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This paper presents a single-domain boundary element method (SDBEM) for linear elastic fracture
mechanics analysis in the 2D anisotropic bimaterial. In this formulation, the displacement integral
equation is collocated on the uncracked boundary only, and the traction integral equation is
collocated on one side of the crack surface only. The complete fundamental solution (Green’s
function) for anisotropic bi-materials was also derived and implemented into the boundary
integral formulation so the discretization along the interface can be avoided except for the
interfacial crack part. A special crack-tip element was introduced to capture exactly the crack-
tip behavior. A computer program with the FORTRAN code has been developed to effectively
calculate the stress intensity factors, crack initiation angle, and propagation path of an anisotropic
bi-material. This SDBEM program has been verified having a good accuracy with the previous
researches. In addition, a rock of type (1)/(2) disk specimen with a central crack was made to
conduct the Brazilian test under diametrical loading. The result shows that the numerical analysis
can predict relatively well the direction of crack initiation and the path of crack propagation.

1. Introduction

In rock masses, the interbed construction suffers from cracking which is caused by various
factors. Of greater concern are those cracks that develop as a result of initiation and
propagation path, leading to significant change in the failure resistance of the structure. Many
relative researches and discussions are started like wildfire and never stopped.

Because of the discontinuities of weak interbed on laccoliths (rock mass), there are
many damages that occurred which are due to earth stress efforts or under geotechnical
engineering, such as slope slip, tunnel collapse, deep excavation collapse, and crack openings
which are due to deep well drilling. Crack is one of the fracture models to cause those
damages because the crack openings and propagation on the field affect the rock mass
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structure stability. This paper will discuss the behavior of crack propagation on the basis
of the theory of fracture mechanics. We defined the rock sample on interbed as “Bimaterial
rock”.

Theoretically, interfacial crack problems in isotropic Bimaterials were studied [1–3]
where the authors showed that the stresses possess the singularity of γ−1/2± iε. Rice [4]
re-examined the elastic fracture mechanics concepts for the isotropic interfacial crack and
introduced an intrinsic material length scale so that the definition of the stress intensity
factor (SIFs) possesses the same physical significance as those for the homogeneous cracks.
Clements [5] and Willis [6] studied interfacial crack problems in dissimilar anisotropic
materials. They showed that the oscillatory behavior of the stresses and the phenomenon of
interpenetrating of the crack faces were also present near the crack tip for anisotropic interface
cracks. Recent studies on interfacial cracks in anisotropic materials have been conducted
by many authors [7–21], and different definitions for the stress intensity factor exist. By
introducing a characteristic length, however, the definition given by Gao et al. [15], and Wu
[12, 13] is consistent with Rice’s general definition [4] and appears to be more explicit than
other definitions.

The study of fracture initiation and propagation in anisotropic rocks is subjected to
Brazilian loads. A numerical procedure based on the SDBEM and maximum tensile stress
criterion has been developed to predict the angle of crack initiation and the path of crack
propagation in anisotropic rocks. Crack propagation in an anisotropic homogeneous rock
disc under mixed mode I-II loading is simulated by an incremental crack extension with
a piecewise linear discretization. A computer program, which can automatically generate a
newmesh, has been developed to simulate the crack propagation process. Some experimental
observations of crack initiation angles and crack propagation were obtained by conducting
diametrical loading of initially cracked discs of a gypsum/cement. It was found that the
numerical analysis could predict relatively well the direction of crack initiation and the crack
propagation path.

2. Theoretical Background

2.1. Green’s Function in Anisotropic Bimaterials

With three complex analytical functions φi(zi), one can, in general, express displacements,
stresses, and tractions as follows [11, 22, 23]:

ui = 2Re

⎡
⎣

2∑
j=1

Aijφj
(
zj
)
⎤
⎦, Ti = −2Re

⎡
⎣

2∑
j=1

Bijφj
(
zj
)
⎤
⎦,

σ2i = 2Re

⎡
⎣

2∑
j=1

Bijφ
′
j

(
zj
)
⎤
⎦, σ1i = −2Re

⎡
⎣

2∑
j=1

Bijμjφ
′
j

(
zj
)
⎤
⎦ (i = 1, 2),

(2.1)

where zj = x+μjy, Re denotes the real part of a complex variable or function, a prime denotes
the derivative, the three complex numbers μj(j = 1, 2, 3) and the elements of the complex
matrices B and A are functions of the elastic properties [11, 22, 23].
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Figure 1: Definition of the coordinate systems within an anisotropic Bimaterial.
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Figure 2: Geometry of a two-dimensional cracked domain.

Assume that the medium is composed of two joined dissimilar anisotropic and elastic
half-planes. We let the interface be along the x-axis and the upper (y > 0) and lower (y < 0)
half-planes occupied by materials (1) and (2), respectively (Figure 1).

For concentrated force acting at the point (x0, y0) in material (2) (y0 < 0), we express
the complex vector function as [11]

φ(z) =

⎧
⎨
⎩
φU(z), z ∈ 1,

φL(z) + φ0
(2)(z), z ∈ 2,

(2.2)

where the vector function

φ(z) =
[
φ1(z), φ2(z), φ3(z)

]T
, (2.3)

with the argument having the generic form z = x + μy.
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Figure 3: Mesh 2D bimaterial problem with the five types of quadratic elements.

In (2.2), φ0
(2) is a singular solution corresponding to a point force acting at the point

(x0, y0) in an anisotropic infinite planewith the elastic properties of material (2). This singular
solution can be expressed as [11, 23]

φk(zk) =
−1
2π

[Hk1P1 ln(zk − sk) +Hk2P2 ln(zk − sk)], (2.4)

where sk = x0 + μky0, Pk is the point force vector, and H is given by

H = A−1
(
Y−1 + Y

−1)−1
; Y = iAB−1. (2.5)

There are two unknown vector functions to be solved in (2.2), that is, φU(z) and φL(z).
While the former is analytic in the upper (material (1)) half-plane, the latter is analytic in
the lower (material (2)) half-plane. These expressions can be found by requiring continuity
of the resultant traction and displacement across the interface, along with the standard
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analytic continuation arguments. Following this approach and after some complex algebraic
manipulation, the complex vector functions in materials (1) and (2) are obtained as

φ(z) =

⎧⎪⎨
⎪⎩
B−1
(1)

(
Y(1) + Y (2)

)−1(
Y (2) + Y(2)

)
B(2)φ

0
(2)(z), z ∈ 1,

B−1
(2)

(
Y (1) + Y(2)

)−1(
Y (2) − Y (1)

)
B(2)φ

0
(2)(z) + φ

0
(2)(z), z ∈ 2.

(2.6)

In (2.6), the special subscripts (1) and (2) are used exclusively to denote that the
correspondingmatrix or vector is in material (1) (y > 0) andmaterial (2) (y < 0), respectively.

Similarly, for a point force in material (2.1) (y0 > 0), these complex functions can be
found as

φ(z) =

⎧⎪⎨
⎪⎩
B−1
(1)

(
Y (2) + Y(1)

)−1(
Y (1) − Y (2)

)
B(1)φ

0
(1)(z) + φ

0
(1)(z), z ∈ 1,

B−1
(2)

(
Y(2) + Y (1)

)−1(
Y (1) + Y(1)

)
B(1)φ

0
(1)(z), z ∈ 2,

(2.7)

where the vector functions φ0
(1) are the infinite plane solution given in (2.4) but with the elastic

properties of material (1).
With the complex function given in (2.6) and (2.7), Green’s functions of the

displacement and traction can be obtained by substituting these complex functions into (2.1).
These Green’s functions have four different forms depending on the relative location of the
field and source points.
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It is noteworthy that these Green’s function can be used to solve both plane stress
and plane strain problems in anisotropic Bimaterials. Although the isotropic solution cannot
be analytically reduced from these Green’s functions one can numerically approximate it by
selecting a very weak anisotropic (or nearly isotropic) medium [24, 25].

2.2. BEM Formulation for 2D Cracked Anisotropic Bimaterials

In this section, we present an SDBEM formulation in which neither the artificial boundary nor
the discretization along the un-cracked interface is necessary. This SDBEM formulation was
widely used recently by Chen et al. [26], for homogeneous materials and is now extended to
anisotropic Bimaterials.
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Figure 7: A vertical crack in material (1): an interface under far-field stresses.

The displacement integral equation applied to the outer boundary results in the
following form (s0

k,B
∈ ΓB only, Figure 2):

bij
(
s0k,b

)
+ uj
(
s0k,b

)
+
∫

B

T ∗
ij

(
zk,B, s

0
k,B

)
uj(zk,B)dΓ(zk,B)

+
∫

C

T ∗
ij

(
zk,C, s

0
k,B

)[
uj(zk,C+) − uj(zk,C−)

]
dΓ(zk,C)

=
∫

B

U∗
ij

(
zk,B, s

0
k,B

)
tj(zk,B)dΓ(zk,B),

(2.8)

where i, j, k = 1,2, T ∗
ij and U∗

ij are Green’s tractions and displacements, uj and tj are the
boundary displacement and tractions, respectively, bij are quantities that depend on the
geometry of the boundary and are equal to δij/2 for a smooth boundary, and zk and s0k are the
field points and the source points on the boundary Γ of the domain. ΓC has the same outward
normal as ΓC+.Here, the subscripts B and C denote the outer boundary and the crack surface,
respectively.

The traction integral equation (for s0k being a smooth point on the crack) applied to
one side of the crack surfaces is (s0

k,C
∈ ΓC+ only)

0.5tj
(
s0k,C

)
+ nm

(
s0k,C

)∫

B

ClmikT
∗
ij,k

(
s0k,C, zk,B

)
uj(zk,B)dΓ(zk,B)

+ nm
(
s0k,C

)∫

C

ClmikT
∗
ij,k

(
s0k,C, zk,C

)[
uj(zk,C+) − uj(zk,C−)

]
dΓ(zk,C)

= nm
(
s0k,C

)∫

B

ClmikU
∗
ij,k ×

(
s0k,C, zk,B

)
tj(zk,B)dΓ(zk,B),

(2.9)

where nm is the outward normal at the crack surface s0
k,C

andClmik is the fourth-order stiffness
tensor.

Equations (2.8) and (2.9) form a pair of boundary integral equations [24, 27, 28]
and can be used for the calculation of SIFs in anisotropic Bimaterials. The main feature of
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2a

2c

45◦

A

Interface
Material (1)

Material (2) x

yσ(1) σ(1)

σ(2) σ(2)

Figure 9: Interfacial kinked crack within infinite Bimaterials.

the BEM formulation is that it is a single-domain formulation with displacement integral
(2.8) being collocated on the un-cracked boundary only and traction integral (2.9) on one
side of the crack surface only. For problems without cracks, one needs (2.8) only, with the
integral on the crack surface being discarded. Equation (2.8) then reduces to the well-known
displacement integral on the un-cracked boundary being discarded. We emphasize here that
since bimaterial Green’s functions are included in (2.8), discretization along the interface
can be avoided, with the exception of the interfacial crack part which will be treated by the
traction integral equation presented by (2.9).

It is well known that a cracked domain poses certain difficulties for BEM modeling
(Cruse, 1988 [29]). Previously, fracture mechanics problems in isotropic or anisotropic
bimaterials were mostly handled by the multidomain method in which each side of the crack
surface is put into different domains and artificial boundaries are introduced to connect the
crack surface to the un-cracked boundary. For the bimaterial case, discretization along the
interface is also required if one uses the Kelvin-type (infinite domain) Green’s functions.

2.3. Crack-Tip Modeling

In fracture mechanics analysis, especially in the calculation of the SIFs, one needs to know the
asymptotic behavior of the displacements and stresses near the crack-tip. In our BEM analysis
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of the SIFs, we propose to use the extrapolation method of the crack tip displacements. We
therefore need to know the exact asymptotic behavior of the relative crack displacement
behind the cracktip. This asymptotic expression has different forms depending on the
location of the cracktip. In this paper, two cases will be discussed, that is, a crack-tip within
the homogeneous material and an interfacial crack-tip. Inclined cracks terminating at the
interface will be discussed in a future paper.

2.3.1. A Crack Tip within a Homogeneous Material

The mixed mode stress intensity factors (SIFs) for anisotropic media can be determined by
using the extrapolation method of the relative crack displacement (RCD), combined with a
set of the shape functions. The RCD is defined as [24]

Δui =
3∑
k=1

φkΔuki . (2.10)

For this case, the relation of the RCDs at a distance r behind the crack tip and the SIFs
can be found as [24, 25, 30]

Δu1 = 2

√
2r
π
(H11KI +H12KII),

Δu2 = 2

√
2r
π
(H21KI +H22KII),

(2.11)

where

H11 = Im
(
μ2P11 − μ1P12

μ1 − μ2

)
; H12 = Im

(
P11 − P12
μ1 − μ2

)
,

H21 = Im
(
μ2P21 − μ1P22

μ1 − μ2

)
; H22 = Im

(
P21 − P22
μ1 − μ2

)
.

(2.12)

Substituting the RCDs into (2.10) and (2.11), we obtain a set of algebraic equations in
which the SIFs KI and KII can be solved.

2.3.2. An Interfacial Crack Tip

For this case, the relative crack displacements at a distance r behind the interfacial crack tip
can be expressed, in terms of the three SIFs, as [15]

Δu(r) =

⎛
⎝

3∑
j=1

cjDQje
−πδj r1/2+iδj

⎞
⎠K, (2.13)
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where cj , δj , Qj , and D are the relative parameters in material (1) and material (2). Utilizing
(2.5), we defined the matrix of material as

Y(1) + Y (2) = D − iV, (2.14)

whereD and V are two real matrices, and then utilizing these two matrices, we define matrix
P as

P = −D−1V, (2.15)

and the characteristic β relative to material

β =

√
−1
2
tr(P 2). (2.16)

Then, we used the characteristic β obtain to define oscillation index ε as

ε =
1
2π

ln
1 + β
1 − β =

1
π
tanh−1β,

δ1 = 0, δ2 = ε, δ3 = −ε,

Q1 = P 2 + β2I, Q2 = P
(
P − iβI), Q3 = P

(
P + iβI

)
,

(2.17)

where I is a 3 × 3 identity matrix.
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Utilizing the relationship between the characteristic β and oscillation index ε, we
define constant cj as

c1 =
2√
2πβ2

, c2 =
−e−πεdiε√

2π(1 + 2iε)β2 cosh(πε)
, c3 =

−e−πεdiε√
2π(1 − 2iε)β2 cosh(πε)

,

(2.18)

where d is the characteristic distance along material interface to crack tip.
Comparing (2.10) with (2.13), we noticed that while the relative crack displacement

behaves as a square root for a crack tip within a homogeneous medium, for an interfacial
crack tip, its behavior is r1/2 +iδ, a square-root feature multiplied by weak oscillatory
behaviors.

Equation (2.13) can be recast into the following form, which is more convenient for the
current numerical applications:

Δu(r) =

√
2r
π
M
( r
d

)
K, (2.19)

where d is the characteristic length andM is a matrix function with its expression given by

M(x) =
D

β2

{(
P 2 + β2I

)
− [cos(ε lnx) + 2ε sin(ε lnx)]P 2 + β[sin(ε lnx) − 2ε cos(ε lnx)]P

(1 + 4ε2) cosh(πε)

}
.

(2.20)

Again, in order to capture the square-root and the weak oscillatory behavior, we construct
a crack-tip element with tip at ξ = −1 in terms of which the relative crack displacement is
expressed as

Δu(r) =M
( r
d

)
⎡
⎢⎢⎢⎣

f1Δu11 f2Δu21 f3Δu31

f1Δu12 f2Δu22 f3Δu32

f1Δu13 f2Δu23 f3Δu33

⎤
⎥⎥⎥⎦. (2.21)

In meshing the 2D anisotropic bimaterial problem (as shown in Figure 3), we assume
that the interface is along the X-axis and the upper (y > 0) and lower (y < 0) half-planes are
occupied by materials (1) and (2), respectively. The corner of outer boundary is processed
by the discontinuous elements Type I and Type III; the continuous element Type V is to
deal with all outer smooth boundary; internal crack surface is processed by crack surface
elements Type II; and crack tip element Type VI is to process crack tip problem. In order to
avoid the oscillatory behavior of the interface, we mesh an anisotropic problem (as shown
in Figure 3(6)) of bimaterial in which neither the interfacial elements nor the discretization
along the un-cracked interface is necessary, with the exception of the interfacial crack part
which will be treated by traction integral Equation (2.9) and (2.10) of RCD.
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2.4. Crack Initiation and Fracture Propagation

In fracture mechanics, there are three criteria commonly used to predict the crack initiation
angle: the maximum tensile stress criterion, or σ-criterion [31], the maximum energy release
rate criterion, or G-criterion [32], and the minimum strain energy density criterion, or S-
criterion [33]. Among them, the σ-criterion has been found to predict well the directions of
crack initiation compared to the experimental results for polymethylmethacrylate [34, 35]
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and brittle clay [36]. Because of its simplicity, the σ-criterion seems to be the most popular
criterion in mixed mode I-II fracture studies [37]. Therefore, the σ-criterion was used in this
paper to determine the crack initiation angle for anisotropic plates.

For anisotropic materials, the general form of the elastic stress field near the crack tip
in the local Cartesian coordinates x′′, y′′ of Figure 4 can be expressed in terms of the two stress
intensity factors KI and KII a follows [30]:

σ ′′
x =

KI√
2πr

Re

[
μ1μ2

μ1 − μ2

(
μ2√

cos θ + μ2 sin θ
− μ1√

cos θ + μ1 sin θ

)]

+
KII√
2πr

× Re

[
1

μ1 − μ2

(
μ2
2√

cos θ + μ2 sin θ
− μ2

1√
cos θ + μ1 sin θ

)]
,

σ ′′
y =

KI√
2πr

Re

[
1

μ1 − μ2

(
μ1√

cos θ + μ2 sin θ
− μ2√

cos θ + μ1 sin θ

)]

+
KII√
2πr

× Re

[
1

μ1 − μ2

(
1√

cos θ + μ2 sin θ
− 1√

cos θ + μ1 sin θ

)]
,

τx′′y′′ =
KI√
2πr

Re

[
μ1μ2

μ1 − μ2

(
1√

cos θ + μ1 sin θ
− 1√

cos θ + μ2 sin θ

)]

+
KII√
2πr

× Re

[
1

μ1 − μ2

(
μ1√

cos θ + μ1 sin θ
− μ2√

cos θ + μ2 sin θ

)]
.

(2.22)

Using coordinate transformation, the stress fields near the crack tip in the polar
coordinates (r, θ) of Figure 4 are

σθ =
σ ′′
x + σ

′′
y

2
−
σ ′′
x + σ

′′
y

2
cos 2θ − τx′′y′′ sin 2θ,

τθ = −
σ ′′
x + σ

′′
y

2
sin 2θ + τx′′y′′ cos 2θ.

(2.23)

If the maximum σ-criterion is used, the angle of crack initiation, θ0, must satisfy

∂σθ
∂θ

= 0 (or τrθ = 0),
∂2σθ
∂θ2

< 0. (2.24)

A numerical procedure was applied to find the angle θ0 when σθ is a maximum for
known values of the material elastic constants, the anisotropic orientation angle ψ, and the
crack geometry.

In this paper, the process of crack propagation in an anisotropic homogeneous plate
under mixed mode I-II loading is simulated by incremental crack extension with a piecewise
linear discretization. For each incremental analysis, crack extension is conveniently modeled
by a new boundary element. A computer program has been developed to automatically
generate new data required for analyzing sequentially the changing boundary configuration.
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Based on the calculation of the SIFs and crack initiation angle for each increment, the
procedure of crack propagation can be simulated. The steps in the crack propagation process
are summarized as follows (Figure 5):

(1) compute the SIFs using the proposed BEM;

(2) determine the angle of crack initiation based on the maximum tensile stress
criterion;

(3) extend the crack by a linear element (of length selected by the user) along the
direction determined in step 2;

(4) automatically generate the new BEM mesh;

(5) repeat all the above steps until the crack is near the outer boundary.

3. Numerical Examples

In this section, a lot of numerical examples are presented to verify the formulation and to
show the efficiency and versatility of the present SDBEM for problems related to fracture in
anisotropic Bimaterial.

3.1. Stress Intensity Factors (SIFs)

3.1.1. Horizontal Crack in Material (1)

A horizontal crack under a uniform pressure P is shown in Figure 6. The crack has a length
2a, and is located at a distance d to the interface. The Poisson ratios for both materials (1)
and (2) the same, that is, ν1 = ν2 = 0.3, while the ratio of the shear module ratio G2/G1 varies.
A plane stress condition is assumed. In order to calculate the SIFs at crack tip (A) or (B), 20
quadratic elements were used to discretize the crack surface. The results are given in Table 1
for various values of the shear module ratio. They are compared to the results given by Isida
and Noguchi [38], using a body force integral equation method and those by Yuuki and Cho
[39], using a multidomain BEM formulation. As can be observed from this table, the results
compare quite well.

3.1.2. Vertical Crack in Material (1)

Consider a vertical crack in material (1) subjected to far-field horizontal stresses as shown in
Figure 7. The crack has a length 2a and is located at a distance d to the interface. The Poisson
ratios for both materials (1) and (2) are the same, that is, ν1 = 0.35, ν2 = 0.3, and the ratio of the
shear module is the same, that is, G1/G2 = 23.077, while the ratio of the crack length located
at a distance (d/a) varies. A plane stress condition is assumed. In order to calculate the SIFs
at crack tip (A) or (B), 20 quadratic elements were used to discretize the crack surface. The
results are given in Table 2 for various values of the crack length located at a distance. They
are compared to the results given by Isida and Noguchi [38] using a body force integral
equation method and those by Cook and Erdogan [41] using a Wiener-Hopf technique and
an asymptotic analysis. As can be observed from this table, the results compare quite well.
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Figure 13: Geometry of a cracked straight through brazilian disc (CSTBD) specimen of anisotropic
Bimaterial rock under diametrical loading.

Table 1: Comparison of the SIFs (horizontal crack).

G2/G1 d/2a Present Isida et al. [40] Diff. (%) Yuuki et al. [39] Diff. (%)
KI/(p

√
πa) of Tip (A) or (B)

0.25 0.05 1.476 1.468 −0.57 1.468 −0.54
0.25 0.5 1.198 1.197 −0.09 1.197 −0.12
2.0 0.05 0.871 0.872 0.14 0.869 −0.17
2.0 0.5 0.936 0.935 −0.06 0.934 −0.16

KII/(p
√
πa) of Tip (A) or (B)

0.25 0.05 0.285 0.286 0.35 0.292 2.50
0.25 0.5 0.071 0.071 0.70 0.072 1.67
2.0 0.05 −0.088 −0.087 −1.38 −0.085 −4.01
2.0 0.5 −0.023 −0.024 2.50 −0.023 −3.54

3.1.3. Vertical Crack Intersecting an Interface

Consider a vertical crack intersecting an interface and subjected to far-field horizontal stresses
as shown in Figure 8. The horizontal far field stresses applied in materials (1) and (2) are,
respectively, σ1 and σ2(=σ1G2/G1). The Poisson ratio ν1 and ν2 are assumed to be equal to
0.3 and the shear modulus ratio G2/G1 is assumed to vary. The distance of the crack tip (A)
and (B) to the interface are the same, that is, d1=d2= a, the half-length of the crack. Again, a
plane stress condition is assumed and 20 quadratic elements were used to discretize the crack
surface. The SIFs at the crack tips (A) and (B) are listed in Table 3 for several values of the
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Table 2: Comparison of the SIFs (vertical crack).

d/a
Present Isida et al. [40] Diff. (%) Cook et al. [41] Diff. (%)

KI/(σ
√
πa) Of Tip (A)

1.00 0.882 0.883 0.11 0.883 0.14
2.00 0.961 0.962 0.10 0.962 0.10
5.00 0.995 0.993 −0.17 0.993 −0.17
10.00 0.996 0.998 0.24 0.998 0.24

KI/(σ
√
πa) Of Tip (B)

1.00 — — — — —
2.00 0.935 0.935 −0.04 0.935 −0.04
5.00 0.996 0.991 −0.43 0.991 −0.44
10.00 1.003 0.998 −0.51 0.998 −0.51

shear modulus ratio, and are compare to those given by Isida and Noguchi [38]. Again, the
results between the two numerical analyses compare quite well.

3.1.4. An Interface Kinked Crack in Infinite Bimaterials

Consider an interface kinked (45◦) crack in infinite Bimaterials subjected to far-field tensile
stresses as shown in Figure 9. The far-field tensile stresses applied in materials (1) and (2)
are, respectively, σ1 and σ2(=σ1G2/G1). The kink crack length is 2a; the main crack length is
2c. Kink crack’s tip is (A). The Poisson ratios ν1 and ν2 are assumed to be equal to 0.3. The
Young module in material (1) is 1GPa, and according to the shear module ratio with material
(1) and material (2) (G1/G2 = 0.25), we can get the Young module of material (2). Then
according to equation (G = (E/2(1 + ν))), we can get the relation between kink length and
stress intensity factors. After numerical analysis, we compared with the results of Isida and
Noguchi [38], using a body integral equation force method, as shown in Table 4, the results
the two numerical analyses and found that they compare quite well.

3.1.5. Interfacial Horizontal Crack in Infinite Bimaterials

An interfacial crack along the x-axis of length 2a is shown in Figure 10. The crack surface is
under a uniform pressure P and the materials can be either isotropic or anisotropic. Twenty
quadratic elements were used to discretize the crack, and the characteristic length is assumed
as 2a.

The SIFs at the crack tip of an interfacial crack were also calculated for the anisotropic
Bimaterial case. The anisotropic elastic properties in material (1)were assumed to be those of
glass/epoxy with E1 = 48.26GPa, E2 = 17.24GPa, G12 = 6.89GPa, and υ12 = 0.29. For material
(2), a graphite/epoxy with E1 = 114.8GPa, E2 = 11.7GPa, G12= 9.66GPa, and υ12 = 0.21 was
selected [42]. The material axis E1 in material (1) and material (2) makes angles ψ1 and ψ2,
respectively, with respect to the horizontal direction (Figure 10). While the material axis E1

in material (2) was assumed to be along the horizontal direction (i.e., ψ(2) = 0), the E1-axis
in material (1) makes an angle ψ(1) with respect to the horizontal direction. The interfacial
SIFs at crack tip (B) obtained by the present method are listed in Table 5 and compared to the
exact solutions proposed byWu [12]. A very good agreement is found between the numerical
analysis and the exact solution.



Mathematical Problems in Engineering 17

(a)

5

5

4

4

3

3

2

2

1

1

0

0

−1

−1

−2

−2

−3

−3

−4

−4
−5
−5

Experimental result
SDBEM simulation

(b)

Figure 14:Comparison between experimental observations and numerical predictions for specimen SSD-1:
(a) photograph of specimen SSD-1 after failure (ψ = 45◦ and β = 45◦) and (b) propagation of a crack at the
center of a CSTBD specimen with ψ = 45◦ and β = 45◦.

Table 3: Comparison of the SIFs (vertical crack intersecting an interface).

G2/G1
KI/(σ

√
πa) of Tip (A) KI/(σ

√
πa) of Tip (B)

Isida and Noguchi
[38]

Present Diff. (%) Isida and Noguchi
[38]

Present Diff. (%)

0.1 1.062 1.0629 −0.08 1.153 1.1539 −0.08
0.3 1.015 1.0157 −0.07 1.064 1.0639 0.01
0.5 1.000 1.0007 −0.07 1.028 1.0273 0.07
0.8 0.997 0.9975 −0.05 1.006 1.0047 0.13

3.1.6. Interfacial Horizontal Crack in Finite Bimaterials

The example is included as a comparison with the literature in order to demonstrate the
accuracy of SDBEM approach for an interfacial crack in anisotropic bimaterial plate. The
geometry is that of rectangular plate and is shown in Figure 11. For the comparison, crack
length is taken as 2a = 2, h = 2w, and a/w = 0.4, and static tensile loading σ0 is applied
on the upper and the lower boundary of the plate. Plane stress condition is assumed. The
anisotropic elastic properties for materials (1) and (2) are given in Table 6. The normalized
complex stress intensity factors at crack tip (A) or (B) are listed in Table 7 together with those
from the work of Cho et al. [43], who used a multidomain BEM formulation and the results
from Wünsche et al. [21] for a finite body. The outer boundary and interfacial crack surface
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Figure 15:Comparison between experimental observations and numerical predictions for specimen SSD-2:
(a) photograph of specimen SSD-2 after failure (ψ = 0◦ and β = 90◦) and (b) propagation of an interfacial
crack at the center of a CSTBD specimen with ψ = 0◦ and β = 90◦.

Table 4: Comparison of the SIFs (interfacial kinked crack).

a/c
KI/(σ

√
πa) of Tip (A) KII/(σ

√
πa) of Tip (A)

Isida and Noguchi
[38]

Present Diff. (%) Isida and Noguchi
[38]

Present Diff. (%)

0.2 0.733 0.759 −3.54 0.631 0.624 1.10
0.5 0.708 0.730 −3.10 0.623 0.612 1.76
1.0 0.683 0.701 −2.63 0.610 0.603 1.14
1.5 0.669 0.685 −2.39 0.601 0.594 1.16

were discretized with 40 continuous and 20 discontinuous quadratic elements, respectively.
It is obvious from Table 7 that these are very close to those obtained by the other researchers.

3.2. Crack Initiation Angles

3.2.1. Comparison of Numerical Predictions of Crack Initiation Angles with
Experimental Results

In this section, we compared the numerical predictions of crack initiation angles with
experimental results to verify the formulation. Al-Shayea [44] conducted uniaxial pressure
test on limestone rock discs 98mm and 84mm in diameter and 22mm in thickness with
30mm notch. The crack orientation angle β between the crack plane and the tensile stress
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Table 5: Comparison of the SIFs for infinite anisotropic problem ψ2 = 0◦ (interfacial crack).

ψ1
KI/(p

√
πa) of Tip (A) or (B) KII/(p

√
πa) of Tip (A) or (B)

Wu [12] Present Diff. (%) Wu [12] Present Diff. (%)
0 1.0000 1.0053 −0.53 −0.0382 −0.0381 0.26
30 0.9968 1.0006 −0.38 −0.0349 −0.0350 −0.29
45 0.9965 1.0001 −0.36 −0.0318 −0.0319 −0.31
60 0.9971 1.0010 −0.39 −0.0290 −0.0292 −0.69
90 1.0000 1.0054 −0.54 −0.0264 −0.0265 −0.38

Table 6: Elastic properties for materials (1) and (2).

Materials E1 (MPa) E2 (MPa) ν12 G12

Material (1) 100 50 0.3 10.009
Material (2)
(i) 100 45 0.3 9.525
(ii) 100 40 0.3 9.010
(iii) 100 30 0.3 7.860
(iv) 100 10 0.3 4.630

was varied. Figure 12 shows the variation of the crack initiation angle θ with the crack
angle β determined numerically and experimentally. A good agreement is found between
the experimental results of Al-Shayea [44] and our numerical predictions.

4. Comparison of Numerical Predictions of
Crack Propagation Paths with Experimental Results

To demonstrate the proposed SDBEM procedure when predicting crack propagation in the
anisotropic Bimaterials under mixed mode I–II loading, the propagation path in a CSTBD
specimen is numerically predicted and compared with the actual laboratory observations.
In these experiments, a crack initially inclined with respect to the applied stress is allowed
to grow under concentrated diametrical loading (as shown in Figure 13). The Brazilian tests
on CSTBD specimens with a diameter of 7.4 cm, a thickness of 1 cm, and a crack length of
2.2 cm are conducted to observe the actual propagation paths and are compared with the
numerical predictions. The anisotropic elastic properties for rocks of types (1) and (2) are
given in Table 8. The ratios of E1/E2 and E1/G12 are 1.635 and 4.301, respectively. Since the
value of E1/E2 = 1.635, this rock of type (1) can be classified as a slightly anisotropic rock. Two
specimens with the material inclination angle ψ = 45◦ and 0◦, defined as the SSD-1 and SSD-2,
have crack angles β = 45◦ and 90◦, respectively. After Brazilian tests with cracked bimaterial
specimens, the paths of crack propagation for SSD-1 and SSD-2 are shown in Figures 14(a)
and 15(a), respectively. It can be observed that the crack propagates nearly perpendicular to
the crack surface in the initial stage and then rapidly approaches toward the loading point.
The proposed SDBEM procedure is also used to simulate crack propagation in the CSTBD
specimens. The outer boundary and crack surface are discretized with 28 continuous and 20
discontinuous quadratic elements, respectively. Figures 14(b) and 15(b) are the comparisons
examples; it can be concluded that the proposed SDBEM is capable of predicting the crack
propagation in anisotropic bimaterial rocks.
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Table 7: Comparison of the normalized complex SIFs for finite anisotropic problem (interfacial crack).

Material (2) E2/E1
|K|/σ0

√
πa of Tip (A) or (B)

Cho et al. [43] Wünsche et al. [21] Diff. (%) Present Diff. (%)

(i) 0.45 1.317 1.312 0.38 1.3132 0.29
(ii) 0.40 1.337 1.333 0.30 1.3351 0.14
(iii) 0.30 1.392 1.386 0.43 1.3922 −0.01
(iv) 0.10 1.697 1.689 0.47 1.6968 −0.06

∗ |K| =
√
K2
I +K

2
II

Table 8: Elastic properties for the rocks of type (1) and (2).

Rock types E1 E2 ν ν12 G G12 E1/E2 E1/G12

(1) 28.040 17.150 0.150 0.120 12.191 6.520 1.635 4.301
(2) 38.950 — 0.254 — 15.530 — — —

5. Conclusions

This paper shows that the mixed mode stress intensity factors of anisotropic Bimaterial rock
under diametrical loading can be successfully determined by the SDBEM.

A new SDBEM procedure based on the maximum tensile stress failure criterion
was developed to predict the crack initiation direction and the crack propagation path
in anisotropic Bimaterial rock discs under mixed mode loading. A good agreement was
found between crack initiation angles and propagation paths predicted with the SDBEM
and experimental observations reported by previous researchers on anisotropic materials.
Numerical simulations of crack initiation and propagation in CSTBD specimens of type
(1)/(2) were also found to compare well with the experimental results. Since the present
method is simple and can be used for curved cracks, it will be straightforward to extend the
current SDBEM formulation to analyze fracture propagation in 2D anisotropic Bimaterials,
which is currently under investigation by the authors.
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