.
In actual fact, some systems are difficult to meet this condition. Those systems are
asymptotically stable led by more than one state variable; moreover, the coupling strengths
are not vector functions in practice. Inspired by the upper notions, this paper presents the
concept of xk (k = 1, 2, . . . , s)(s ≤ n) leading asymptotically stable which means that the
system achieves asymptotically stable led by partial state variables and studies the global
synchronization in an adaptive coupling network whose coupling strengths are not vector
function. By using Lyapunov’s direct method, under a simple adaptive update law, such
network can achieve global synchronization finally. The synchronization strategy is setting
adaptive coupling strength between two connected nodes, and the adaptive update law of
aij is only relation to partial state variables of connected nodes i and j. The regular star
coupled network and ring coupled network are simulated, in which the unified chaotic
system is chosen as the dynamical node in the network. The simulation results also show
the effectiveness of the proposed adaptive method.

Another active research named consensus or agreement considers the information
exchange between the connected agents [19–22]. The aim is to set consensus protocols
or coupling scheme to reach agreement on graph and the network could have switching
topology [20, 21]. Of course, the consensus state is usually time-invariant [20], such as,
average-consensus, max-consensus, min-consensus, and so on. To some extent, consensus
is the special case of synchronization but quite independently studied.

2. Network Model and Preliminaries

Consider an undirected complex dynamical network consisting of N identical coupled
nodes. The dynamical behavior of the network can be described by the following ordinary
differential equations:

ẋi = F(xi) +
N∑

j=1

aij(t)Γxj , i = 1, 2, . . . ,N, (2.1)

where xi = (xi1, xi2, . . . , xin)
T ∈ Rn is the state vector representing the state variables of

node i. F(xi) = (F1(xi), F2(xi), . . . , Fn(xi))
T is a smooth nonlinear vector-valued function. Γ =

diag(γ1, . . . , γk0 , 0, . . . , 0) ∈ Mn(R) is the inner coupling matrix, where γi > 0 (i = 1, 2, . . . , k0)
are some constants.

The outer coupling matrix A(t) = (aij(t))N×N represents not only the topological
structure of the network, but also the weight strength, in which aij(t) is defined as follows:
if there is a connection between node i and node j(j /= i), then aij(t) = aji(t) > 0; otherwise,
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aij(t) = aji(t) = 0(j /= i). Suppose network (2.1) is diffusively coupled, that is, the diagonal
elements of matrix A(t) are defined by

aii(t) = −
N∑

j=1
j /= i

aij(t), i = 1, 2, . . . ,N. (2.2)

Here the coupling strengths depend on the corresponding two nodes (i.e., aij(t) depends on
subscripts i and j) and time t. Simply speaking, our network is a weighted network. For
convenience, we replace aij(t) with aij in the following.

Definition 2.1. An equilibrium point x = 0 of a dynamical system ẋ = f(x), x =
(x1, x2, . . . , xn)

T ∈ Rn is xk(k = 1, 2, . . . , s) (s ≤ n) leading asymptotically stable if the
asymptotical stability of xk = 0 (k = 1, 2, . . . , s) can lead the asymptotical stability of
xk = 0 (k = 1, 2, . . . , n).

Remark 2.2. The xk-leading asymptotically stable in [11] is a special case of s = 1 in our
definition.

Letting eij = (eij1, eij2, . . . , eijn)
T = xj − xi, it is obvious that eii = 0, eji = −eij , and the

error system is

ėij = F
(
xj
)
− F(xi) +

N∑

k=1

(
ajkΓejk − aikΓeik

)
, i, j = 1, 2, . . . ,N. (2.3)

The coupled network (2.1) is said to achieve global synchronization if

lim
t−→∞

∥∥xi(t) − xj(t)
∥∥ = 0, that is, eij −→ 0, (t −→ ∞), i, j = 1, 2, . . . ,N, (2.4)

from arbitrary initial values.

3. Main Result

Now we can drive the following main result.

Theorem 3.1. Suppose that system (2.3) satisfies the following conditions.

(I) Nonlinear function F : Rn → Rn satisfies the uniform Lipschitz condition, that is, for all
x, y, there exists a constant l > 0 satisfying ||F(x) − F(y)|| ≤ l||x − y||.

(II) Equilibrium point eij = 0 is eijk(k = 1, 2, . . . , s; i, j = 1, 2, . . . ,N)(s ≤ k0) leading
asymptotically stable.

(III) The nonzero weight strength aij (i /= j) satisfy the following adaptive update law

ȧij = kijeTijPΓeij = kij
(
xi − xj

)T
PΓ

(
xi − xj

)
. (3.1)
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Then network (2.1) with coupling strength (3.1) will achieve global synchronization as
t → ∞, where kij > 0 are some arbitrary constants, P = diag(1, . . . , 1︸ ︷︷ ︸

s

, 0, . . . , 0) ∈Mn(R).

Proof. Let the Lyapunov function be

V =
1
2

N∑

i=1

N∑

j=1

eTijPeij +
N

2

N∑

i=1

N∑

j=1

1
kij

(
aij − c

)2
, (3.2)

where c is a large positive constant. Obviously, it is positive definite about eijk(k = 1, 2, . . . , s).
The time derivative of V along the trajectory of the system (2.1) with coupling strength (3.1)
is given by

V̇ =
N∑

i=1

N∑

j=1

eTijP ėij +N
N∑

i=1

N∑

j=1

1
kij

(
aij − c

)
ȧij

=
N∑

i=1

N∑

j=1

eTijP
(
F
(
xj
)
− F(xi)

)
+

N∑

i=1

N∑

j=1

N∑

k=1

(
ajke

T
ijPΓejk − aike

T
ijPΓeik

)
+N

N∑

i=1

N∑

j=1

1
kij

(
aij − c

)
ȧij .

(3.3)

From condition (I), the first sum S1 =
∑N

i=1
∑N

j=1 e
T
ijP(F(xj)−F(xi)) ≤

∑N
i=1

∑N
j=1 le

T
ijPeij holds.

And the second sum can be calculated as follows. Since eTij = −e
T
ji, we can see that

S2 =
N∑

i=1

N∑

j=1

N∑

k=1

(
ajke

T
ijPΓejk − aike

T
ijPΓeik

)
= −

N∑

i=1

N∑

j=1

N∑

k=1

(
ajke

T
jiPΓejk + aike

T
ijPΓeik

)
. (3.4)

Renaming the summation index i by j in the second term and vice versa, the second term
becomes identical to the first and we obtain

S2 = −2
N∑

i=1

N∑

j=1

N∑

k=1

ajke
T
jiPΓejk. (3.5)

Using ejj = 0, we get

S2 = −2

⎛

⎝
N∑

i=1

N∑

j=1

j∑

k=1

ajke
T
jiPΓejk +

N∑

i=1

N∑

j=1

N∑

k=j

ajke
T
jiPΓejk

⎞

⎠. (3.6)
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Renaming j by k in the second term and vice versa, and using the symmetry of A(t), we
obtain

S2 = −2

⎛

⎝
N∑

i=1

N∑

j=1

j∑

k=1

ajke
T
jiPΓejk +

N∑

i=1

N∑

k=1

N∑

j=k

ajke
T
kiPΓekj

⎞

⎠

= −2

⎛

⎝
N∑

i=1

N∑

j=1

j∑

k=1

ajke
T
jiPΓejk +

N∑

i=1

N∑

k=1

N∑

j=k

ajke
T
ikPΓejk

⎞

⎠ = −2
N∑

i=1

N∑

j=1

j∑

k=1

ajk
(
eTji + e

T
ik

)
PΓejk.

(3.7)

Since eTji + e
T
ik = xTi − x

T
j + xTk − x

T
i = eTjk and the symmetry of A(t), we get

S2 =−2
N∑

i=1

N∑

j=1

j∑

k=1

ajke
T
jkPΓejk=−2N

N∑

j=1

j∑

k=1

ajke
T
jkPΓejk= −N

N∑

j=1

N∑

k=1

ajke
T
jkPΓejk. (3.8)

So

V̇ ≤
N∑

i=1

N∑

j=1

leTijPeij −N
N∑

i=1

N∑

j=1

aije
T
ijPΓeij +N

N∑

i=1

N∑

j=1

1
kij

(
aij − c

)
ȧij

=
N∑

i=1

N∑

j=1

leTijPeij −N
N∑

i=1

N∑

j=1

aije
T
ijPΓeij +N

N∑

i=1

N∑

j=1

(
aij − c

)
eTijPΓeij =

N∑

i=1

N∑

j=1

eTij[lP − cNPΓ]eij .

(3.9)

Because of s ≤ k0, for large constant c, it holds that lP − cNPΓ = diag(c1, c2, . . . , cs, 0, . . . , 0) ∈
Mn(R), where ci < 0 (i = 1, 2, . . . , s). So V̇ is negative definite about eijk(k = 1, 2, . . . , s).
According to Lyapunov’s direct method, starting with arbitrary initial values, eijk → 0 (t →
∞) (k = 1, 2, . . . , s). Since equilibrium point eij = 0 of system (2.3) is eijk(k = 1, 2, . . . , s) (s ≤
k0) leading asymptotically stable, so network (2.1) can reach global synchronization as t →
∞. This completes the proof.

Remark 3.2. Condition (I) is easily satisfied if ∂Fi/∂xj (i, j = 1, 2, . . . , n) are bounded. And a
number of chaotic systems satisfy this condition, such as Rössler system and unified chaotic
system.

Remark 3.3. In practice, we can set kij = k, and the adaptive update law is ȧij = keTijPeij =

k(xi − xj)TP(xi − xj).

Remark 3.4. By (3.1), the nonzero coupling strength aij(t) → Cij when the network achieves
synchronization, where Cij are some positive constants.

Remark 3.5. Our synchronization strategy is setting adaptive coupling strengths between two
nodes to achieve global synchronization, and our adaptive update law of aij is only relation
to partial state variables of connected nodes i and j.
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4. Illustrative Example

To demonstrate the theoretical result in Section 3, two regular networks with the unified
chaotic system are chosen as simulation examples in this section.

The unified chaotic [23] system is described by

ẋ1 = (25a + 10)(x2 − x1),

ẋ2 = (28 − 35a)x1 + (29a − 1)x2 − x1x3,

ẋ3 = x1x2 −
(a + 8)x3

3
.

(4.1)

When a ∈ [0, 1], it has well-known chaotic behavior.
We consider Γ = diag(γ1, γ2, γ3), γi > 0 (i = 1, 2, 3), that is,

ẋi1 = (25a + 10)(xi2 − xi1) + γ1

N∑

j=1

cijaijxj1,

ẋi2 = (28 − 35a)xi1 + (29a − 1)xi2 − xi1xi3 + γ2

N∑

j=1

cijaijxj2, (i = 1, 2, . . . ,N),

ẋi3 = xi1xi2 −
(a + 8)xi3

3
+ γ3

N∑

j=1

cijaijxj3.

(4.2)

The error system is

ėij1 = (25a + 10)
(
eij2 − eij1

)
+ γ1

N∑

k=1

(
cjkajkejk1 − cikaikeik1

)
,

ėij2=(28−35a)eij1+(29a−1)eij2−xj1xj3+xi1xi3+γ2

N∑

k=1

(
cjkajkejk2−cikaikeik2

) (
i, j = 1, 2, . . . ,N

)
,

ėij3 = xj1xj2 − xi1xi2 −
(a + 8)eij3

3
+ γ3

N∑

k=1

(
cjkajkejk3 − cikaikeik3

)
.

(4.3)

In order to use our Theorem, we need the following Lemma.

Lemma 4.1. For a ∈ [0, 1], system (4.3) is eijk(k = 1, 2) leading asymptotically stable.

Proof. If eijk = 0 (k = 1, 2) for all i and j, choose the following Lyapunov function:

V =
1
2

N∑

i=1

N∑

j=1

e2
ij3. (4.4)
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Figure 1: Synchronization errors ||ei|| (i = 2, 3, . . . , 7) of the star coupled network.
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Figure 2: Weight strength aij evolving for the star coupled network.
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Figure 3: Synchronization errors ‖ei‖ (i = 2, 3, . . . , 7) of the ring coupled network.
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Figure 4: Weight strength aij evolving for the ring coupled network.

The derivative of V along with the solution of (4.2) is

V̇ =
N∑

i=1

N∑

j=1

eij3ėij3 =
N∑

i=1

N∑

j=1

[
−
(a + 8)e2

ij3

3

]
+

N∑

i=1

N∑

j=1

N∑

k=1

(
ajkeij3ejk3−aikeij3eik3

)
. (4.5)

Similar to the calculation of S2, we can get
∑N

i=1
∑N

j=1
∑N

k=1(ajkeij3ejk3 − aikeij3eik3) < 0 and for
all a ∈ [0, 1], V̇ < 0. So it is said that eij3 → 0 (t → ∞) (i, j = 1, 2, . . . ,N).

If we set ȧij = kijγ1(xi1−xj1)2+kijγ2(xi2−xj2)2, the network (4.3) satisfies the conditions
of the Theorem and will achieve global synchronization finally.

Remark 4.2. According to Remark 3.3, we choose

ȧij = keTijPeij = k
(
xi1 − xj1

)2 + k
(
xi2 − xj2

)2
, (4.6)

in our simulation, and Γ = diag(1, 2, 3), k = 0.01,N = 7.

We consider two types of regular network: star coupled network and ring coupled
network. Note that our adaptive strategy is also valid for other type of complex networks.

(1) Star coupled network

Figure 1 shows the synchronization errors ||ei|| = ||xi − x1|| (i = 2, 3, . . . , 7) of the star
coupled network when a = 0 and a = 1, respectively. From Figure 1, we can see that the
synchronization errors evolve and converge to zero. In Figure 2, we plot the curve of the
weight strength aij of a = 0 and a = 1. We can see that aij converges to some constants,
respectively.

(2) Ring coupled network

Figure 3 shows the synchronization errors ||ei|| = ||xi − x1|| (i = 2, 3, . . . , 7) of the ring
coupled network when a = 0 and a = 1, respectively. It is said that the network achieves
global synchronization finally. Figure 4 shows that the weight strength aij of a = 0 and a = 1
converges to some constants, respectively.
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5. Conclusion

In this paper, we presented a new concept of asymptotically stable led by partial state
variables and designed a simple adaptive controller for global synchronization in weight
complex dynamical networks. For this network, we proved by using Lyapunov’s direct
method that the states of such complex network can achieve global synchronization finally
under our adaptive update law. Our synchronization strategy is to set adaptive coupling
strength, and our adaptive update law of aij is only relation to partial state variables of
connected nodes i and j. The complex networks with star coupled and ring coupled are
simulated, in which the unified chaotic system is chosen as the dynamical node of the
network. The simulation results also show the effectiveness of our method.
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[14] J. Zhou, J.-A. Lu, and J. Lü, “Adaptive synchronization of an uncertain complex dynamical network,”

IEEE Transactions on Automatic Control, vol. 51, no. 4, pp. 652–656, 2006.
[15] G. He and J. Yang, “Adaptive synchronization in nonlinearly coupled dynamical networks,” Chaos,

Solitons & Fractals, vol. 38, no. 5, pp. 1254–1259, 2008.
[16] X. Li and J. Cao, “Adaptive synchronization for delayed neural networks with stochastic

perturbation,” Journal of the Franklin Institute, vol. 345, no. 7, pp. 779–791, 2008.



10 Mathematical Problems in Engineering

[17] H. Tang, L. Chen, J.-A. Lu, and C. K. Tse, “Adaptive synchronization between two complex networks
with nonidentical topological structures,” Physica A, vol. 387, no. 22, pp. 5623–5630, 2008.

[18] W. He and J. Cao, “Adaptive synchronization of a class of chaotic neural networks with known or
unknown parameters,” Physics Letters A, vol. 372, no. 4, pp. 408–416, 2008.

[19] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using
nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[20] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching
topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[21] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Transactions
on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006.

[22] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-agent coordination,”
in Proceedings of the American Control Conference (ACC ’05), vol. 3, pp. 1859–1864, Portland, Ore, USA,
2005.
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