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The problem of the unsteady peristaltic mechanism with heat and mass transfer of an
incompressible micropolar non-Newtonian fluid in a two-dimensional channel. The flow includes
the viscoelastic wall properties and micropolar fluid parameters using the equations of the fluid
as well as of the deformable boundaries. A perturbation solution is obtained, which satisfies the
momentum, angular momentum, energy, and concentration equations for case of free pumping
(original stationary fluid). Numerical results for the stream function, temperature, and concentra-
tion distributions are obtained. Several graphs of physical interest are displayed and discussed.

1. Introduction

The peristaltic transport is traveling contraction wave along a tube-like structure, and
it results physiologically from neuromuscular properties of any tubular smooth muscle.
Peristalsis is now well known to physiologists to be one of the major mechanisms for fluid
transport in many biological systems. In particular, a peristaltic mechanism may be involved
in swallowing food through the esophagus, in urine transport from the kidney to the bladder
through the ureter, movement of chyme in the gastrointestinal tract, in the transport of
spermatozoa in the ducts efferentes of the male reproductive tracts and in the cervical canal,
movement of ovum in the female fallopian tubes, the transport of lymph in the lymphatic
vessels, and the vasomotion in small blood vessels such as arterioles, venues, and capillaries.
In addition, peristaltic pumping occurs in many practical applications involving biomedical
systems. It has now been accepted that most of the physiological fluids behave in general
like suspensions of deformable or rigid particles in a Newtonian fluid. Blood, for example,
is a suspension of red cells, white cells, and platelets in plasma. Another example is cervical
mucus, which is a suspension of macromolecules in a water-like liquid [1]. However only a
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few studies have considered this aspect since the initial investigation by Raju and Devanathan
[2, 3]. The biviscosity fluid can represent the behavior of blood in vessels of small diameter
as the mean shear rate is about 20–150 s−1 [4].

Several studies have been made to analyze both theoretical and experimental aspects
of the peristaltic motion of non-Newtonian fluids in different situations. Böhme and Friedrich
[5] studied the mechanism of peristaltic transport of an incompressible viscoelastic fluid
by means of an infinite train of sinusoidal waves traveling along the wall of the duct in
the case of plane flow. The effects of an Oldroyd-B fluid on the peristaltic mechanism are
examined by Hayat et al. [6], under the long wavelength assumption. They noticed that in
the narrow part of the channel, the behavior of an Oldroyd-B fluid is much more different
from that of a Newtonian fluid than in the wide part of the channel. El-Shehawey et al. [7]
studied the peristaltic motion of an incompressible non-Newtonian fluid through a porous
medium. They showed that the pressure rise increases as the permeability decreases and
noted that both pressure rise and friction force do not depend on permeability parameter
at a certain value of flow rate. Haroun [8] investigated the peristaltic flow of a third-order
fluid in an asymmetric channel under the assumption of long wavelength approximation. He
expanded the velocity components and pressure in a regular perturbation series in a small
parameter Deborah number that contained the non-Newtonian coefficients appropriate to
shear-thinning. The effects of slip boundary conditions on the dynamics of fluids in porous
media is investigated by El-Shehawey et al. [9]. They studied the flow of non-Newtonian
Maxwell fluids in an axisymmetric cylindrical tube (pore), in which the flow is induced
by traveling transversal waves on the tube wall (peristaltic transport). Hakeem et al. [10]
discussed the effect of an endoscope on the peristaltic mechanism of a generalized Newtonian
fluid. Mekheimer [11] studied the effect of a uniform magnetic field on peristaltic transport
of a blood in nonuniform two-dimensional channels, when blood is represented by a couple-
stress fluid. Tsiklauri and Beresnev [12] analyzed the effect of viscoelasticity on the dynamics
of fluids in porous media by studying the peristaltic flow of a Maxwell fluid in circular tube,
in which the flow is induced by a wave traveling on the tube wall.

The micropolar fluid represents fluids, which consist of rigid, randomly oriented (or
spherical) particles suspended in a viscous medium where the deformation of the particles
is ignored. The theory of thermo-micropolar fluid was developed by Eringen [13]. Agrawal
and Dhanapal [14] considered the micropolar fluid to be the model of blood flow in small
arteries, and the calculation of theoretical velocity profiles is observed, in good agreement
with experimental data [15]. They have many applications in physiological and chemical
engineering [16]. Srinivasachrya et al. [17] studied the problem of peristaltic transport of a
micropolar fluid in a circular tube. Girija Devi and Devanathan [18] studied the peristaltic
flow of a micropolar fluid in a cylindrical tube with a sinusoidal deformation of small
amplitude travelling down its flexible wall for the case of low Reynolds number flow devoid
of wall properties like tension and damping. However, the wall properties are essential to
be taken into consideration in various real situations. The peristaltic motion of a simple
microfluid which accounts for microrotation and microstretching of the particles contained
in a small volume element is studied by Philip and Chandra [19], using long wavelength
approximation.

Combined heat and mass transfer problems are of importance in many processes and
have, therefore, received a considerable amount of attention in recent years. In processes
such as drying, evaporation at the surface of a water body, energy transfer in a wet cooling
tower and the flow in a desert cooler, heat and mass transfer occurs simultaneously. Possible
applications of this type of flow can be found in many industries. For example, in the power
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industry, among the methods of generating electric power is one in which electrical energy
is extracted directly from a moving conducting fluid. Many practical diffusive operations
involve the molecular diffusion of a species [20]. Radhakrishnamacharya and Radhakrishna
[21] investigated the peristaltic flow with heat transfer in a nonuniform channel. The effect of
elasticity of the flexible walls on peristaltic transport of an incompressible viscous fluid, with
heat transfer, in a two-dimensional uniform channel under long wavelength approximation
is explained by Radhakrishnamacharya and Srinivasulu [22]. El Dabe et al. [23] studied
heat and mass transfer of a steady slow motion of a Rivlin-Ericksen fluid in tube of varying
cross-section with suction. Agrawal et al. [24] obtained numerical solutions of flow and heat
transfer of a micropolar fluid at a stagnation point on a porous stationary wall. They observed
that the heat sources increase the velocity and temperature in the pipe while the heat sinks
decrease them.

Muthu et al. [25] carried out a study of the peristaltic motion of an incompressible
micropolar fluid in two-dimensional channel. They investigated the effects of viscoelastic
wall properties and micropolar fluid parameters on the flow using the equations of the fluid
as well as of the deformable boundaries. The non-Newtonian property and equations of
heat and mass transfer were not taken into their consideration. Because of the wide range of
practical importance of the heat and mass transfer, the present study considered the heat and
mass transfer of an unsteady peristaltic motion of a micropolar non-Newtonian biviscosity
fluid [4]. The following analysis includes the dynamic boundary condition. Analytical
approximate solutions for the stream function, microrotation velocity, temperature, and
concentration equations are obtained as a power series in terms of the small amplitude
ratio. We have shown the relation between the different parameters of motion in order to
investigate how to control the motion of the fluid by changing these parameters.

2. Formulation of the Problem

Consider a two-dimensional symmetric unsteady flow of an incompressible micropolar
biviscosity fluid in an infinite channel of uniform thickness 2d, with heat and mass transfer.
The walls of the channel are flexible membranes on which they are imposed traveling
sinusoidal waves of moderate amplitude (see Figure 1).

We choose a rectangular coordinate system such that the axes x and y are in
the directions of wave propagation and normal to the mean position of the membranes,
respectively. The origin is located at the center line of the channel. It was shown by Wilson
and Taylor [26] that the limiting process by which the biviscosity model is approached with
the limiting process implicit in lubrication theory. Models of this type are much easier to
handle mathematically than many models such as Oldroyd’s and represent the experimental
facts just as well, at least in many cases.

The biviscosity model (which has been used in similar contexts by Nakayama and
Sawada [4]) can be written as

τij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
(

μB +
py√
2π

)

eij , π ≥ πc,

2

(

μB +
py
√

2πc

)

eij , π < πc.

(2.1)
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The following quantity is introduced as a nondimensional parameter including πc

γ = μB

√
2πc
py

, (2.2)

where μB is the plastic viscosity, py is the yielding stress, π = eijeij , where eij is the (i, j)
component of the deformation rate and the value of γ denotes the upper limit of apparent
viscosity coefficient. The biviscosity model is approached in the limit γ → ∞ (see Nakayama
and Sawada [4] for a few further details).

The governing continuity, momentum, angular momentum, temperature, and concen-
tration equations for this problem can be written as [13]

∂u

∂x
+
∂υ

∂y
= 0, (2.3)

ρ

[
∂u

∂t
+ u

∂u

∂x
+ υ

∂u

∂y

]

= −∂P
∂x

+

(
2μB

(
1 + γ−1) + k

2

)

∇2u + k
∂Nθ

∂y
, (2.4)

ρ

[
∂υ

∂t
+ u

∂υ

∂x
+ υ

∂υ

∂y

]

= −∂P
∂y

+

(
2μB

(
1 + γ−1) + k

2

)

∇2υ − k∂Nθ

∂x
, (2.5)

ρJ

[
∂Nθ

∂t
+ u

∂Nθ

∂x
+ v

∂Nθ

∂y

]

= −2kNθ + γ ∇2Nθ + k
[
∂υ

∂x
− ∂u
∂y

]

, (2.6)

ρCp

[
∂T

∂t
+ u

∂T

∂x
+ υ

∂T

∂y

]

= kc∇2T +

(
2μB

(
1 + γ−1) + k

2

)

×
[

2
(
∂u

∂x

)2

+ 2
(
∂υ

∂y

)2

+
(
∂u

∂y
+
∂υ

∂x

)2
]

+2k
[

Nθ
2 −Nθ

(
∂υ

∂x
− ∂u
∂y

)]

+ γ

[(
∂Nθ

∂x

)2

+
(
∂Nθ

∂y

)2
]

+αc
[
∂T

∂x

∂Nθ

∂y
− ∂T
∂y

∂Nθ

∂x

]

,

(2.7)

∂C

∂t
+ u

∂C

∂x
+ υ

∂C

∂y
= D

(
∂2C

∂x2
+
∂2C

∂y2

)

+
DkT
Tm

(
∂2T

∂y2
+
∂2T

∂x2

)

, (2.8)

where u(x, y, t) and υ(x, y, t) are the velocity components in the x and y directions,
respectively, Nθ(x,y,t) is the microrotation velocity component in the direction normal to
both the x and y axes. Here ρ is the density of the fluid, P is the pressure, J is the microinertia
constant, k is the vortex viscosity coefficient (also known as the coefficient of gyroviscosity),
and γ is the spin-gradient viscosity.

Further, the material constants μB and k satisfy the following inequalities [13]:

2μB + k ≥ 0, k ≥ 0, μB ≥ 0. (2.9)
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Figure 1: Geometry of two-dimensional peristaltic channel.

The temperature and concentration of fluid are T(x, y, t) and C(x, y, t), Cp is the
specific heat at constant pressure, D is the coefficient of mass diffusivity, KT is the thermal
diffusion ratio, Tm is the mean fluid temperature, kc is the thermal conductivity and αc is the
heat conduction parameter for a micropolar fluid. The last term in (2.8) signifies the thermal-
diffusion effect.

We consider a symmetric motion of the flexible walls in the boundary conditions. Let
the vertical displacements of the upper and lower walls be η and −η, respectively, where

η(x, t) = a cos
2π
λ

(x − ct), (2.10)

where a is the amplitude, λ is the wavelength, and c is the wave speed.
We assume that the walls are inextensible so that only lateral motion takes place and

the horizontal displacement of the wall is zero [25].
Thus the no-slip boundary conditions for the velocity and microrotation are

u = 0, Nθ = 0 at y = ±
(
d + η(x, t)

)
. (2.11)

The dynamic boundary conditions are imposed on the fluid by the symmetric motion of the
flexible walls, which can be written as [18]

∂L
(
η
)

∂x
= −ρ

[
∂u

∂t
+ u

∂u

∂x
+ υ

∂u

∂y

]

+

(
2μB

(
1 + γ−1) + k

2

)

∇2u + k
∂Nθ

∂y
,

at y = ±
(
d + η(x, t)

)
,

(2.12)

where

∂L
(
η
)

∂x
= −�

∂3η

∂x3
+m

∂3η

∂t2∂x
+ n

∂3η

∂t∂x
. (2.13)

Here L(η) is the pressure at the walls, � is the tension in the membrane, m is the mass per unit
area, and n is the coefficient of viscous damping force.
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The plate temperature starts oscillating about a nonzero mean temperature. Under
these physical conditions, the temperature and concentration at the upper wall give

T = Tw +
a

d
(Tw − Tm) cos

(
2π(x − ct)

λ

)

,

C = Cw +
a

d
(Cw − Cm) cos

(
2π(x − ct)

λ

)

, at y = d + η(x, t),

(2.14)

where Cm is the mean fluid concentration, Tw and Cw are the uniform temperature and
concentration at the lower wall, that is,

T = Tw, C = Cw, at y = −
(
d + η(x, t)

)
. (2.15)

Equation (2.3) allows the use of the stream function ψ(x, y, t) such that

u =
∂ψ

∂ y
, υ = −

∂ψ

∂ x
. (2.16)

By introducing the following nondimensional quantities:

x′ =
x

d
, y′ =

y

d
, t′ =

tc

d
, u′ =

u

c
, υ′ =

υ

c
, Nθ

′ =
dNθ

c
, P ′ =

P

ρc2
, η′ =

η

d
,

ψ ′ =
ψ

cd
, J ′ =

J

d2
, T ′ =

T − Tm
Tw − Tm

, C′ =
C − Cm

Cw − Cm
, ε =

a

d
, α =

2πd
λ

, μ1 =
k

μB
,

Re =
ρcd

μB
, N =

(
μ1

2 + μ1

)1/2

, N =
(

μ1

2 (1 + γ−1) + μ1

)1/2

,

M = 2d
(
μB
γ

)1/2

, M =

⎛

⎝
M2 (1 −N

2
)

(1 −N2)

⎞

⎠

1/2

,

Γ =
M

M
, R� =

4μρcdJ
γ
(
2μB + k

) , K2 =
n d

μB
, K3 =

�ρd

μB2
, m1 =

m

ρd
, Pr =

μBCρ

kc
,

Ec =
c2

Cρ(Tw − Tm)
, af =

αcc

μBCρd
, Sc =

μB
Dρ

, Sr =
kT (Tw − Tm)ρD
Tm(Cw − Cm)μB

,

(2.17)
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substituting from (2.17) into (2.3)–(2.8), eliminating P between (2.4) and (2.5), and dropping
the accent mark for simplicity, the governing equations may be written as

∂

∂t
∇2ψ + ψy∇2ψx − ψx∇2ψy =

2
(
1 + γ−1) + μ1

2 Re

[
∇2∇2ψ

]
+
μ1

Re
∇2Nθ, (2.18)

R�

(
∂Nθ

∂t
+ ψy

∂Nθ

∂x
− ψx

∂Nθ

∂y

)

= 2
(

1 −N2
)
∇2Nθ −N2M2

(
∇2ψ + 2Nθ

)
, (2.19)

Re ·Pr
(
∂T

∂t
+ ψy

∂T

∂x
− ψx

∂T

∂y

)

= ∇2T +
2
(
1 + γ−1) + μ1

2
Pr · Ec ×

[
4ψ2

xt + (ψyy − ψxx)2
]

+ 2μ1 · Pr · Ec
(
Nθ

2 +Nθ∇2ψ
)
+

4
M2

Pr · Ec

×
[(

∂Nθ

∂x

)2

+
(
∂Nθ

∂y

)2
]

+ af · Pr
[
∂T

∂x

∂Nθ

∂y
− ∂T
∂y

∂Nθ

∂x

]

,

(2.20)

Sc · Re
(
∂C

∂t
+ ψy

∂C

∂x
− ψx

∂C

∂y

)

= ∇2C + Sc · Sr · ∇2T. (2.21)

Also, the boundary conditions at y = ±(1 + η(x, t)), when η(x, t) = ε cos(α(x − t)), are

ψy =Nθ = 0,

∂L
(
η
)

∂x
= −
[
ψyt + ψyψxy − ψxψyy

]
+

2
(
1 + γ−1) + μ1

2 Re

[
∇2ψy

]
+
μ1

Re
∂Nθ

∂y
,

(2.22)

where

∂L
(
η
)

∂x
= − K3

Re2

∂3η

∂x3
+m1

∂3η

∂t2∂x
+
K2

Re
∂2η

∂t∂x
, (2.23)

while

T = 1, C = 1, at y = −
(
1 + η(x, t)

)
,

T = 1 + ε cos(α(x − t)), C = 1 + ε cos(α(x − t)) at y = 1 + η(x, t).
(2.24)

The parameter ε represents the amplitude ratio, α is wave number, Re is the Reynolds
number, μ1 is the ratio between the viscosity coefficient for micropolar fluids and the classical
viscosity coefficient, and M is the micropolar fluid parameter characterizing spin-gradient
viscosity. The parameter M can be thought of as a fluid property depending upon the size
of the microstructure [18]. We note that R� is the modified Reynolds number and involves
the quantity J. In this paper, we considered that the effect of microinertia is neglected and
R� is taken to be zero [24]. The nondimensional quantities Pr are the Prandtl number, Ec is
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Eckert number, af is the dimensionless heat conduction coefficient of the micropolar fluid, Sc
is the Schmidt number, Sr is the Soret number and represents the thermal-diffusion effect, K2

and K3 represent the dissipative and rigiditive feature of walls, and m1 indicates the stiffness
property of walls.

3. Method of Solution

Assume the amplitude ratio ε of the wave to be small. As given by Muthu et al. [25], we seek
for an approximate solution as a power series in terms of ε in the form

ψ
(
x, y, t

)
= ψ0

(
y
)
+
ε

2

(
φ1
(
y
)
eiα(x−t) + φ∗1e

−iα(x−t)
)

+
ε2

2

(
φ20
(
y
)
+ φ22

(
y
)
e2iα(x−t) + φ∗22

(
y
)
e−2iα(x−t)

)
+ o
(
ε3
)
,

(3.1)

Nθ

(
x, y, t

)
=N0

(
y
)
+
ε

2

(
ξ1
(
y
)
eiα(x−t) + ξ∗1e

−iα(x−t)
)

+
ε2

2

(
ξ20
(
y
)
+ ξ22

(
y
)
e2iα(x−t) + ξ∗22

(
y
)
e−2iα(x−t)

)
+ o
(
ε3
)
,

(3.2)

T
(
x, y, t

)
= T0

(
y
)
+
ε

2

(
T1
(
y
)
eiα(x−t) + T ∗1e

−iα(x−t)
)

+
ε2

2

(
T20
(
y
)
+ T22

(
y
)
e2iα(x−t) + T ∗22

(
y
)
e−2iα(x−t)

)
+ o
(
ε3
)
,

(3.3)

C
(
x, y, t

)
= C0

(
y
)
+
ε

2

(
C1
(
y
)
eiα(x−t) + C∗1e

−iα(x−t)
)

+
ε2

2

(
C20
(
y
)
+ C22

(
y
)
e2iα(x−t) + C∗22

(
y
)
e−2iα(x−t)

)
+ o
(
ε3
)
.

(3.4)

Here the asterisk denotes complex conjugate. The solutions for ψ0(y) and N0(y) are obtained
as follows:

dψ0

dy
= K′

(
y2 − 1

)
⎛

⎝1 +
N

2
Γ2

(1 −N2)

⎞

⎠ +
2K′N

2
Γ2

(1 −N2)

⎛

⎜
⎝

cosh
(
NM

)
− cosh

(
NMy

)

NM sinh
(
NM

)

⎞

⎟
⎠,

N0 =
K′Γ2

(1 −N2)

⎛

⎜
⎝

sinh
(
NMy

)
− y sinh

(
NM

)

sinh
(
NM

)

⎞

⎟
⎠,

(3.5)

whereK′ = (Re/(2(1+γ−1)+μ1))(dP/dx)0 is the poiseuille flow parameter for the micropolar
fluid. For pure peristalsis, which means that the flow is generated by wall motion only. The
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pressure gradient (dP/dx)0 = 0; this implies that K′ = 0, which gives ψ0(y) = 0 and N0(y) =
0. The expressions of φ1 and ξ1 for the case of free pumping can be written as

φ1
(
y
)
= A3 sinhαy +A4 sinh βy + a1A1 sinh r1y + a2A2 sinh r2y, (3.6)

ξ1
(
y
)
= A1 sinh r1y +A2 sinh r2y, (3.7)

where β2 = α2 − 2iαRe/(2 (1 + γ−1) + μ1), λ1 =N2N
2
M2/(1 −N2), λ2 =N2M2/(1 −N2),

r1 =
[

1
2

{

λ2 − λ1 + (α2 + β2) +
√

((λ1 − λ2) − (α2 + β2))2 − 4(α2β2 − λ1α2 + λ2β2)
}]1/2

,

r2 =
[

1
2

{

λ2 − λ1 + (α2 + β2) −
√

((λ1 − λ2) − (α2 + β2))2 − 4(α2β2 − λ1α2 + λ2β2)
}]1/2

,

a1 =
−2N2

r2
1 − β2

, a2 =
−2N2

r2
2 − β2

, A1 =
ReN2M2 sinh r2

2d1
, A2 =

−ReN2M2 sinh r1

2d1
,

d1 =
(
r3

1 +
(
λ1 − λ2 − α2

)
r1

)
sinh r2 cosh r1 −

(
r3

2 +
(
λ1 − λ2 − α2

)
r2

)
sinh r1 cosh r2,

A3 =
1

α
(
β2 − α2

)
coshα

(

− 2 Re δ1

2
(
1 + γ−1

)
+ μ1

+ 2N2(r1A1 cosh r1 + r2A2 cosh r2)

+a1A1r1

(
r2

1 − β
2
)

cosh r1 + a2A2r2

(
r2

2 − β
2
)

cosh r2

)

,

A4 =
1

β
(
β2 − α2

)
cosh β

(
2 Re δ1

2
(
1 + γ−1

)
+ μ1

− 2N2(r1A1 cosh r1 + r2A2 cosh r2)

−a1A1r1

(
r2

1 − α
2
)

cosh r1 + a2A2r2

(
r2

2 − α
2
)

cosh r2

)

,

δ1 = i

(
K3α

3

Re2
−m1α

3

)

+K2
α2

Re
.

(3.8)

To obtain the mass and heat transfer, we shall use the perturbation scheme (3.3), (3.4)
in (2.20) and (2.21), and equating the zero-order terms on both sides, we obtain the following
set of equations:

d2T0

dy2
= −Ec · Pr

[
d2ψ0

dy2

(

2μ1N0 +
2
(
1 + γ−1) + μ1

2
d2ψ0

dy2

)

+ 2μ1N
2
0 +

4
M2

(
dN0

dy

)2
]

, (3.9)

d2C0

dy2
= −Sc · Sr

d2T0

dy2
, (3.10)

T0(±1) = 1, C0(±1) = 1. (3.11)
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In case of plane Poiseuille flow of micropolar fluid (ε = 0), the governing (3.9) and
(3.10) may be solved in the light of the boundary conditions (3.11) with the constant pressure
gradient (∂P/∂x)0. At this stage, the temperature and concentration distributions T0 and C0,
respectively, are given by

T0
(
y
)
= 1 − 2Pr · Ec ·K′2 ×

[
1
6

(
y4 − 1

)
+

1

M2sinh2NM

×
{

1
4

(
y2 − 1

)(

4sinh2NM +M2
(

N2
(

2 −N2
)
− μ1

(
1 −N2

)2
))

− 4 sinhNM
(
y sinhNMy − sinhNM

)

+
4 sinhNM

NM

(
coshNMy − coshNM

)

+
1

8N2

(

N2
(

2 +N2
)
+ μ1

(
1 −N2

)2
)

×
(

cosh 2NMy − cosh 2NM
)}]

,

C0
(
y
)
= 1 + Sc Sr

(
1 − T0

(
y
))
.

(3.12)

Let us consider the case in which the pressure gradient (∂P/∂x)0 vanishes. In this case
there will be no flow if the wall motion stops. Hence ψ0 = N0 = 0 and T0 = C0 = 1, and
equating the first-order terms on both sides of (2.20) and (2.21), we get the following set of
equations:

d2T1

dy2
− γ2

1T1 = 0,

d2C1

dy2
− γ2

2C1 = iα Sc · Sr · Pr · Re ·T1,

(3.13)

where

γ2
1 = α2 − iα · Pr · Re, γ2

2 = α2 − iα · Sc · Re . (3.14)

The boundary conditions are

T1(−1) = C1(−1) = 0, T1(1) = C1(1) = 1. (3.15)
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The solutions of (3.13) with boundary conditions (3.15) are

T1
(
y
)
=

sinh
(
γ1 + γ1y

)

sinh 2γ1
, (3.16)

C1
(
y
)
=
(

1 − Sc · Sr · Pr
(Sc − Pr)

)sinh
(
γ2 + γ2y

)

sinh 2γ2
+

Sc · Sr · Pr
(Sc · Pr)

sinh
(
γ1 + γ1y

)

sinh 2γ1
. (3.17)

In this case, the governing equations for T20 and C20 reduce to

d2T20

dy2
=
iα

2
Pr · Re

d

dy

(
T1φ

∗
1 − φ1T

∗
1

)

− Pr · Ec

[
2
(
1 + γ−1) + μ1

2

×
(

4α2dφ1

dy

dφ∗1
dy

+
d2φ1

dy2

d2φ∗1
dy2

+ α4φ1φ
∗
1 + α

2

(

φ1
d2φ∗1
dy2

+ φ∗1
d2φ1

dy2

))

+ 2μ1

(

ξ1ξ
∗
1 +

1
2

(

ξ1
d2φ∗1
dy2

+ ξ∗1
d2φ1

dy2
− α2(ξ1φ

∗
1 + ξ

∗
1φ1
)
))

+
4
M2

(
dξ1

dy

dξ∗1
dy

+ α2ξ1ξ
∗
1

)]

− iα
2

af · Pr
d

dy

(
T1ξ

∗
1 − ξ1T

∗
1

)
,

d2C20

dy2
=
iα

2
Sc · Re

d

dy

(
C1φ

∗
1 − φ1C

∗
1

)
− Sc · Sr

d2T20

dy2
,

(3.18)

with the boundary conditions

T20(±1) = ∓1
2

(
T1y(±1) + T ∗1y(±1)

)
, C20(±1) = ∓1

2

(
C1y(±1) + C∗1y(±1)

)
. (3.19)

The solutions of (3.18) are

T20
(
y
)
=
iα

4
Pr · Re

[
1

sinh 2γ1

(
A∗3g1

(
γ1, α

)
+A∗4g1

(
γ1, β

∗) +A∗1a
∗
1g1
(
γ1, r

∗
1

)
+A∗2a

∗
2g1
(
γ1, r

∗
2
))

− 1
sinh 2γ∗1

(
A3g1

(
γ∗1 , α

)
+A4g1

(
γ∗1 , β

)
+A1a1g1

(
γ∗1 , r1

)
+A2a2g1

(
γ∗1 , r2

))
]
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− Ec · Pr

[
2
(
1 + γ−1) + μ1

4

×
(

2α2A3A
∗
3 cosh 2αy + 4α2(αA3f1 + r1A1a1f2 + r2A2f3 + βA4f4

)

+ 2α2A3f5 +
(
α2 + r2

1

)
A1a1f6

+
(
α2 + r2

2

)
A2a2f7 +

(
α2 + β2

)
A4f8

)
+

(
M2μ1 + 2α2

M2

)

×
(
A1
(
A∗1g3

(
r1, r

∗
1

)
+A∗2g3

(
r1, r

∗
2
))

+A2
(
A∗1g3

(
r2, r

∗
1

)
+A∗2g3

(
r2, r

∗
2
))

+
2
M2

(
r1A1

(
r∗1A

∗
1g2
(
r1, r

∗
1

)
+ r∗2A

∗
2g2
(
r1, r

∗
2
))

+r2A2
(
r∗1A

∗
1g2
(
r2, r

∗
1

)
+ r∗2A

∗
2g2
(
r2, r

∗
2
)))

+
μ1

2

(
A1f9 +A2f10 +A4

(
β2 − α2

)(
A∗1g3

(
β, r∗1

)
+A∗2g3

(
β, r∗2

)))
]

− iα
4

af · Pr

[
1

sinh 2γ1

(
A∗1g1

(
γ1, r

∗
1

)
+A∗2g1

(
γ1, r

∗
2
))

− 1
sinh 2γ∗1

(
A1g1

(
γ∗1 , r1

)
+A2g1

(
γ∗1 , r2

))
]

+A5y +A6,

C20
(
y
)
= A8 +A7y − Sc · Sr · T20 +

iα

4
Sc · Re

×
{(

1 − Sc · Sr · Pr
(Sc − Pr)

)
1

sinh 2γ2

×
(
A∗3g1

(
γ2, α

)
+A∗4g1

(
γ2, β

∗) +A∗1a
∗
1g1
(
γ2, r

∗
1

)
+A∗2a

∗
2g1
(
γ2, r

∗
2
))

+
Sc · Sr · Pr

(Sc − Pr) sinh 2γ1

×
(
A∗3g1

(
γ1, α

)
+A∗4g1

(
γ1, β

∗) +A∗1a
∗
1g1
(
γ1, r

∗
1

)
+A∗2a

∗
2g1
(
γ1, r

∗
2
))

+
(

1 − Sc · Sr · Pr
(Sc − Pr)

)
1

sinh 2γ∗2

×
(
A3g1

(
γ∗2 , α

)
+A4g1

(
γ∗2 , β

)
+A1a1g1

(
γ∗2 , r1

)
+A2a2g1

(
γ∗2 , r2

))

−Sc · Sr · Pr
(Sc − Pr)

1
sinh 2γ∗1

(
A3g1

(
γ∗1 , α

)
+A4g1

(
γ∗1 , β

)
+A1a1g1

(
γ∗1 , r1

)
+A2a2g1

(
γ∗1 , r2

))
}

,

(3.20)

where g1 − g3, f1 − f10 K3 and A5 −A8 are given in the appendix.
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Also, the equations governing for T22 and C22 are

d2T22

dy2
− γ2

3T22 =
iα

2
Pr · Re

(

T1
dφ1

dy
− φ1

dT1

dy

)

− Pr · Ec

⎡

⎣
2
(
1+γ−1)+μ1

4

⎛

⎝

(
d2φ1

dy2

)2

+α4φ2
1+2α2

(

φ1
d2φ1

dy2
−2
(
dφ1

dy

)2
)⎞

⎠

+μ1

(

ξ2
1 + ξ1

d2φ1

dy2
− α2ξ1φ1

)

+
2
M2

((
dξ1

dy

)2

− α2ξ2
1

)⎤

⎦

− iα
2

af · Pr
(

T1
dξ1

dy
− ξ1

dT1

dy

)

,

d2C22

dy2
− γ2

4C22 =
iα

2
Sc · Re

(

C1
dφ1

dy
− φ1

dC1

dy

)

− Sc · Sr

(
d2T22

dy2
− 4α2T22

)

,

(3.21)

where

γ2
3 = 4α2 − 2iαPr · Re, γ3

4 = 4α2 − 2iα Sc · Re, (3.22)

with boundary conditions

T22(±1) = ∓1
2
T1y(±1), C22(±1) = ∓1

2
C1y(±1). (3.23)

Using boundary conditions (3.23), the expressions of T22 and C22 are

T22
(
y
)
= A9 cosh γ3y +A10 sinh γ3y +

iα

4
Pr

1
sinh 2γ1

×
[
Re
(
αA3g4

(
γ1, α

)
+ βA4g4

(
γ1, β

)
−γ1A3g5

(
γ1, α

)
−γ1A4g5

(
γ1, β

))

+(a1 Re−af)
(
r1A1g4

(
γ1, r1

)
−γ1A1g5

(
γ1, r1

))

+(a2 Re−af)
(
r2A2g4

(
γ1, r2

)
− γ1A2g5

(
γ1, r2

))]



14 Mathematical Problems in Engineering

− Pr · Ec

{
2
(
1 + γ−1) + μ1

8

(

4α4A2
3g8(α)+

(
r2

1 +α
2
)2
A2

1a
2
1g8(r1)

+
(
r2

2 +α
2
)2
A2

2a
2
2g8(r2)+(β2+α2)

2
A2

4g8
(
β
)

+ 4α2A3f11 + 2A1a1

(
α2 + r2

1

)
f12 + 2A2a2

(
α2 + r2

2

)
f13

− 4α2
(
α2A2

3g9(α) + r2
1A

2
1α

2
1g9(r1)

+ r2
2A

2
2a

2
2g9(r2) + β2A2

4g9
(
β
)
+ 2αA3f14

+2r1A1a1f15 + 2r2A2a2f16
))

+
μ1

2

((
1 +

(
r2

1 − α
2
)
a1

)
A2

1g8(r1) +
(

1 +
(
r2

2 − α
2
)
a2

)
A2

2g8(r2)

+A1f17 +A2A4

(
β2 − α2

)
g6
(
r2, β

))

+
1
M2

(
r2

1A
2
1g9(r1) + r2

2A
2
2g9(r2) + 2r1r2A1A2g7(r1, r2)

−α2
(
A2

1g8(r1) +A2
2g8(r2) + 2A1A2g6(r1, r2)

))
}

,

(3.24)

C22
(
y
)
= A11 cosh γ4y +A12 sinh γ4y

+
iα

4
Sc · Re

{(

1 − Sc · Sr · Pr
(Sc − Pr)

)
f18

sinh 2γ2
+

Sc · Sr · Pr
(Sc − Pr)

f19

sinh 2γ1

}

+
Pr · Sc · Sr
(Sc − Pr)

(
A9 cosh γ3y +A10 sinh γ3y

)
− iα

4
Sc · Sr · Pr · Re

f20

sinh 2γ1
+Pr · Ec · Sc · Sr

×
[

2
(
1 + γ−1) + μ1

8

(
32α6A2

3

(γ3γ4)
2
+ (r2

1 + α2)
2
A2

1a
2
1g14(r1) + (r2

2 + α2)
2
A2

2a
2
2g14(r2)

+ (β2 + α2)
2
A2

4g14
(
β
)
+ 4α2A3f21

+ 2
(
α2 + r2

1

)
A1a1f22 + 2

(
α2 + r2

2

)
A2a2f23

− 4α2
(
r2A2

1a
2
1g15(r1) + r2

2A
2
2a

2
2g15(r2) + β2A2

4g15
(
β
)

+2αA3f24 + 2r1A1a1f25 + 2r2A2a2f26

)
)
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+
μ1

2

((
1 +

(
r2

1 − α
2
)
a1

)
A2

1g14(r1) +
(

1 +
(
r2

2 − α
2
)
a2

)
A2

2g14(r2)

+A1f27 +A2A4

(
β2 − α2

)
g16
(
r2, β

))

+
1
M2

(
r2

1A
2
1g15(r1) + r2

2A
2
2g15(r2) + 2r1r2A1A2g17(r1, r2)

−α2
(
A2

1g14(r1) +A2
2g14(r2) + 2A1A2g16(r1, r2)

))
]

+
iα

4
af · Pr · Sc · Sr ·

f28

sinh 2γ1
.

(3.25)

Hence g4 − g17, f11 − f28 and A9 −A12 are given in the appendix.
Using the expressions for Ψ1, T1, C1, T20, C20, T22, and C22 in (3.1), (3.3), and (3.4),

we can determine the stream function Ψ(x, y, t), temperature T(x, y, t), and concentration
C(x, y, t) of micropolar fluid for the case of free pumping as

ψ
(
x, y, t

)
=
ε

2

(
φ1
(
y
)
eiα(x−t) + φ∗1e

−iα(x−t)
)
+ o
(
ε2
)
, (3.26)

T
(
x, y, t

)
= 1 +

ε

2

(
T1
(
y
)
eiα(x−t) + T ∗1

(
y
)
e−iα(x−t)

)

+
ε2

2

(
T20
(
y
)
+ T22e

2iα(x−t) + T ∗22
(
y
)
e−2iα(x−t)

)
,

(3.27)

C
(
x, y, t

)
= 1 +

ε

2

(
C1
(
y
)
eiα(x−t) + C∗1

(
y
)
e−iα(x−t)

)

+
ε2

2

(
C20
(
y
)
+ C22e

2iα(x−t) + C∗22
(
y
)
e−2iα(x−t)

)
,

(3.28)

where φ∗1, T
∗
1 (y), C

∗
1(y), T

∗
22(y), and C∗22(y) are conjugate to (3.6), (3.16), (3.17), (3.24), and

(3.25), respectively.

4. Results and Discussion

To discuss the effect of the parameters of micropolar, non-Newtonian fluid, and viscoelastic
membrane properties on the solutions of the considered problem. A numerical results are
calculated from formula (3.6), (3.27), and (3.28) for the temperature T(x, y, t), concentration
C(x, y, t) and stream function ψ(x, y, t) and shown by Figures 2–24. Take into account the
parameters t and x have the numerical value 2.0, while parameter α and amplitude ratio ε
take the value 0.5 and 0.01, respectively, but α takes the value 2 for the stream function.

Figures 2–4 illustrate the effects of μ1 = (k/μB), M = (2d (μB/γ)
0.5), and af, in order,

on the temperature distribution with taking into account that the elastic wall (K2 = 0). The
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Figure 2: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, M = 10, af = 1, K2 =m1 = 0, and K3 = 10 for various values of μ1.
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Figure 3: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, af = 1, K2 =m1 = 0, and K3 = 10 for various values of M.

ratios k/μB and γ/μB measure the relative strengths of the vortex viscosity coefficient to
the viscosity coefficient and the spin gradient viscosity coefficient to the viscosity coefficient,
respectively. These coefficients μB, k, and γ may be greater or equal to zero. For example, the
blood 50% hematocrit has the values μB = 0.0029, k = 0.000232, and γ = 0.000001 [27]. When
the viscous effects are much larger than the spin gradient viscosity effects, (γ/μB) may tend to
be zero, and the parameter M will tend to infinity. Ahmadi [28] has stated that the parameter
μ1 depends on the shape and concentration of the microelements while the parameter M
signifies the size of microstructure. In this context, small (large) value of μ1 means low (high)
concentration of the microelements. Similarly, a given small (large) value of M is related to
small (large) size of the particles. It is noted from Figure 2 that the temperature distribution
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Figure 4: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, M = 10, K2 =m1 = 0, and K3 = 10 for various values of af.

−1 −0.5 0 0.5 1

y

0.9995

1

1.0005

1.001

1.0015

1.002

T
he

te
m

pe
ra

tu
re
T

K2 = 0
K2 = 5
K2 = 10

Figure 5: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, M = 10, af = 1, m1 = 0, and K3 = 10 for various values of K2.

decreases with the increasing of μ1 near the lower wall, while it increases as μ1 increases when
y ≥ −0.7. In Figure 3, it can be seen that the temperature distribution increases as M increases.
Also, Figure 4 shows that the temperature increases as af increases but at y > 0.8, an opposite
effect is noticed near the upper wall. The results in our study are consistent with those which
are obtained by Agarwal et al. [24] in case of isothermal wall.

The choice K2 = 0 implies that the walls move up and down with no damping force
on them and hence indicates that the membrane is treated as an elastic wall. The parameter
K2 depends upon the wall tension and represents the rigid nature of the walls. Figures 5, 6,
and 7 illustrate the effect of the parameters of the viscoelastic wall properties K2, K3, and
m1 on the temperature distribution, respectively. It is found that the temperature distribution
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Figure 6: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, M = 10, af = 1 and K2 =m1 = 0 for various values of K3.
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Figure 7: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, M = 10, af = 1, K2 = 0 and K3 = 10 for various values of m1.

increases as K2 increases as shown in Figure 5, but near the lower wall, it decreases with the
increase of K2. The temperature distribution decreases with the increase of both K3 and m1,
but when y ≥ −0.7, it starts increasing as both K3 and m1 increase for the case of elastic walls
(K2 = 0), as shown in Figures 6 and 7. This phenomenon reflects the fact that the increasing
of the values of tension or dissipative for the membrane leads to loss of heat from the walls
and gives it to the fluid. Therefore, the temperature distribution of fluid will increase.

In Figure 8, we see the effect of Reynolds number Re on the temperature distribution.
It is observed that the temperature distribution behaves a dual role with the variation of
Re. The variations of temperature distribution for various values of Prandtl number Pr and
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Figure 8: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, γ = 0.8, Pr = 5,
Ec = 0.5, μ1 = 10, M = 10, af = 1, K2 =m1 = 0 and K3 = 10 for various values of Re.

−1 −0.5 0 0.5 1

y

0.99925

0.9995

0.99975

1

1.00025

1.0005

T
he

te
m

pe
ra

tu
re
T

Pr = 3
Pr = 5
Pr = 7

Figure 9: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Ec = 0.5, μ1 = 10, M = 10, af = 1, K2 =m1 = 0 and K3 = 10 for various values of Pr.

Eckert number Ec are displayed in Figures 9 and 10, respectively. The graphical results of
Figures 9 and 10 indicate that the temperature of fluid increases as Pr and Ec increase. While
for |y| > 0.7, near the lower and upper wall, the temperature decreases with the increase of Pr
and Ec. In the case when the temperature of the plate is periodic, Das et al. [29] showed that
the temperature decreases with the increase of the Prandtle number of Newtonian fluid. In
Figure 11, the temperature is plotted against y for various values of the upper limit apparent
viscosity coefficient γ ; it is observed that an increase of γ increases the temperature.

Figures 12–18 reveal the influence of physical parameters entering in the problem
on the concentration distribution of fluid. The effect of the coupling parameter μ1 on
concentration is indicated in Figure 12; we find that the concentration distribution of fluid
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Figure 10: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, μ1 = 10, M = 10, af = 1, K2 =m1 = 0 and K3 = 10 for various values of Ec.
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Figure 11: The variation of temperature distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, Pr = 5,
Ec = 0.5, μ1 = 10, M = 10, af = 1, K2 =m1 = 0 and K3 = 10 for various values of γ .

decreases with the increase of μ1. It has been observed that the concentration distribution
decreases with the increase of af, but an opposite effect is seen at y > 0.8. This is noticed
in Figure 13. Also, in Figures 12 and 13, for small values of μ1 and af, its effects are rather
insignificant. In Figures 14, 15, and 16, it is found that the increase of the dissipative,
rigid nature of the walls and stiffness in the walls causes a decrease of the concentration
distribution. The behavior of the concentration distribution with the nondimensional distance
y for various values of Soret number Sr is depicted in Figure 17. It is clear, from Figure 17, that
the effect of Sr on the concentration can be neglected near the lower wall. When −0.8 < y < 0.5,
the concentration decreases with the increase of Sr, but at y > 0.5, an increase in Sr leads to
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Figure 12: The variation of concentration distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, M = 10, af = 1, K2 =m1 = 0, K3 = 10, Sc = 1 and Sr = 1 for various values of μ1.
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Figure 13: The variation of concentration distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, M = 10, K2 =m1 = 0, K3 = 10, Sc = 1 and Sr = 1 for various values of af.

increase the concentration distribution. The effect of the thermal-diffusion parameter Sr on
the concentration distribution, in case of non-Newtonian fluid, has been studied by El Dabe
et al. [23]. The result in Figure 17, at the upper wall, is in agreement with those obtained by El
Dabe et al. [23]. Figure 9 illustrates the effects of the upper limit apparent viscosity coefficient
γ on the concentration distribution. It is found that the concentration decreases near lower
and upper walls, but it increases with the increase of γ at the middle of the channel.

The effects of various physical parameters on the stream function ψ are indicated
in Figures 19–24. In these figures the stream function is plotted versus the dimensionless
distance y, and it is clear that there is an inversely non-linear relation between y and ψ
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Figure 14: The variation of concentration distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, M = 10, af = 1, m1 = 0, K3 = 10, Sc = 1 and Sr = 1 for various values of K2.
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Figure 15: The variation of concentration distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, M = 10, af = 1, K2 =m1 = 0, Sc = 1 and Sr = 1 for various values of K3.

and that the obtained curves of all figures will intersect at the origin where y = 0, ψ = 0.
Figure 19 shows the variation of ψ with y for different values of the coupling parameter μ1;
it is observed that, in the region −1 ≤ y < 0, the stream function decreases by increasing
μ1, while in the region 0 < y ≤ 1, ψ increases by increasing μ1. Note that, when μ1 ≥ 1, the
peristaltic pumping region becomes slightly wider as μ1 increases, and if μ1 < 1, it is slightly
narrow as μ1 decreases. Figure 20 illustrates the stream function ψ for different values of
M. From this figure, it is observed that the effect of M on ψ is similar to the effect of μ1 on
ψ illustrated in Figure 19. In Figures 21 and 22, the effects of Reynolds number Re and the
parameter of dissipates of walls K2 on the stream function ψ, respectively, are reverse to the
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Figure 16: The variation of concentration distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, M = 10, af = 1, K2 = 0, K3 = 10, Sc = 1 and Sr = 1 for various values of m1.
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Figure 17: The variation of concentration distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, γ = 0.8,
Pr = 5, Ec = 0.5, μ1 = 10, M = 10, af = 1, K2 =m1 = 0, K3 = 10 and Sc = 1 for various values of Sr.

effect of μ1 and M on ψ, that is, in the region −1 ≤ y < 0, ψ increases by increasing both of
Re and K2, while in the region 0 < y ≤ 1, ψ decreases by increasing both of Re and K2. Note
that the peristaltic pumping region becomes slightly wider as Re and K2 increase. Figures 23
and 24 show that the behaviors of the stream function ψ with the dimensionless distance y
for different values of the parameter of rigidities feature of wallsK3 and upper limit apparent
viscosity coefficient γ , respectively, are similar to the behaviors of ψ for different values of μ1

and M illustrated in Figures 19 and 20, with the only difference that the peristaltic pumping
will disappear in these cases.
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Figure 18: The variation of concentration distribution versus y, with fixed ε = 0.01, α = 2, Re = 10, Pr = 5,
Ec = 0.5, μ1 = 10, M = 10, af = 1, K2 =m1 = 0, K3 = 10, Sc = 1 and Sr = 1 for various values of γ .
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Figure 19: The variation of streamlines versus y, with fixed ε = 0.01, α = 0.5, Re = 10, γ = 0.8, M = 10, K2 =
m1 = 0 and K3 = 10 for various values of μ1.

5. Conclusion

In this paper, we study the peristaltic flow of a micropolar biviscosity fluid in channel with
dynamic boundary condition. Also, we take into considerations that the temperature and
concentration of lower wall are constant while they are periodic for the upper wall. This study
is an extension of the work of Muthu et al. [25]. The analytical expressions are constructed for
the stream function, microrotation velocity, temperature, and concentration distributions as a
power series in terms of small amplitude ratio in case of free pumping. The effects of various
physical parameters acting on the problem are discussed by a set of graphs. The micropolar
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Figure 20: The variation of streamlines versus y, with fixed ε = 0.01, α = 0.5, Re = 10, γ = 0.8, μ1 = 1, K2 =
m1 = 0 and K3 = 10 for various values of M.
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Figure 21: The variation of streamlines versus y, with fixed ε = 0.01, α = 0.5, γ = 0.8, μ1 = 1, M = 10, K2 =
m1 = 0 and K3 = 10 for various values of Re.

parameters μ1, M, and af and wall parameters K2, K3, and m1 which describe the viscoelastic
behaviors of the flexible wall are discussed through numerical computations. The obtained
results can be outlined and summarized as follows.

(1) The temperature increases with the increase each of K2, K3, and m1, but near the
lower wall it decreases.

(2) The temperature for different values of K2, K3, and m1 becomes greater with
increasing the dimensionless distance y and reaches maximum at y = 1.

(3) The concentration decreases with the increase each of K2, K3, and m1.
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Figure 22: The variation of streamlines versus y, with fixed ε = 0.01, α = 0.5, Re = 10, γ = 0.8, μ1 = 1, M =
10, m1 = 0 and K3 = 10 for various values of K2.
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Figure 23: The variation of streamlines versus y, with fixed ε = 0.01, α = 0.5, Re = 10, γ = 0.8, μ1 = 1, M =
10 and K2 =m1 = 0 for various values of K3.

(4) The temperature and concentration increase as γ increases, but the concentration
decreases near the lower and upper walls.

(5) The streamlines intersect at a critical value of y (=0) after which all the obtained
curves will have an opposite behavior.

(6) For any value y < 0.8, the temperature increases with the increase of af, while for
any value y ≥ 0.8, all the obtained lines will behave in an opposite manner to these
behavior when y < 0.8.
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Figure 24: The variation of streamlines versus y, with fixed ε = 0.01, α = 0.5, Re = 10, μ1 = 1, M = 10, K2 =
m1 = 0 and K3 = 10 for various values of γ .

(7) The concentration has an opposite behavior compared to the temperature with af
(i.e., for any value y < 0.8, the concentration decreases with the increase of af, while
for any value y ≥ 0.8, it increases).

Appendix

The functions g1 − g17, f1 − f28 and the constants A5 −A12 are given by
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+ r1A1a1g12

(
γ1, r1

)
+ r2A2a2g12

(
γ1, r2

)

− γ1
(
A3g12

(
γ1, α

)
+A4g12

(
γ1, β

)
+A1a1g12

(
γ1, r1

)
+A2a2g12

(
γ1, r2

))
,

f21 =
(
r2

1 + α2
)
A1a1g16(α, r1) +

(
r2

2 + α2
)
A2a2g16(α, r2) +

(
β2 + α2

)
A4g16

(
α, β

)
,
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f22 =
(
r2

2 + α2
)
A2a2g16(r1, r2) +

(
β2 + α2

)
A4g16

(
r1, β

)
,

f23 =
(
β2 + α2

)
A4g16

(
r2, β

)
,

f24 = r1A1a1g17(α, r1) + r2A2a2g17(α, r2) + βA4g17
(
α, β

)
,

f25 = r2A2a2g17(r1, r2) + βA4g17
(
r1, β

)
,

A6 =
1
4

(
γ1
(
1 − cosh 2γ1

)

sinh 2γ1
+
γ∗1
(
1 − cosh 2γ∗1

)

sinh 2γ∗1

)

+
iα

8
Pr

sinh 2γ1

[
−Re

(
A∗3δ2

(
γ1, α

)
+A∗4δ2

(
γ1, β

∗)) +A∗1
(
af − Rea∗1

)
δ2
(
γ1, r

∗
1

)

+A∗2
(
af − Rea∗2

)
δ2
(
γ1, r

∗
2
)]

+
iα

8
Pr

sinh 2γ∗1

×
[
Re
(
A3δ2

(
γ∗1 , α

)
+A4δ2

(
γ∗1 , β

))
+A1(a1 Re−af)δ2

(
γ∗1 , r1

)
A∗2(a2 Re−af)δ2

(
γ∗1 , r2

)]

+ Ec · Pr

[
2
(
1+γ−1)+μ1

4

×
(

2α2A3A
∗
3 cosh 2α+4α2(αA3λ3+r1A1a1λ4+r2A2λ5+βA4λ6

)
+ 2α2A3λ7

+
(
α2 + r2

1

)
A1a1λ8 +

(
α2 + r2

2

)
A2a2λ9 +

(
α2 + β2

)
A4λ10

)
+

2
M2

×
(
r1A1

(
r∗1A

∗
1δ3
(
r1, r

∗
1

)
+r∗2A

∗
2δ3
(
r1, r

∗
2
))

+r2A2
(
r∗1A

∗
1δ3
(
r2, r

∗
1

)
+r∗2A

∗
2δ3
(
r2, r

∗
2
)))

+

(

μ1 +
2α2

M2

)

×
(
A1
(
A∗1δ4

(
r1, r

∗
1

)
+A∗2δ4

(
r1, r

∗
2
))

+A2
(
A∗1δ4

(
r2, r

∗
1

)
+A∗2δ4

(
r2, r

∗
2
)))

+
μ1

2

(
A1λ11 +A2λ12 +A4

(
β2 − α2

)(
A∗1δ4

(
β, r∗1

)
+A∗2δ4

(
β, r∗2

)))
]

,
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A7 = −1
4

{(

1 − Sc · Sr · Pr
(Sc − Pr)

)[

γ2

(
1 + cosh 2γ2

sinh 2γ2

)

+ γ∗2

(1 + cosh 2γ∗2
sinh 2γ∗2

)]

+
(

Pr
(Sc − Pr)

+ 1
)

Sc · Sr

[

γ1

(
1 + cosh 2γ1

sinh 2γ1

)

+ γ∗1

(
1 + cosh 2γ∗1

sinh 2γ∗1

)]}

− iα
8

Sc · Re

{(

1 − Sc · Sr · Pr
(Sc − Pr)

)

×
[

1
sinh 2γ2

(
A∗3δ5

(
γ2, α

)
+A∗4δ5

(
γ2, β

∗)

+A∗1a
∗
1δ5
(
γ2, r

∗
1

)
+A∗2a

∗
2δ5
(
γ2, r

∗
2
))

− 1
sinh 2γ∗2

(
A3δ5

(
γ∗2 , α

)
+A4δ5

(
γ∗2 , β

)

+A1a1δ5
(
γ∗2 , r1

)
+A2a2δ5

(
γ∗2 , r2

))
]

+
Sc · Sr · Pr
(Sc − Pr)

[
1

sinh 2γ1

(
A∗3δ5

(
γ1, α

)
+A∗4δ5

(
γ1, β

∗) +A∗1a
∗
1δ5
(
γ1, r

∗
1

)

+A∗2a
∗
2δ5
(
γ1, r

∗
2
))
− 1

sinh 2γ∗1

×
(
A3δ5

(
γ∗1 , α

)
+A5δ5

(
γ∗1 , β

)
+A1a1δ5

(
γ∗1 , r1

)

+A2a2δ5
(
γ∗1 , r2

))
]}

,

A8 =
1
4

{(

1 − Sc · Sr · Pr
(Sc − Pr)

)[

γ2

(
1 − cosh 2γ2

sinh 2γ2

)

+ γ∗2

(1 − cosh 2γ∗2
sinh 2γ∗2

)]

+
(

Pr
(Sc − Pr)

+ 1
)

Sc · Sr

[

γ1

(
1 − cosh 2γ1

sinh 2γ1

)

+ γ∗1

(
1 − cosh 2γ∗1

sinh 2γ∗1

)]}

− iα
8

Sc · Re
{(

1 − Sc · Sr · Pr
(Sc − Pr)

)

×
[

1
sinh 2γ2

(
A∗3δ2

(
γ2, α

)
+A∗4δ2

(
γ2, β

∗) +A∗1a
∗
1δ2
(
γ2, r

∗
1

)

+A∗2a
∗
2δ2
(
γ2, r

∗
2
))
− 1

sinh 2γ∗2

×
(
A3δ2

(
γ∗2 , α

)
+A4δ2

(
γ∗2 , β

)
+A1a1δ2

(
γ∗2 , r1

)
+A2a2δ2

(
γ∗2 , r2

))
]
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+
Sc · Sr · Pr
(Sc − Pr)

[
1

sinh 2γ1

(
A∗3δ2

(
γ1, α

)
+A∗4δ2

(
γ1, β

∗) +A∗1a
∗
1δ2
(
γ1, r

∗
1

)
+A∗2a

∗
2δ2
(
γ1, r

∗
2
))

− 1
sinh 2γ∗1

(
A3δ2

(
γ∗1 , α

)
+A4δ2

(
γ∗1 , β

)
+A1a1δ2

(
γ∗1 , r1

)
+A2a2δ2

(
γ∗1 , r2

))
]}

,

g4(a, b) =
sinh

(
a + (a + b)y

)

(a + b)2 − γ2
3

+
sinh

(
a + (a − b)y

)

(a − b)2 − γ2
3

,

g5(a, b) =
sinh

(
a + (a + b)y

)

(a + b)2 − γ2
3

−
sinh

(
a + (a − b)y

)

(a − b)2 − γ2
3

,

g6(a, b) =
cosh

(
(a + b)y

)

(a + b)2 − γ2
3

−
cosh

(
(a − b)y

)

(a − b)2 − γ2
3

,

g7(a, b) =
cosh

(
(a + b)y

)

(a + b)2 − γ2
3

+
cosh

(
(a − b)y

)

(a − b)2 − γ2
3

,

g8(a) =
cosh

(
2ay

)

4a2 − γ2
3

+
1
γ2

3

,

g9(a) =
cosh

(
2ay

)

4a2 − γ2
3

− 1
γ2

3

,

g10(a, b) =
sinh

(
a + (a + b)y

)

(a + b)2 − γ2
4

+
sinh

(
a + (a − b)y

)

(a + b)2 − γ2
4

,

g11(a, b) =
sinh

(
a + (a + b)y

)

(a + b)2 − γ2
4

−
sinh

(
a + (a − b)y

)

(a + b)2 − γ2
4

,

g12(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

sinh
(
a + (a + b)y

)

(a + b)2 − γ2
3

+
(a − b)2 − 4α2

(a − b)2 − γ2
4

sinh
(
a + (a − b)y

)

(a − b)2 − γ2
3

,

g13(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

sinh
(
a + (a + b)y

)

(a + b)2 − γ2
3

− (a − b)2 − 4α2

(a − b)2 − γ2
4

sinh
(
a + (a − b)y

)

(a − b)2 − γ2
3

,

g14(a) =
4
(
a2 − α2)

(
4a2 − γ2

4

)
cosh

(
2ay

)

(
4a2 − γ2

3

) +
4α2

(γ3γ4)
2
,

g15(a) =
4
(
a2 − α2)

(
4a2 − γ2

4

)
cosh

(
2ay

)

(
4a2 − γ2

3

) −
4α2

(γ3γ4)
2
,

g16(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

cosh
(
a + (a + b)y

)

(a + b)2 − γ2
3

− (a − b)2 − 4α2

(a − b)2 − γ2
4

cosh
(
(a − b)y

)

(a − b)2 − γ2
3

,
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g17(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

cosh
(
a + (a + b)y

)

(a + b)2 − γ2
3

+
(a − b)2 − 4α2

(a − b)2 − γ2
4

cosh
(
(a − b)y

)

(a − b)2 − γ2
3

,

f26 = βA4g17
(
r2, β

)
,

f27 =
(

2 +
(
r2

1 − α
2
)
a1 +

(
r2

2 − α
2
)
a2

)
A2g16(r1, r2) +A4

(
β2 − α2

)
g16
(
r1, β

)
,

f28 = r1A1g12
(
γ1, r1

)
+ r2A2g12

(
γ1, r2

)
− γ1A1g13

(
γ1, r1

)
− γ1A2g13

(
γ1, r2

)
,

δ6(a, b) =
sinh(2a + b) − sinh b

(a + b)2 − γ2
3

+
sinh(2a − b) − sinh b

(a − b)2 − γ2
3

,

δ7(a, b) =
sinh(2a + b) − sinh b

(a + b)2 − γ2
3

− sinh(2a − b) + sinh b

(a − b)2 − γ2
3

,

δ8(a, b) =
sinh(2a + b) + sinh b

(a + b)2 − γ2
3

+
sinh(2a − b) − sinh b

(a − b)2 − γ2
3

,

δ9(a, b) =
sinh(2a + b) + sinh b

(a + b)2 − γ2
3

− sinh(2a − b) − sinh b

(a − b)2 − γ2
3

,

δ10(a) =
cosh(2a)
4a2 − γ2

3

+
1
γ2

3

,

δ11(a) =
cosh(2a)
4a2 − γ2

3

− 1
γ2

3

,

δ12(a, b) =
cosh(a + b)

(a + b)2 − γ2
3

+
cosh(a − b)
(a − b)2 − γ2

3

,

δ13(a, b) =
cosh(a + b)

(a + b)2 − γ2
3

− cosh(a − b)
(a − b)2 − γ2

3

,

δ14(a, b) =
sinh(2a + b) − sinh b

(a + b)2 − γ2
4

+
sinh(2a − b) + sinh b

(a − b)2 − γ2
4

,

δ15(a, b) =
sinh(2a + b) − sinh b

(a + b)2 − γ2
4

− sinh(2a − b) + sinh b

(a − b)2 − γ2
4

,

δ16(a, b) =
sinh(2a + b) + sinh b

(a + b)2 − γ2
4

+
sinh(2a − b) − sinh b

(a − b)2 − γ2
4

,

δ17(a, b) =
sinh(2a + b) + sinh b

(a + b)2 − γ2
4

− sinh(2a − b) − sinh b

(a − b)2 − γ2
4

,
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δ18(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

sinh(2a + b) − sinh b

(a + b)2 − γ2
3

+
(a − b)2 − 4α2

(a − b)2 − γ2
4

sinh(2a − b) + sinh b

(a − b)2 − γ2
3

,

δ19(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

sinh(2a + b) − sinh b

(a + b)2 − γ2
3

− (a − b)2 − 4α2

(a − b)2 − γ2
4

sinh(2a − b) + sinh b

(a − b)2 − γ2
3

,

δ20(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

sinh(2a + b) + sinh b

(a + b)2 − γ2
3

+
(a − b)2 − 4α2

(a − b)2 − γ2
4

sinh(2a − b) − sinh b

(a − b)2 − γ2
3

,

δ21(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

sinh(2a + b) − sinh b

(a + b)2 − γ2
3

− (a − b)2 − 4α2

(a − b)2 − γ2
4

sinh(2a − b) + sinh b

(a − b)2 − γ2
3

,

δ22(a) =
4
(
a2 − α2)

4a2 − γ2
4

cosh(2a)
4a2 − γ2

3

+
4α2

(γ3γ4)
2
,

δ23(a) =
4
(
a2 − α2)

4a2 − γ2
4

cosh(2a)
4a2 − γ2

3

− 4α2

(γ3γ4)
2
,

δ24(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

cosh(a + b)

(a + b)2 − γ2
3

+
(a + b)2 − 4α2

(a − b)2 − γ2
4

cosh(a − b)
(a − b)2 − γ2

3

,

δ25(a, b) =
(a + b)2 − 4α2

(a + b)2 − γ2
4

cosh(a + b)

(a + b)2 − γ2
3

− (a + b)2 − 4α2

(a − b)2 − γ2
4

cosh(a − b)
(a − b)2 − γ2

3

,

λ13 = A1a1

(
r2

1 + α2
)
δ13(α, r1) +A2a2

(
r2

2 + α2
)
δ13(α, r2) +A4

(
β2 + α2

)
δ13
(
α, β

)
,

λ14 = A2a2

(
r2

2 + α2
)
δ13(r1, r2) +A4

(
β2 + α2

)
δ13
(
r1, β

)
,

λ15 = A4

(
β2 + α2

)
δ13
(
r2, β

)
,

λ16 = r1A1a1δ12(α, r1) + r2A2a2δ12(α, r2) + βA4δ12
(
α, β

)
,

λ17 = r2A2a2δ12(r1, r2) + βA4δ12
(
r1, β

)
,

λ18 = βA4δ12
(
r2, β

)
,

λ19 =
(

2 +
(
r2

1 − α
2
)
a1 +

(
r2

2 − α
2
)
a2

)
A2δ13(r1, r2) +

(
β2 − α2

)
A4δ13

(
r1, β

)
,

λ20 = αA3δ14
(
γ2, α

)
+ βA4δ14

(
γ2, β

)
+ r1A1a1δ14

(
γ2, r1

)
+ r2A2a2δ14

(
γ2, r2

)

− γ2
(
A3δ15

(
γ2, α

)
+A4δ14

(
γ2, β

)
+A1a1δ15

(
γ2, r1

)
+A2a2δ15

(
γ2, r2

))
,
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λ21 = αA3δ14
(
γ1, α

)
+ βA4δ14

(
γ1, β

)
+ r1A1a1δ14

(
γ1, r1

)
+ r2A2a2δ14

(
γ1, r2

)

− γ1
(
A3δ15

(
γ1, α

)
+A4δ14

(
γ1, β

)
+A1a1δ15

(
γ1, r1

)
+A2a2δ15

(
γ1, r2

))
,

λ22 = αA3δ18
(
γ1, α

)
+ βA4δ18

(
γ1, β

)
+ r1A1a1δ18

(
γ1, r1

)
+ r2A2a2δ18

(
γ1, r2

)

− γ1
(
A3δ19

(
γ1, α

)
+A4δ19

(
γ1, β

)
+A1a1δ19

(
γ1, r1

)
+A2a2δ19

(
γ1, r2

))
,

λ23 =
(
r2

1 + α2
)
A1a1δ25(α, r1) +

(
r2

2 + α2
)
A2a2δ25(α, r2) +

(
β2 + α2

)
A4δ25

(
α, β

)
,

λ24 =
(
r2

2 + α2
)
A2a2δ25(r1, r2) +

(
β2 + α2

)
A4δ25

(
r1, β

)
,

λ25 =
(
β2 + α2

)
A4δ25

(
r2, β

)
,

λ26 = r1A1a1δ24(α, r1) + r2A2a2δ24(α, r2) + βA4δ24
(
α, β

)
,

λ27 = r2A2a2δ24(r1, r2) + βA4δ24
(
r1, β

)
,

λ28 = βA4δ24
(
r2, β

)
,

λ29 =
(

2 +
(
r2

1 − α
2
)
a1 +

(
r2

2 − α
2
)
a2

)
A2δ25(r1, r2) +A4

(
β2 − α2

)
δ25
(
r1, β

)
,

λ30 = r1A1δ18
(
γ1, r1

)
+ r2A2δ18

(
γ1, r2

)
− γ1A1δ19

(
γ1, r1

)
− γ1A2δ19

(
γ1, r2

)
,

λ31 = αA3δ16
(
γ2, α

)
+ βA4δ16

(
γ2, β

)
+ r1A1a1δ16

(
γ2, r1

)
+ r2A2a2δ16

(
γ2, r2

)

− γ2
(
A3δ17

(
γ2, α

)
+A4δ17

(
γ2, β

)
+A1a1δ17

(
γ2, r1

)
+A2a2δ17

(
γ2, r2

))
,

λ32 = αA3δ16
(
γ1, α

)
+ βA4δ16

(
γ1, β

)
+ r1A1a1δ16

(
γ1, r1

)
+ r2A2a2δ16

(
γ1, r2

)

− γ1
(
A3δ17

(
γ1, α

)
+A4δ17

(
γ1, β

)
+A1a1δ17

(
γ1, r1

)
+A2a2δ17

(
γ1, r2

))
,

λ33 = αA3δ20
(
γ1, α

)
+ βA4δ20

(
γ1, β

)
+ r1A1a1δ20

(
γ1, r1

)
+ r2A2a2δ20

(
γ1, r2

)

− γ1
(
A3δ21

(
γ1, α

)
+A4δ21

(
γ1, β

)
+A1a1δ21

(
γ1, r1

)
+A2a2δ21

(
γ1, r2

))
,

λ34 = r1A1δ20
(
γ1, r1

)
+ r2A2δ21

(
γ1, r2

)
− γ1A1δ21

(
γ1, r1

)
− γ1A2δ21

(
γ1, r2

)
,
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A9 =
1

2 cosh γ3

×
{

1
2
γ1

(
1 − cosh 2γ1

sinh 2γ1

)

− iα
4

Pr
sinh 2γ1

×
[
Re
(
αA3δ6

(
γ1, α

)
+ βA4δ6

(
γ1, β

)
− γ1A3δ7

(
γ1, α

)
− γ1A4δ7

(
γ1, β

))
+ (a1 Re−af)

×
(
r1A1δ6

(
γ1, r1

)
− γ1A1δ7

(
γ1, r1

))
+ (a2 Re−af)

(
r2A2δ6

(
γ1, r2

)
− γ1A2δ7

(
γ1, r2

))]

+ Pr · Ec

[
2
(
1 + γ−1) + μ1

4

×
(

4α4A2
3δ10(α) + (r2

1 + α2)
2
A2

1a
2
1δ10(r1) + (r2

2 + α2)
2
A2

2a
2
2δ10(r2)

+
(
β2+α2

)2
A2

4δ10
(
β
)
+4α2A3λ13+2A1a1

(
α2+r2

1

)
λ14

+2A2a2

(
α2+r2

2

)
λ15

−4α2
(
α2A2

3δ11(α)+r2
1A

2
1a

2
1δ11(r1)+r2

2A
2
2a

2
2δ11(r2)+β2A2

4δ11
(
β
)

+2αA3λ16 + 2r1A1a1λ17 + 2r2A2a2λ18

))

+ μ1

((
1 +

(
r2

1 − α
2
)
a1

)
A2

1δ10(r1) +
(

1 +
(
r2

2 − α
2
)
a2

)
A2

2δ10(r2)

+A1λ19 +A2A4

(
β2 − α2

)
δ13
(
r2, β

))

+
2
M2

(
r2

1A
2
1δ11(r1) + r2

2A
2
2δ11(r2) +2r1r2A1A2δ12(r1, r2)

−α2
(
A2

1δ10(r1)+A2
2δ10(r2)+2A1A2δ13(r1,r2)

)]
}

,

A10 = − 1
2 cosh γ3

{
1
2
γ1

(
1 + cosh 2γ1

sinh 2γ1

)

+
iα

4
Pr

sinh 2γ1

×
[
Re
(
αA3δ8

(
γ1, α

)
+ βA4δ8

(
γ1, β

)
− γ1A3δ9

(
γ1, α

)
− γ1A4δ9

(
γ1, β

))

+ (a1 Re−af)
(
r1A1δ8

(
γ1, r1

)
− γ1A1δ9

(
γ1, r1

))

+
(
a2Re − af

)(
r2A2δ8

(
γ1, r2

)
− γ1A2δ9

(
γ1, r2

))]
}

,
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A11 =
1

2 cosh γ4

{
1
2

[(

1 − Sc · Sr · Pr
(Sc − Pr)

)

γ2

(
1 − cosh 2γ2

sinh 2γ2

)

+
γ1 · Sc · Sr · Pr

Sc − Pr

(
1 − cosh 2γ1

sinh 2γ1

)]

− iα
4

Sc · Re
{(

1 − Sc · Sr · Pr
(Sc − Pr)

)
λ20

sinh 2γ2
+

Sc · Sr · Pr
(Sc − Pr)

λ21

sinh 2γ1

}

− Pr · Sc · Sr
Sc − Pr

2A9 cosh γ3 +
iα

4
Sc · Sr · Pr · Re

λ22

sinh 2γ1

− Pr · Ec · Sc · Sr

[(
1 + γ−1) + μ1

2

×
(

32α6A2
3

(
γ3γ4

)2
+
(
r2

1 + α2
)2
A2

1a
2
1δ22(r1)

+
(
r2

2 +α
2
)2
A2

2a
2
2δ22(r2)

+
(
β2+α2

)2
A2

4δ22
(
β
)
+4α2A3λ23

+ 2
(
α2+r2

1

)
A1a1λ24

+ 2
(
α2 + r2

2

)
A2a2λ25

− 4α2
(
r2

1A
2
1a

2
1δ23(r1)+r2

2A
2
2a

2
2δ23(r2) + β2A2

4δ23
(
β
)

+2αA3λ26 + 2r1A1a1λ27 + 2r2A2a2λ28

)
)

+ μ1

((
1+
(
r2

1−α
2
)
a1

)
A2

1δ22(r1)+
(

1+
(
r2

2−α
2
)
a2

)

×A2
2δ22(r2)

+A1λ29 +A2A4

(
β2 − α2

)
δ25
(
r2, β

))

+
2
M2

(
r2

1A
2
1δ23(r1)+r2

2A
2
2δ23(r2)+2r1r2A1A2δ24(r1, r2)

−α2
(
A2

1δ22(r1)+A2
2δ22(r2)+2A1A2δ25(r1, r2)

))

− iα
4

af · Pr · Sc · Sr · λ30

sinh 2γ1

]}

,
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A12 =
−1

2 cosh γ4

{
1
2

[(

1 − Sc · Sr · Pr
(Sc − Pr)

)

γ2

(
1 + cosh 2γ2

sinh 2γ2

)

+
γ1 · Sc · Sr · Pr

Sc − Pr

(
1 + cosh 2γ1

sinh 2γ1

)]

+
iα

4
Sc · Re

[(

1 − Sc · Sr · Pr
(Sc − Pr)

)
λ31

sinh 2γ2
+

Sc · Sr · Pr
(Sc − Pr)

λ32

sinh 2γ1

]

+
Pr · Sc · Sr

Sc − Pr
2A10 sinh γ3 −

iα

4
Sc · Sr · Pr · Re

λ33

sinh 2γ1

+
iα

4
af · Pr · Sc · Sr · λ34

sinh 2γ1

}

.

(A.1)
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