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The present discussion deals with the study of an unsteady flow and heat transfer of a dusty
fluid through a rectangular channel under the influence of pulsatile pressure gradient along with
the effect of a uniform magnetic field. The analytical solutions of the problem are obtained using
variable separable and Fourier transform techniques. The graphs are drawn for the velocity fields
of both fluid and dust phases under the effect of Reynolds number. Further, changes in the Nusselt
number are shown graphically, and, on the basis of these, the conclusions and discussions are
given.

1. Introduction

The concept of an unsteady flow and heat transfer of a dusty fluid has a wide range of
applications in refrigeration, air conditioning, space heating, power generation, chemical
processing, pumps, accelerators, nuclear reactors, filtration and geothermal systems, and so
forth. One common example of heat transfer is the radiator in a car, in which the hot radiator
fluid is cooled by the flow of air over the radiator surface. On this basis manymathematicians
were attracted by this field.

Saffman [1] has formulated the governing equations for the flow of dusty fluid and
has discussed the stability of the laminar flow of a dusty gas in which the dust particles are
uniformly distributed. Datta et al. [2] have obtained the solution of unsteady heat transfer to
pulsatile flow of a dusty viscous incompressible fluid in a channel. Heat transfer in unsteady
laminar flow through a channel was analyzed by Ariel [3]. Ghosh et al. [4] have made the
solution for hall effects on MHD flow in a rotating system with heat transfer characteristics.
Ezzat et al. [5] analyzed a space approach to the hydromagnetic flow of a dusty fluid through
a porous medium.
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Some researchers like Anjali Devi and Jothimani [6] have discussed the heat transfer
in unsteady MHD oscillatory flow. Further, Malashetty et al. [7] have investigated the
convective magnetohydrodynamic two phase flow and heat transfer of a fluid in an inclined
channel. Palani and Ganesan [8] have discussed the heat transfer effects on dusty gas flow
past a semi-infinite inclined plate. Attia [9] has investigated an unsteady MHD Couette flow
and heat transfer of dusty fluid with variable physical properties.

Unsteady hydromagnetic flow and heat transfer from a nonisothermal stretching
sheet immersed in a porous medium was discussed by Chamkha [10]. Mishra et al. [11]
have studied the two-dimensional transient conduction and radiation heat transfer with
temperature-dependent thermal conductivity. MHD flow and heat transfer of a dusty visco-
elastic stratified fluid down an inclined channel in porous medium under variable viscosity
was analyzed by Chakraborty [12]. Shawky [13] has investigated the solution for pulsatile
flow with heat transfer of dusty magnetohydrodynamic Ree-Eyring fluid through a channel.

Gireesha et al. [14] have obtained the analytical solutions for velocity fields using
variable separable method for an unsteady flow of dusty fluid through a rectangular channel
under the influence of pulsatile pressure gradients and in the absence of a magnetic field.
In continuation of this paper and with the help of the above cited papers we have studied
an unsteady flow and heat transport in a dusty fluid through a rectangular channel under
the influence of a pulsatile pressure gradient in the presence of uniform magnetic field
and viscous dissipation term. Further, heat transfer analysis and the effect of Reynolds
number, Prandtl number, and Nusselt number have been considered. This paper presents
three methods of solution, namely, perturbation technique, Fourier decomposition, and
finite Fourier transform, to obtain useful results on the problem. Finally, the graphical
representation of velocity fields of both fluid and dust phases and changes in the Nusselt
number are drawn for different values of Reynolds number and Prandtl number.

2. Equations of Motion

The governing equations of motion and energy for two phases are given by [1] the following.
For fluid phase,

∇ · −→u = 0,

∂−→u
∂t

+
(−→u · ∇)−→u = −1

ρ
∇p + ν∇2−→u +

f

τv

(−→v − −→u) − σB2
0

ρ
−→u,

ρ

{
∂E

∂t
+
(−→u · ∇E)

}
= Q +

(−→v − −→u) · F + k∇ · (∇T) + Φf .

(2.1)

For dust phase,

∇ · −→v = 0,

∂−→v
∂t

+
(−→v · ∇)−→v =

1
τv

(−→u − −→v),

N

{
∂Ep

∂t
+
(−→v · ∇Ep

)
}

= −Q −Φd.

(2.2)
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We have following nomenclature. E = cpT , Ep = cmTp, Q = Ncp(Tp − T)/τT is the thermal
interaction between fluid and dust particle phases, F =N(−→v−−→u)/τv is the velocity interaction
force between the fluid and dust particle phase, τv = m/6πaμ = m/K is the velocity
relaxation time of the dust particles, τT = mcp/4πak is the thermal relaxation time of the
dust particles, k∇. (∇T) is the rate of heat added to the fluid by conduction in unit volume,
Φf and Φd are the viscous dissipation of fluid and dust particles. −→u , ρ, p, ν, T , cp, and
k are, respectively, the velocity vector, density, pressure, kinematic viscosity, temperature,
specific heat, and thermal conductivity of the fluid, −→v , N, Tp, cm, and m are, respectively,
the velocity vector, number density, temperature, specific heat, mass concentration of dust
particles, K = 6πaμ is the Stoke’s resistance coefficient, and t is the time.

3. Formulation of the Problem

Consider an unsteady flow of an incompressible, viscous, electrically conducting fluid with
uniform distribution of dust particles through a rectangular channel. It is assumed that the
flow is due to the time-dependent pressure gradient and applied uniform magnetic field.
Both the fluid and the dust particle clouds are supposed to be static at the beginning. The
dust particles are assumed to be spherical in shape and uniform in size. The number density
of the dust particles is taken as a constant throughout the flow. The flow is taken along z-axis,
and it is as shown in Figure 1. For the above described flow the velocities of both fluid and
dust particles are given by

−→u = u
(
x, y, t

)
k̂, −→v = v

(
x, y, t

)
k̂. (3.1)

4. Solution of the Problem

The governing equations from (2.1) and (2.2) can be decomposed as follows.
For fluid phase,

∂u

∂t
= − 1

ρ

∂p

∂z
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)

+
f

τv
(v − u) − σB2

0

ρ
u,

ρcp
∂T

∂t
=
Ncp

τT

(
Tp − T

)
+
N

τv
(v − u)2 + k

(
∂2T

∂x2
+
∂2T

∂y2

)

+ μ

[
4
3

(
∂u

∂x

)2

+
(
∂u

∂y

)2
]

.

(4.1)

For dust phase,

∂v

∂t
=

1
τv

(u − v),

cm
∂Tp

∂t
=
cp

τT

(
T − Tp

) − μp

N

[
4
3

(
∂v

∂x

)2

+
(
∂v

∂y

)2
]

,

(4.2)

where u and v denote the velocity of the fluid and the dust phases, respectively.
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Figure 1: Schematic diagram of dusty fluid flow in a rectangular channel.

The boundary conditions of the given problem are taken as

u = 0, v = 0, T = T0 at y = 0,

u = 0, v = 0, T = T1 at y = h,

u = 0, v = 0, T = T2 at x = −d,
u = 0, v = 0, T = T3 at x = d.

(4.3)

Since we have assumed that the pulsatile pressure gradient has influence on the flow, we
have that

−1
ρ

∂p

∂z
= A
[
1 + εeiωt

]
, (4.4)

where ε is a small quantity and A and ω are constants.
To make the above system dimensionless, introduce the following nondimensional

variables:

u =
uω

A
, v =

vω

A
, t = tω, θ =

T − T0
T1 − T0 ,

ξ =
x

h
, η =

y

h
, ψ =

z

h
, p =

p

Aρh
, θp =

Tp − T0
T1 − T0 ,

Pr =
μcp

k
, Re =

ωh2

ν
, Rep =

ωh2

νp
, Ec =

A2

ω2cp(T1 − T0)
,

(4.5)

where h is the distance between plates, Ec the Eckert number, Pr the Prandtl number, Re and
Rep the Reynolds numbers of fluid and dust phases, x and y the space coordinates along and
perpendicular to the plates, θ and θp the dimensionless fluid and dust phase temperatures, μ
the viscosity of fluid, and νp and ρp the kinematic viscosity and density of the dust particles.
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Using the above nondimensional variables in (4.1) and (4.2) and dropping the bars,
one can get that

∂u

∂t
= − ∂p

∂ψ
+

1
Re

(
∂2u

∂ξ2
+
∂2u

∂η2

)

+ fα(v − u) − βu,

∂θ

∂t
=

1
RePr

(
∂2θ

∂ξ2
+
∂2θ

∂η2

)

+ α1β1
(
θp − θ

)
+ αβ1Ec(v − u)2

+
Ec
Re

[
4
3

(
∂u

∂ξ

)2

+
(
∂u

∂η

)2
]

,

∂v

∂t
= α(u − v),

∂θp

∂t
= γα1

(
θ − θp

) − γEc
Repβ2

[
4
3

(
∂v

∂ξ

)2

+
(
∂v

∂η

)2
]

,

(4.6)

where α = 1/ωτv, β = σB2
0/ρω, α1 = 1/ωτT , β1 =N/ρ, β2 =N/ρp, and γ = cp/cm.

The dimensionless boundary conditions are

u = 0, v = 0, θ = 0 at η = 0,

u = 0, v = 0, θ = 1 at η = 1,

u = 0, v = 0, θ = Ta at ξ = −r,
u = 0, v = 0, θ = Tb at ξ = r,

(4.7)

where Ta = (T2 − T0)/(T1 − T0), Tb = (T3 − T0)/(T1 − T0), and r = d/h.
The nondimensional form of pressure gradient is given by

− ∂p
∂ψ

=
[
1 + εeit

]
. (4.8)

Now assume the solutions of the velocities and temperature of both fluid and dust phases as

u
(
ξ, η, t

)
= u0
(
ξ, η
)
+ εu1

(
ξ, η
)
eit,

v
(
ξ, η, t

)
= v0
(
ξ, η
)
+ εv1

(
ξ, η
)
eit,

θ
(
ξ, η, t

)
= θ0
(
ξ, η
)
+ εθ1

(
ξ, η
)
eit + ε2θ2

(
ξ, η
)
e2it,

θp
(
ξ, η, t

)
= θp0

(
ξ, η
)
+ εθp1

(
ξ, η
)
eit + ε2θp2

(
ξ, η
)
e2it.

(4.9)

Substituting (4.8) and (4.9) in (4.6) and equating the coefficient of the similar powers
of ε on both sides, then we obtain the following set of equations.
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Steady part (coefficient of ε0):

1
Re

[
∂2u0
∂ξ2

+
∂2u0
∂η2

]

+ fα(v0 − u0) − βu0 = −1, (4.10)

α(u0 − v0) = 0, (4.11)

1
RePr

[
∂2θ0
∂ξ2

+
∂2θ0
∂η2

]

+ α1β1
(
θp0 − θ0

)
+ αβ1Ec(v0 − u0)2 + Ec

Re

[
4
3

(
∂u0
∂ξ

)2

+
(
∂u0
∂η

)2
]

= 0,

γα1
(
θ0 − θp0

) − γEc
Repβ2

[
4
3

(
∂v0
∂ξ

)2

+
(
∂v0
∂η

)2
]

= 0.

(4.12)

Unsteady part (coefficient of ε):

1
Re

[
∂2u1
∂ξ2

+
∂2u1
∂η2

]

+ fα(v1 − u1) −
(
β + i
)
u1 = −1,

α(u1 − v1) − iv1 = 0,

(4.13)

1
RePr

[
∂2θ1
∂ξ2

+
∂2θ1
∂η2

]

+ α1β1
(
θp1 − θ1

)
+ 2αβ1Ec(v0 − u0)(v1 − u1)

+
2Ec
Re

[
4
3
∂u0
∂ξ

∂u1
∂ξ

+
∂u0
∂η

∂u1
∂η

]
− iθ1 = 0,

(4.14)

γα1
[
θ1 − θp1

] − 2γEc
Repβ2

[
4
3
∂v0
∂ξ

∂v1
∂ξ

+
∂v0
∂η

∂v1
∂η

]
− iθp1 = 0. (4.15)

Unsteady part (coefficient of ε2):

1
RePr

[
∂2θ2
∂ξ2

+
∂2θ2
∂η2

]

+ α1β1
(
θp2 − θ2

)
+ αβ1Ec(v1 − u1)2

+
Ec
Re

[
4
3

(
∂u1
∂ξ

)2

+
(
∂u1
∂η

)2
]

− 2iθ2 = 0,

(4.16)

γα1
[
θ2 − θp2

] − γEc
Repβ2

[
4
3

(
∂v1
∂ξ

)2

+
(
∂v1
∂η

)2
]

− 2iθp2 = 0. (4.17)
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Now, the corresponding dimensionless boundary conditions are as follows:

u0 = 0, v0 = 0, θ0 = Ta at ξ = −r,
u0 = 0, v0 = 0, θ0 = Tb at ξ = r,

u0 = 0, v0 = 0, θ0 = 0 at η = 0,

u0 = 0, v0 = 0, θ0 = 1 at η = 1;

(4.18)

u1 = 0, v1 = 0, θ1 = 0 at ξ = −r,
u1 = 0, v1 = 0, θ1 = 0 at ξ = r,

u1 = 0, v1 = 0, θ1 = 0 at η = 0,

u1 = 0, v1 = 0, θ1 = 0 at η = 1;

(4.19)

θ2 = 0 at ξ = −r,
θ2 = 0 at ξ = r,

θ2 = 0 at η = 0,

θ2 = 0 at η = 1.

(4.20)

By substituting (4.11) in (4.10), one can get

∂2u0
∂ξ2

+
∂2u0
∂η2

− βReu0 = −Re. (4.21)

To solve (4.21), we assume that the solution is in the form

u0
(
ξ, η
)
= X
(
ξ, η
)
+ Y (ξ). (4.22)

Substituting u0(ξ, η) in (4.21), then we obtain that

∂2X

∂ξ2
+
∂2Y

∂η2
+
∂2X

∂η2
− βRe(X + Y ) = −Re. (4.23)

so that

∂2Y

∂η2
− βReY + Re = 0, (4.24)

∂2X

∂ξ2
+
∂2X

∂η2
− βReX = 0. (4.25)
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The corresponding boundary conditions will become

u0
(−r, η) = X(−r, η) + Y (−r) = 0, u0

(
r, η
)
= X
(
r, η
)
+ Y (r) = 0,

u0(ξ, 0) = X(ξ, 0) + Y (ξ) = 0, u0(ξ, 1) = X(ξ, 0) + Y (ξ) = 0.
(4.26)

By solving (4.24) and using the method of separation of variables to (4.25), we obtain the
solution in the form

u0
(
ξ, η
)
=

1
β

⎡

⎢
⎣1 −

cosh
(√

βRe ξ
)

cosh
(√

βRe r
)

⎤

⎥
⎦ +

2
β

∞∑

n=1

sin
(
nπ

r
ξ

)[sinhA1
(
η − 1

) − sinh
(
A1η
)

sinhA1

]

×
⎧
⎨

⎩
1
nπ

− nπ

r2A2
1 cosh

(√
βRe r

) − βRe

nπA2
1

(−1)n
⎫
⎬

⎭
,

v0
(
ξ, η
)
= u0
(
ξ, η
)
,

(4.27)

where A1 =
√
(βRe r2 + n2π2)/r2.

Here one can observe that the velocity of steady part of the fluid and the dust phases
is the same.

In a similar manner, by the method of separation of variables, the solution of (4.13),
and using the boundary conditions (4.19), one can obtain that

u1
(
ξ, η
)
=

Re
Q2

[
1 − cosh(Qξ)

cosh(Qr)

]
+
2Re
Q2

∞∑

n=1

sin
(
nπ

r
ξ

)[sinhB
(
η − 1

) − sinh
(
Bη
)

sinhB

]

×
{

1
nπ

− nπ

r2B2 cosh(Qr)
− Q2

nπB2 (−1)
n

}

,

v1 =
( α

α + i

)
u1,

(4.28)

where Q2 = Re[fαi/(α + i) + (β + i)] and B =
√
(Q2r2 + n2π2)/r2.

We define the finite Fourier sine transform of θ and θp as

Fs(θ) =
∫ r

−r
θ
(
ξ, η
)
sin
(
nπ

r
ξ

)
, Fs

(
θp
)
=
∫ r

−r
θp
(
ξ, η
)
sin
(
nπ

r
ξ

)
. (4.29)

Eliminating θp0 from (4.12), we get that

∂2θ0
∂ξ2

+
∂2θ0
∂η2

= H1

[
4
3

(
∂u0
∂ξ

)2

+
(
∂u0
∂η

)2
]

, (4.30)

θp0
(
ξ, η
)
= θ0 − Ec

Repα1β2

[
4
3

(
∂v0
∂ξ

)2

+
(
∂v0
∂η

)2
]

, (4.31)

whereH1 = Ec Re Pr(β1/Repβ2 − 1/Re).
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Applying the finite fourier sine transform to (4.30) with respect to the variable ξ and
to boundary conditions, one obtains that

d2Fs(θ0)
dη2

− n2π2

r2
Fs(θ0) =

∞∑

n=1

nπ

r

[
(Tb − Ta)(−1)n

]
+
4H1

3
8π2
√
βRe

β2

×
∞∑

n=1

n2

βRe r2 + 4n2π2

sinh
(√

βRe r
)

cosh
(√

βRe r
)

×

⎛

⎜
⎝

1
nπ

− nπ

r2A2
1 cosh

(√
βRe r

) − βRe (−1)n
nπA2

1

⎞

⎟
⎠

×
[
sinhA1

(
η − 1

) − sinh
(
A1η
)

sinhA1

]

,

(4.32)

Fs(θ0(ξ, 0)) = 0, Fs(θ0(ξ, 1)) = 0. (4.33)

The temperature of fluid is obtained by solving (4.32) with the help of boundary conditions
(4.33) as

Fs(θ0) =

⎡

⎢
⎣

∞∑

n=1

r

nπ

[
(Tb − Ta)(−1)n

]
+
32π2

√
βReH1

3β2

∞∑

n=1

n2

βRe r2 + 4n2π2

× r2

A2
1r

2 − n2π2

sinh
(√

βRe r
)

cosh
(√

βRe r
)

⎛

⎜
⎝

1
nπ

− nπ

r2A2
1 cosh

(√
βRe r

) − βRe (−1)n
nπA2

1

⎞

⎟
⎠

⎤

⎥
⎦

×
{

cosh
(
nπ

r
η

)
+
1 − cosh

(
(nπ/r)η

)

sinh(nπ/r)
sinh
(nπ

r
η
)}

−
∞∑

n=1

r

nπ

[
(Tb − Ta)(−1)n

]
+
32π2

√
βReH1

3β2

∞∑

n=1

n2

βRe r2 + 4n2π2

× r2

A2
1r

2 − n2π2

sinh
(√

βRe r
)

cosh
(√

βRe r
)

⎛

⎜
⎝

1
nπ

− nπ

r2A2
1 cosh

(√
βRe r

) − βRe (−1)n
nπA2

1

⎞

⎟
⎠

×
[
sinhA1

(
η − 1

) − sinh
(
A1η
)

sinhA1

]

.

(4.34)
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Now taking the inverse finite Fourier sine transform to (4.34), one can obtain that

θ0
(
ξ, η
)
=

∞∑

r=1

2
r

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

∞∑

n=1

r

nπ

[
(Tb − Ta)(−1)n

]
+
32π2

√
βReH1

3β2

×
∞∑

n=1

n2

βRe r2 + 4n2π2

r2

A2
1r

2 − n2π2

sinh
(√

βRe r
)

cosh
(√

βRe r
)

×

⎛

⎜
⎝

1
nπ

− nπ

r2A2
1 cosh

(√
βRe r

) − βRe (−1)n
nπA2

1

⎞

⎟
⎠

⎤

⎥
⎦

×
{

cosh
(
nπ

r
η

)
+
1 − cosh

(
(nπ/r)η

)

sinh(nπ/r)
sinh
(
nπ

r
η

)}

−
∞∑

n=1

r

nπ

[
(Tb − Ta)(−1)n

]
+
32π2

√
βReH1

3β2

∞∑

n=1

n2

βRe r2 + 4n2π2

× r2

A2
1r

2 − n2π2

sinh
(√

βRe r
)

cosh
(√

βRe r
)

[
sinhA1

(
η − 1

) − sinh
(
A1η
)

sinhA1

]

×

⎛

⎜
⎝

1
nπ

− nπ

r2A2
1 cosh

(√
βRe r

) − βRe (−1)n
nπA2

1

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
sin
(
nπ

r
ξ

)
.

(4.35)

The temperature of dust θp0 is obtained by substituting θ0 in (4.31).
Using (4.15) in (4.14) and boundary conditions (4.19), with the help of finite fourier

sine transform technique, one can get the solution for θ1 as

θ1
(
ξ, η
)

=
∞∑

r=1

2
r

{
16Reπ2H3

3β

[
1
Q

∞∑

n=1

n2

A2
1 − q21

1
Q2r2 + 4n2π2

sinh(Qr)
cosh(Qr)

×

⎛

⎜
⎝

1
nπ

− nπ

r2A2
1 cosh

(√
βRe r

) − βRe (−1)n
nπA2

1

⎞

⎟
⎠

+

√
βRe
Q2

∞∑

n=1

n2
(
B2 − q21

)
1

βRe r2 + 4n2π2

×
(

1
nπ

− nπ

(Q2r2 + n2π2) cosh(Qr)
− Q2(−1)n

nπB2

)
sinh

√
βRe r

cosh
√
βRe r

]

×
{

cosh
(
q1η
)
+

(
1 − coshq1

)

sinh q1
sinh
(
q1η
)
}
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+
16Reπ2H3

3β

[
1
Q

∞∑

n=1

n2

A2
1 − q21

1
Q2r2 + 4n2π2

×

⎛

⎜
⎝

1
nπ

− nπ

r2A2
1 cosh

(√
βRe r

) − βRe (−1)n
nπA2

1

⎞

⎟
⎠

sinh(Qr)
cosh(Qr)

×
[
sinhA1

(
η−1)−sinh(A1η

)

sinhA1

]

+

√(
βRe
)

Q2

∞∑

n=1

n2
(
B2−q21

)
1

βRe r2+4n2π2

×
(

1
nπ

− nπ

(Q2r2 + n2π2) cosh(Qr)
− Q2(−1)n

nπB2

)
sinh

√
βRe r

cosh
√
βRe r

×
(

sinhB
(
η − 1

) − sinh
(
Bη
)

sinhB

)]}

sin
(
nπ

r
ξ

)
.

(4.36)

Using θ1, we get the expression for θp1 as

θp1
(
ξ, η
)
=
(

γα1
γα1 + i

)
θ1 −

2γEc
Repβ2

(
γα1 + i

)
[
4
3
∂v0
∂ξ

∂v1
∂ξ

+
∂v0
∂η

∂v1
∂η

]
, (4.37)

where

q1 =

√

H2 +
n2π2

r2
, H2 = RePr

[
α1β1i

γα1 + i
+ i
]
,

H3 = 2Ec Re Pr

[
α1β1γ

Repβ2
(
γα1 + i

)
α

(α + i)
− 1
Re

]

.

(4.38)

Similarly, the solutions of (4.16) and (4.17) using boundary conditions (4.20) are
obtained as

θ2
(
ξ, η
)
=

∞∑

r=1

2
r

{
8Re2

Q3

[
H5

Q

∞∑

n=1

(
r − 1

Q

)
+
4π2H6

3

∞∑

n=1

n2

Q2r2 + 4n2π2

]
1

B2 − q22

× sinh(Qr)
cosh(Qr)

(
1
nπ

− nπ

Q2r2 + n2π2

1
cosh(Qr)

− Q2(−1)n
nπB2

)

+

[

cosh
(
q2η
)
(
1 − cosh q2

)

sinh q2
sinh
(
q2η
)
+
sinhB

(
η − 1

) − sinh
(
Bη
)

sinhB

]}

× sin
(
nπ

r
ξ

)
.

(4.39)
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Figure 2: Variation of fluid velocity u0(ξ, η) with ξ and η (for Re = 1 and Re = 10).

From (4.17), one can get that

θp2
(
ξ, η
)
=
(

γα1
γα1 + 2i

)
θ2 −

γEc
Repβ2

(
γα1 + 2i

)

[
4
3

(
∂v1
∂ξ

)2

+
(
∂v1
∂η

)2
]

, (4.40)

where

q2 =

√

H4 +
n2π2

r2
, H4 = RePr

[
2iα1β1
γα1 + 2i

+ 2i
]
,

H5 = −EcRePrαβ1
(α + i)2

, H6 = EcRePr

[
α1β1γ

Repβ2
(
γα1 + 2i

)
( α

α + i

)2
− 1
Re

]

.

(4.41)

5. Results and Discussion

Figures 2, 3, 4, 5, 6, 7, and 8 represent the velocity and temperature fields, respectively, for
the fluid and dust particles, which are parabolic in nature. Here we can see that the path of
fluid particles is much steeper than that of dust particles. Further, one can see that if the dust
is very fine, that is, the mass of the dust particles is negligibly small, then the relaxation time
of dust particle decreases and ultimately as τv → 0 the velocities of fluid and dust particles
will be the same. Also we see that the fluid particles will reach the steady state earlier than
the dust particles. Further, one can observe the impressive effect of Reynolds number on the
velocity fields. It means that the Reynolds number is favorable to the velocity fields, that
is, the velocity profiles for both fluid and dust particles increases as the Reynolds number
increases.

The graphs are drawn for the following values:ω = 0.5,N = 0.4, β = 2, σ = 1, Ec = 0.02,
Pr = 0.72, T0 = 0.5, T1 = 1, T2 = 1.5, T3 = 2, τv = τT = 0.15, and γ = 1.4.
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Figure 3: Variation of dust velocity v0(ξ, η) with ξ and η (for Re = 1 and Re = 10).
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Figure 4: Variation of fluid velocity u1(ξ, η) with ξ and η (for Re = 1 and Re = 10).

5

4

3

2

1

0
300

200
100

0 0
200

400
600

xh

v 1
(x

,h
)

(a)

300
200

100
0 0

200
400

600

xh

800

600

400

200

0

v 1
(x

,h
)

(b)

Figure 5: Variation of dust velocity v1(ξ, η) with ξ and η (for Re = 1 and Re = 10).
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Figure 6: Steady part of the Nusselt number (Nu0) versus ξ and η (for ξ = r and η = 0 and ξ = −r and
η = 1).
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Figure 7: Unsteady part of Nusselt number (Nu1) versus ξ and η (for ξ = r and η = 0) and ξ = −r and
η = 1).

Now we discuss the heat transfer at the vertical walls, so we consider the Nusselt
number (Nu) of the fluid as

Nu = −∂θ
∂ξ

∣∣∣∣
at ξ=r or ξ=−r

= −
[
dθ0
dξ

+ εeit
dθ1
dξ

+ ε2e2it
dθ2
dξ

]

at ξ=r or ξ=−r

= −
[
Nu0 + εeitNu1 + ε2e2itNu2

]

at ξ=r or ξ=−r
.

(5.1)
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Figure 8: Unsteady part of Nusselt number (Nu2) versus ξ and η (for ξ = r and η = 0 and ξ = −r and
η = 1).

Next to discuss is the heat transfer at the horizontal walls, so we consider the Nusselt
number (Nu) of the fluid as

Nu = −∂θ
∂η

∣∣∣∣
at η=0 or η=1

= −
[
dθ0
dη

+ εeit
dθ1
dη

+ ε2e2it
dθ2
dη

]

at η=0 or η=1

= −
[
Nu0 + εeitNu1 + ε2e2itNu2

]

at η=0 or η=1
,

(5.2)

where Nu0, Nu1, and Nu2 denote the Nusselt number for steady part, unsteady part for
coefficient of ε, and unsteady part for coefficient of ε2, respectively.

The graphs of steady part of Nusselt number (Nu0) against ξ and η (at η = 0 and ξ = r
or at η = 1 and ξ = −r) has been drawn in Figure 6. It shows that for different values of
Prandtl number, Nusselt number increases with increase in ξ and η.

Figure 7 shows the unsteady part of amplitude of Nusselt number (Nu1) against ξ and
η (at η = 0 and ξ = r or at η = 1 and ξ = −r). It reveals that for different values of Prandtl
number, amplitude of Nusselt number increases with increase of ξ and η. The unsteady part
of the amplitude of Nusselt number (Nu2) against ξ and η has been drawn in Figure 8. Here,
one can see that the amplitude of Nusselt number increases with increase of ξ and η for
different values of Prandtl number.
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6. Conclusions

A detailed analytical study has been carried out for the unsteady flow and heat transfer of a
dusty fluid through a rectangular channel. Here, one can see that the flow of fluid particles is
parallel to that of dust. Further, one can see that the fluid particles will reach the steady state
earlier than the dust particles. From the graphs the impressive effect of Reynolds number
on the velocity fields of both fluid and dust phases is evident. It is clear that the effect of
Reynolds number on velocity fields is favorable, that is, the velocity profiles for both fluid
and dust particles increase as Reynolds number increases.

Further, one can observe the changes in the steady and unsteady parts of amplitude of
Nusselt number. It is clear that for different values of Prandtl number steady part of Nusselt
number (Nu0) increases with increase of ξ and η. In the same manner unsteady parts of
amplitude of Nusselt number (Nu1) and (Nu2) increases with increase of ξ and η for different
values of Prandtl number.
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