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This paper studies a linear regression model, whose errors are functional coefficient autoregressive
processes. Firstly, the quasi-maximum likelihood (QML) estimators of some unknown parameters
are given. Secondly, under general conditions, the asymptotic properties (existence, consistency,
and asymptotic distributions) of the QML estimators are investigated. These results extend those
of Maller (2003), White (1959), Brockwell and Davis (1987), and so on. Lastly, the validity and
feasibility of the method are illuminated by a simulation example and a real example.

1. Introduction

Consider the following linear regression model:

yt = xT
t β + εt, t = 1, 2, . . . , n, (1.1)

where yt’s are scalar response variables, xt’s are explanatory variables, β is a d-dimensional
unknown parameter, and the εt’s are functional coefficient autoregressive processes given as

ε1 = η1, εt = ft(θ)εt−1 + ηt, t = 2, 3, . . . , n, (1.2)

where ηt’s are independent and identically distributed random errors with zero mean and
finite variance σ2, θ is a one-dimensional unknown parameter and ft(θ) is a real valued
function defined on a compact set Θwhich contains the true value θ0 as an inner point and is
a subset of R1. The values of θ0 and σ2 are unknown.
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Model (1.1) includes many special cases, such as an ordinary linear regression model
when ft(θ) ≡ 0; see [1–11]. In the sequel, we always assume that ft(θ)/= 0, for some θ ∈ Θ, is
a linear regression model with constant coefficient autoregressive processes (when ft(θ) =
θ, see Maller [12], Pere [13], and Fuller [14]), time-dependent and functional coefficient
autoregressive processes (when β = 0, see Kwoun and Yajima [15]), constant coefficient
autoregressive processes (when ft(θ) = θ and β = 0, see White [16, 17], Hamilton [18],
Brockwell and Davis [19], and Abadir and Lucas [20]), time-dependent or time-varying
autoregressive processes (when ft(θ) = at and β = 0, see Carsoule and Franses [21], Azrak
and Mélard [22], and Dahlhaus [23]), and so forth.

Regression analysis is one of the most mature and widely applied branches of
statistics. Linear regression analysis is one of the most widely used statistical techniques.
Its applications occur in almost every field, including engineering, economics, the physical
sciences, management, life and biological sciences, and the social sciences. Linear regression
model is the most important and popular model in the statistical literature, which attracts
many statisticians to estimate the coefficients of the regression model. For the ordinary
linear regressionmodel (when the errors are independent and identically distributed random
variables), Bai and Guo [1], Chen [2], Anderson and Taylor [3], Drygas [4], González-
Rodrı́guez et al. [5], Hampel et al. [6], He [7], Cui [8], Durbin [9], Hoerl and Kennard [10], Li
and Yang [11], and Zhang et al. [24] used various estimationmethods (Least squares estimate
method, robust estimation, biased estimation, and Bayes estimation) to obtain estimators of
the unknown parameters in (1.1) and discussed some large or small sample properties of
these estimators.

However, the independence assumption for the errors is not always appropriate in
applications, especially for sequentially collected economic and physical data, which often
exhibit evident dependence on the errors. Recently, linear regression with serially correlated
errors has attracted increasing attention from statisticians. One case of considerable interest is
that the errors are autoregressive processes and the asymptotic theory of this estimator was
developed by Hannan and Kavalieris [25]. Fox and Taqqu [26] established its asymptotic
normality in the case of long-memory stationary Gaussian observations errors. Giraitis
and Surgailis [27] extended this result to non-Gaussian linear sequences. The asymptotic
distribution of the maximum likelihood estimator was studied by Giraitis and Koul in
[28] and Koul in [29] when the errors are nonlinear instantaneous functions of a Gaussian
long-memory sequence. Koul and Surgailis [30] established the asymptotic normality of
the Whittle estimator in linear regression models with non-Gaussian long-memory moving
average errors.When the errors are Gaussian, or a function of Gaussian random variables that
are strictly stationary and long range dependent, Koul and Mukherjee [31] investigated the
linear model. Shiohama and Taniguchi [32] estimated the regression parameters in a linear
regression model with autoregressive process.

In addition to (constant or functional or random coefficient) autoregressive model, it
has gained much attention and has been applied to many fields, such as economics, physics,
geography, geology, biology, and agriculture. Fan and Yao [33], Berk [34], Hannan and
Kavalieris [35], Goldenshluger and Zeevi [36], Liebscher [37], An et al. [38], Elsebach [39],
Carsoule and Franses [21], Baran et al. [40], Distaso [41], and Harvill and Ray [42] used
various estimation methods (the least squares method, the Yule-Walker method, the method
of stochastic approximation, and robust estimation method) to obtain some estimators and
discussed their asymptotic properties, or investigated hypotheses testing.

This paper discusses the model (1.1)-(1.2) including stationary and explosive
processes. The organization of the paper is as follows. In Section 2 some estimators of β, θ,
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and σ2 are given by the quasi-maximum likelihood method. Under general conditions,
the existence and consistency the quasi-maximum likelihood estimators are investigated,
and asymptotic normality as well, in Section 3. Some preliminary lemmas are presented in
Section 4. The main proofs are presented in Section 5, with some examples in Section 6.

2. Estimation Method

Write the “true” model as

yt = xT
t β0 + et, t = 1, 2, . . . , n, (2.1)

e1 = η1, et = ft(θ0)et−1 + ηt, t = 2, 3, . . . , n, (2.2)

where f ′
t(θ0) = (dft(θ)/dθ)|θ=θ0 /= 0, and ηt’s are i.i.d errors with zero mean and finite variance

σ2
0 . Define

∏−1
i=0ft−i(θ0) = 1, and by (2.2)we have

et =
t−1∑

j=0

(
j−1∏

i=0

ft−i(θ0)

)

ηt−j . (2.3)

Thus et is measurable with respect to the σ-field H generated by η1, η2, . . . , ηt, and

Eet = 0, Var(et) = σ2
0

t−1∑

j=0

(
j−1∏

i=0

f2
t−i(θ0)

)

. (2.4)

Assume at first that the ηt’s are i.i.d. N(0, σ2). Using similar arguments to those of
Fuller [14] or Maller [12], we get the log-likelihood of y2, y3, . . . , yn conditional on y1:

Ψn

(
β, θ, σ2

)
= logLn = −1

2
(n − 1) logσ2 − 1

2σ2

n∑

t=2

(
εt − ft(θ)εt−1

)2 − 1
2
(n − 1) log(2π). (2.5)

At this stage we drop the normality assumption, but still maximize (2.5) to obtain QML
estimators, denoted by σ̂2

n, β̂n, θ̂n (when they exist):

∂Ψn

∂σ2
= −n − 1

2σ2
+

1
2σ4

n∑

t=2

(
εt − ft(θ)εt−1

)2
, (2.6)

∂Ψn

∂θ
=

1
σ2

n∑

t=2

f ′
t(θ)

(
εt − ft(θ)εt−1

)
εt−1, (2.7)

∂Ψn

∂β
=

1
σ2

n∑

t=2

(
εt − ft(θ)εt−1

)(
xt − ft(θ)xt−1

)
. (2.8)
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Thus σ̂2
n, β̂n, θ̂n satisfy the following estimation equations:

σ̂2
n =

1
n − 1

n∑

t=2

(
ε̂t − ft

(
θ̂n
)
ε̂t−1

)2
, (2.9)

n∑

t=2

(
ε̂t − ft

(
θ̂n
)
ε̂t−1

)
f ′
t

(
θ̂n
)
ε̂t−1 = 0, (2.10)

n∑

t=2

(
ε̂t − ft

(
θ̂n
)
ε̂t−1

)(
xt − ft

(
θ̂n
)
xt−1

)
= 0, (2.11)

where

ε̂t = yt − xT
t β̂n. (2.12)

Remark 2.1. If ft(θ) = θ, then the above equations become the same as Maller’s [12].
Therefore, we extend the QML estimators of Maller [12].

To calculate the values of the QML estimators, we may use the grid search method,
steepest ascent method, Newton-Raphson method, and modified Newton-Raphson method.
In order to calculate in Section 6, we introduce the most popular modified Newton-Raphson
method proposed by Davidon-Fletcher-Powell (see Hamilton [18]).

Let (d + 2) × 1 vector
−→
θ
(m)

= (σ(m)2, β(m), θ(m)) denote an estimator of
−→
θ = (σ2, β, θ) that

has been calculated at the mth iteration, and let A(m) denote an estimation of [H(
−→
θ
(m)

)]−1.

The new estimator
−→
θ
(m+1)

is given by

−→
θ
(m+1)

=
−→
θ
(m)

+ sA(m)g

(−→
θ
(m)
)

(2.13)

for s the positive scalar that maximizes Ψn{
−→
θ
(m)

+ sA(m)g(
−→
θ
(m)

)},where (d + 2) × 1 vector

g

(−→
θ
(m)
)

=
∂Ψn

(−→
θ
)

∂
−→
θ

|−→
θ=

−→
θ
(m) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Ψn

∂σ2
|σ2=σ(m)2

∂Ψn

∂β
|β=β(m)

∂Ψn

∂θ
|θ=θ(m)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.14)

and (d + 2) × (d + 2) symmetric matrix

H
(−→
θ
(m)
)

= −
∂2Ψn

(−→
θ
)

∂
−→
θ∂

−→
θ
T

|−→
θ=

−→
θ
(m) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂2Ψn

∂(σ2)2
∂2Ψn

∂σ2∂β

∂2Ψn

∂σ2∂θ

∗ ∂2Ψn

∂β∂βT
∂2Ψn

∂β∂θ

∗ ∗ ∂2Ψn

∂θ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

|−→
θ=

−→
θ
(m) , (2.15)
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where

∂2Ψn

∂(σ2)2
=

n − 1
2σ4

− 1
σ6

n∑

t=2

(
εt − ft(θ)εt−1

)2
,

∂2Ψn

∂σ2∂β
= − 1

σ4

n∑

t=2

(
εt − ft(θ)εt−1

)(
xt − ft(θ)xt−1

)T
,

∂2Ψn

∂σ2∂θ
= − 1

σ4

n∑

t=2

(
εt − ft(θ)εt−1

)
f ′
t(θ),

(2.16)

∂2Ψn

∂β∂βT
= − 1

σ2

n∑

t=2

(
xt − ft(θ)xt−1

)(
xt − ft(θ)xt−1

)T
, (2.17)

∂2Ψn

∂β∂θ
= − 1

σ2

n∑

t=2

(
f ′
t(θ)εt−1xt + f ′

t(θ)εtxt−1 − 2ft(θ)f ′
t(θ)xt−1εt−1

)
,

∂2Ψn

∂θ2
= − 1

σ2

n∑

t=2

((
f ′
t
2(θ) + ft(θ)f ′′

t (θ)
)
ε2t−1 − f ′′

t (θ)εtεt−1
)
.

(2.18)

Once
−→
θ
(m+1)

and the gradient at
−→
θ
(m+1)

have been calculated, a new estimation A(m+1)

is found from

A(m+1) = A(m) − A(m)(Δg(m+1))(Δg(m+1))TA(m)

(
Δg(m+1)

)T
A(m)

(
Δg(m+1)

) −

(

Δ
−→
θ
(m+1)

)(

Δ
−→
θ
(m+1)

)T

(
Δg(m+1)

)T
(

Δ
−→
θ
(m+1)

) , (2.19)

where

Δ
−→
θ
(m+1)

=
−→
θ
(m+1)

− −→
θ
(m)

, Δg(m+1) = g

(−→
θ
(m+1)

)

− g

(−→
θ
(m)
)

. (2.20)

It is well known that least squares estimators in ordinary linear regression model
are very good estimators, so a recursive algorithms procedure is to start the iteration with
β(0), σ(0)2 which are least squares estimators of β and σ2, respectively. Take θ(0) such that
ft(θ(0)) = 0. Iterations are stopped if some termination criterion is reached, for example, if

∥
∥
∥
∥
−→
θ
(m+1)

− −→
θ
(m)
∥
∥
∥
∥

∥
∥
∥
∥
−→
θ
(m)
∥
∥
∥
∥

< δ, (2.21)

for some prechosen small number δ > 0.
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Up to this point, we obtain the values of QML estimators when the function ft(θ) =
f(t, θ) is known. However, the function ft(θ) is never the case in practice; we have to estimate
it. By (2.12) and (1.2), we obtain

f̃
(
t, θ̂n

)
=

ε̂t
ε̂t−1

, t = 2, 3, . . . , n. (2.22)

Based on the dataset {f̃(t, θ̂n), t = 2, 3, . . . , n}, we may obtain the estimation function f̂(t, θ̂n)
of f(t, θ) by some smoothing methods (see Simonff [43], Fan and Yao [33], Green and
Silverman [44], Fan and Gijbels [45], etc.)

To obtain our results, the following conditions are sufficient.
(A1) Xn =

∑n
t=2 xtx

T
t is positive definite for sufficiently large n and

lim
n→∞

max
1≤t≤n

xT
t X

−1
n xt = 0, (2.23)

lim sup
n→∞

|λ|max

(
X−1/2

n ZnX
−T/2
n

)
< 1, (2.24)

where Zn = (1/2)
∑n

t=2(xtx
T
t−1 + xt−1xT

t ) and |λ|max(·) denotes the maximum in absolute value
of the eigenvalues of a symmetric matrix.

(A2) There is a constant α > 0 such that

t∑

j=1

(
j−1∏

i=0

f2
t−i(θ)

)

≤ α (2.25)

for any t ∈ {1, 2, . . . , n} and θ ∈ Θ.
(A3) The derivatives f ′

t(θ) = dft(θ)/dθ, f ′′
t (θ) = df ′

t(θ)/dθ exist and are bounded for
any t and θ ∈ Θ.

Remark 2.2. Maller [12] applied the condition (A1), and Kwoun and Yajima [15] used the
conditions (A2) and (A3). Thus our conditions are general. (A1) delineates the class of xt for
which our results hold in the sense required. It is further discussed by Maller in [12]. Kwoun
and Yajima [15] call {et} stable if Var(et) is bounded. Thus (A2) implies that {et} is stable.
However, {et} is not stationary. In fact, by (2.3), we obtain that

Cov(et, et+k) = σ2
0

{
k−1∏

i=0

ft+k−i(θ0) + ft(θ0)
k∏

i=0

ft+k−i(θ0) + · · · +
t−2∏

l=0

ft−l(θ0)
t+k−2∏

i=0

ft+k−i(θ0)

}

,

(2.26)

which is dependent of t.
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For ease of exposition, we will introduce the following notations which will be used
later in the paper.

Define (d + 1)-vector ϕ = (β, θ), and

Sn

(
ϕ
)
= σ2 ∂Ψn

∂ϕ
= σ2

(
∂Ψn

∂β
,
∂Ψn

∂θ

)

, Fn

(
ϕ
)
= −σ2 ∂2Ψn

∂ϕ∂ϕT
. (2.27)

By (2.7) and (2.8), we get

Fn
(
ϕ
)
=

⎛

⎜
⎜
⎜
⎝

Xn(θ)
n∑

t=2

(
f ′
t(θ)εt−1xt + f ′

t(θ)εtxt−1 − 2ft(θ)f ′
t(θ)xt−1εt−1

)

∗
n∑

t=2

((
f ′
t
2(θ) + ft(θ)f ′′

t (θ)
)
ε2t−1 − f ′′

t (θ)εtεt−1
)

⎞

⎟
⎟
⎟
⎠

, (2.28)

whereXn(θ) = −σ2(∂2Ψn/∂β∂β
T ) and the ∗ indicates that the element is filled in by symmetry.

Thus,

Dn = E
(
Fn

(
ϕ0
))

=

⎛

⎜
⎜
⎝

Xn(θ0) 0

∗
n∑

t=2

((
f ′
t
2(θ0) + ft(θ0)f ′′

t (θ0)
)
Ee2t−1 − f ′′

t (θ0)E(etet−1)
)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

Xn(θ0) 0

∗
n∑

t=2

f ′
t
2(θ0)Ee2t−1

⎞

⎟
⎟
⎠

=

(
Xn(θ0) 0

∗ Δn(θ0, σ0)

)

,

(2.29)

where

Δn(θ0, σ0) =
n∑

t=2

f ′
t
2(θ0)Ee2t−1 = σ2

0

n∑

t=2

f ′
t
2(θ0)

t−2∑

j=0

(
j−1∏

i=0

f2
t−i(θ)

)

= O(n). (2.30)

3. Statement of Main Results

Theorem 3.1. Suppose that conditions (A1)–(A3) hold. Then there is a sequence An ↓ 0 such that,
for each A > 0, as n → ∞, the probability

P
{
there are estimators ϕ̂n, σ̂

2
n with Sn

(
ϕ̂n

)
= 0, and

(
ϕ̂n, σ̂

2
n

)
∈ N ′

n(A)
}
−→ 1. (3.1)
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Furthermore,

(
ϕ̂n, σ̂

2
n

)
−→p

(
ϕ0, σ

2
0

)
, n −→ ∞, (3.2)

where, for each n = 1, 2, . . . , A > 0 and An ∈ (0, σ2
0); define neighborhoods

Nn(A) =
{
ϕ ∈ Rd+1 :

(
ϕ − ϕ0

)T
Dn

(
ϕ − ϕ0

) ≤ A2
}
,

N ′
n(A) = Nn(A) ∩

{
σ2 ∈

[
σ2
0 −An, σ

2
0 +An

]}
.

(3.3)

Theorem 3.2. Suppose that conditions (A1)–(A3) hold. Then

1
σ̂n

FT/2
n

(
ϕ̂n

)(
ϕ̂n − ϕ0

)−→DN(0, Id+1), n −→ ∞. (3.4)

Remark 3.3. For θ ∈ Rm,m ∈ N, our results still hold.
In the following, we will investigate some special cases in the model (1.1)-(1.2).

Although the following results are directly obtained from Theorems 3.1 and 3.2, we discuss
these results in order to compare with the corresponding results.

Corollary 3.4. Let ft(θ) = θ. If condition (A1) holds, then, for |θ|/= 1, (3.1), (3.2), and (3.4) hold.

Remark 3.5. These results are the same as the corresponding results of Maller [12].

Corollary 3.6. If β = 0 and ft(θ) = θ, then, for | θ | /= 1,

√∑n
t=2 ε

2
t−1

σ̂n

(
θ̂n − θ0

)
−→DN(0, 1), n −→ ∞, (3.5)

where

σ̂2
n =

1
n − 1

n∑

t=2

(
εt − θ̂nεt−1

)2
, θ̂n =

∑n
t=2(εtεt−1)
∑n

t=2 ε
2
t−1

. (3.6)

Remark 3.7. These estimators are the same as the least squares estimators (see White [16]).
For |θ| > 1, {εt} are explosive processes. In the case, the corollary is the same as the results of
White [17]. While |θ| < 1, notice that σ̂2

n → pσ
2
0 and (1/(n − 1))

∑n
t=2 ε

2
t−1 → pEε

2
t = σ2

0/(1 − θ2
0),

and by Corollary 3.6 we obtain

√
n
(
θ̂n − θ0

)
−→DN

(
0, 1 − θ2

0

)
. (3.7)

The result was discussed by many authors, such as Fujikoshi and Ochi [46] and Brockwell
and Davis [19].
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Corollary 3.8. Let β = 0. If conditions (A2) and (A3) hold, then

F1/2
n

(
θ̂n
)

σ̂n

(
θ̂n − θ0

)
−→DN(0, 1), n −→ ∞, (3.8)

where

Fn

(
θ̂n
)
=

n∑

t=2

((
f ′
t
2
(
θ̂n
)
+ ft

(
θ̂n
)
f ′′
t

(
θ̂n
))

ε2t−1 − f ′′
t

(
θ̂n
)
εtεt−1

)
,

σ̂2
n =

1
n − 1

n∑

t=2

(
εt − ft

(
θ̂n
)
εt−1

)2
.

(3.9)

Corollary 3.9. Let ft(θ) = at. If condition (A1) holds, then

1
σ̂n

{
n∑

t=2
(xt − atxt−1)(xt − atxt−1)T

}T/2(
β̂n − β0

)
−→DN(0, Id), n −→ ∞. (3.10)

Remark 3.10. Let at = 0. Note that
∑n

t=2 xtx
T
t = O(

√
n) and σ̂2

n → pσ
2
0 ; we easily obtain

asymptotic normality of the (quasi-)maximum likelihood or least squares estimator in
ordinary linear regression models from the corollary.

4. Some Lemmas

To prove Theorems 3.1 and 3.2, we first introduce the following lemmas.

Lemma 4.1. The matrix Dn is positive definite for large enough n with E(Sn(ϕ0)) = 0 and
Var(Sn(ϕ0)) = σ2

0Dn.

Proof. It is easy to show that the matrixDn is positive definite for large enough n. By (2.8), we
have

σ2
0E

(
∂Ψn

∂β
|β=β0

)

=
n∑

t=2

E
(
et − ft(θ0)et−1

)(
xt − ft(θ0)xt−1

)

=
n∑

t=2

(
xt − ft(θ0)xt−1

)
Eηt = 0.

(4.1)

Note that et−1 and ηt are independent of each other; thus by (2.7) and Eηt = 0, we have

σ2
0E

(
∂Ψn

∂θ
|θ=θ0

)

=
n∑

t=2

E
((
et − ft(θ0)et−1

)
f ′
t(θ0)et−1

)

=
n∑

t=2

f ′
t(θ0)E

(
ηtet−1

)
= 0.

(4.2)
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Hence, from (4.1) and (4.2),

E
(
Sn

(
ϕ0
))

= σ2
0E

(
∂Ψn

∂β
|β=β0 ,

∂Ψn

∂θ
|θ=θ0

)

= 0. (4.3)

By (2.8) and (2.17), we have

Var
(

σ2
0
∂Ψn

∂β
|β=β0

)

= Var

{
n∑

t=2

(
et − ft(θ0)et−1

)(
xt − ft(θ0)xt−1

)
}

= Var

{
n∑

t=2

ηt
(
xt − ft(θ0)xt−1

)
}

= σ2
0Xn(θ0).

(4.4)

Note that {f ′
t(θ0)ηtet−1,Ht} is a martingale difference sequence with

Var
(
f ′
t(θ0)ηtet−1

)
= f ′

t
2(θ0)Eη2

t Ee
2
t−1 = σ2

0f
′
t
2(θ0)Ee2t−1, (4.5)

so

Var
(

σ2
0
∂Ψn

∂θ
|θ=θ0

)

= Var

{
n∑

t=2

ηtf
′
t(θ0)et−1

}

=
n∑

t=2

f ′
t
2(θ0)Ee2t−1 = σ2

0Δn(θ0, σ0).

(4.6)

By (2.7) and (2.8) and noting that et−1 and ηt are independent of each other, we have

Cov
(

σ2
0
∂Ψn

∂β
|β=β0 , σ2

0
∂Ψn

∂θ
|θ=θ0

)

= E

(

σ2
0
∂Ψn

∂β
|β=β0 , σ2

0
∂Ψn

∂θ
|θ=θ0

)

= E

(
n∑

t=2

η2
t

(
xt − ft(θ0)xt−1

)
f ′
t(θ0)et−1

)

+ E

(
n∑

t=3

ηt
(
xt − ft(θ0)xt−1

) t−1∑

s=2

ηsf
′
s(θ0)es−1

)

+ E

(
n∑

s=3

ηsf
′
s(θ0)es−1

s−1∑

t=2

ηt
(
xt − ft(θ0)xt−1

)
)

= 0.

(4.7)

From (4.4)–(4.7), it follows that Var(Sn(ϕ0)) = σ2
0Dn.
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Lemma 4.2. If condition (A1) holds, then, for any θ ∈ Θ, the matrix Xn(θ) is positive definite for
large enough n, and

lim
n→∞

max
1≤t≤n

xT
t X

−1
n (θ)xt = 0. (4.8)

Proof. Let λ1 and λd be the smallest and largest roots of |Zn − λXn| = 0. Then from the study
of Rao in [47, Ex 22.1],

λ1 ≤ uTZnu

uTXnu
≤ λd (4.9)

for unit vectors u. Thus by (2.24), there are some δ ∈ (max{0, 1 − (1 + min2≤t≤n|
f2
t (θ)|)/max2≤t≤n|ft(θ)|}, 1) and n0(δ) such that n ≥ N0 implies that

∣
∣
∣uTZnu

∣
∣
∣ ≤ (1 − δ)uTXnu. (4.10)

By (4.10), we have

uTXnu =
n∑

t=2

(
uT(xt − ft(θ)xt−1

))2

=
n∑

t=2

((
uTxt

)2
+ f2

t (θ)
(
uTxt−1

)2 − ft(θ)uTxt−1xT
t u − ft(θ)uTxtx

T
t−1u

)

≥
n∑

t=2

(
uTxt

)2
+ min

2≤t≤n

∣
∣
∣f2

t (θ)
∣
∣
∣

n∑

t=2

(
uTxt−1

)2 −max
2≤t≤n

∣
∣ft(θ)

∣
∣uTZnu

≥ uTXnu + min
2≤t≤n

∣
∣
∣f2

t (θ)
∣
∣
∣uTXnu −max

2≤t≤n

∣
∣ft(θ)

∣
∣uTZnu

≥
(

1 + min
2≤t≤n

∣
∣
∣f2

t (θ)
∣
∣
∣ −max

2≤t≤n

∣
∣ft(θ)

∣
∣(1 − δ)

)

uTXnu

= C(θ, δ)uTXnu.

(4.11)

By the study of Rao in [47, page 60] and (2.23), we have

(
uTxt

)2

uTXnu
−→ 0. (4.12)
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From (4.12) and C(θ, δ) > 0,

xT
t X

−1
n (θ) = sup

u

( (
uTxt

)2

uTXn(θ)u

)

≤ sup
u

( (
uTxt

)2

C(θ, δ)uTXnu

)

−→ 0. (4.13)

Lemma 4.3 (see [48]). Let Wn be a symmetric random matrix with eigenvalues λj(n), 1 ≤ j ≤ d.
Then

Wn−→pI ⇐⇒ λj(n)−→p1, n −→ ∞. (4.14)

Lemma 4.4. For each A > 0,

sup
ϕ∈Nn(A)

∥
∥
∥D−1/2

n Fn
(
ϕ
)
D−T/2

n −Φn

∥
∥
∥−→p0, n −→ ∞, (4.15)

and also

Φn−→DΦ, (4.16)

lim
c→ 0

lim sup
A→∞

lim sup
n→∞

P

{

inf
ϕ∈Nn(A)

λmin

(
D−1/2

n Fn
(
ϕ
)
D−T/2

n

)
≤ c

}

= 0, (4.17)

where

Φn =

⎛

⎜
⎝

Id 0

0

∑n
t=2 f

′
t
2(θ0)e2t−1

Δn(θ0, σ0)

⎞

⎟
⎠, Φ = Id+1. (4.18)

Proof. Let Xn(θ0) = X1/2
n (θ0)X

T/2
n (θ0) be a square root decomposition of Xn(θ0). Then

Dn =

(
X1/2

n (θ0) 0

∗ √
Δn(θ0, σ0)

)(
XT/2

n (θ0) 0

∗ √
Δn(θ0, σ0)

)

= D1/2
n DT/2

n . (4.19)

Let ϕ ∈ Nn(A). Then

(
ϕ − ϕ0

)T
Dn

(
ϕ − ϕ0

)
=
(
β − β0

)T
Xn(θ0)

(
β − β0

)
+ (θ − θ0)

2Δn(θ0, σ0) ≤ A2. (4.20)



Mathematical Problems in Engineering 13

From (2.28), (2.29), and (4.18),

D−1/2
n Fn

(
ϕ
)
D−T/2

n −Φn

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X−1/2
n (θ0)Xn(θ)X

−T/2
n (θ0) − Id

X−1/2
n (θ0)

∑n
t=2
(
f ′
t(θ)εt−1xt + f ′

t(θ)εtxt−1 − 2ft(θ)f ′
t(θ)εt−1xt−1

)

√
Δn(θ0, σ0)

∗
∑n

t=2

((
f ′
t
2(θ) + ft(θ)f ′′

t (θ)
)
ε2t−1 − f ′′

t (θ)εtεt−1
)
−∑n

t=2 f ′
t
2(θ0)e2t−1

√
Δn(θ0, σ0)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(4.21)

Let

N
β
n(A) =

{

β :
∣
∣
∣
(
β − β0

)T
X1/2

n (θ0)
∣
∣
∣
2 ≤ A2

}

, (4.22)

Nθ
n(A) =

{

θ : |θ − θ0| ≤ A
√
Δn(θ0, σ0)

}

. (4.23)

In the first step, we will show that, for each A > 0,

sup
θ∈Nθ

n(A)

∥
∥
∥X−1/2

n (θ0)Xn(θ)X−T/2
n (θ0) − Id

∥
∥
∥ −→ 0, n −→ ∞. (4.24)

In fact, note that

X−1/2
n (θ0)Xn(θ)X−T/2

n (θ0) − Id = X−1/2
n (θ0)(Xn(θ) −Xn(θ0))X−T/2

n (θ0)

= X−1/2
n (θ0)(T1 + T2 − T3)X−T/2

n (θ0),
(4.25)

where

T1 =
n∑

t=2

(
ft(θ0) − ft(θ)

)
xt−1

(
xt − ft(θ0)xt−1

)T
,

T2 =
n∑

t=2

(
xt − ft(θ0)xt−1

)
xT
t−1,

T3 =
n∑

t=2

(
ft(θ0) − ft(θ)

)2
xt−1xT

t−1.

(4.26)
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Let u, v ∈ Rd, |u| = |v| = 1, and let uT
n = uTX−1/2

n (θ0), vT
n = X−T/2

n (θ0)v. By Cauchy-
Schwartz inequality, Lemma 4.2, condition (A3), and noting that θ ∈ Nθ

n(A), we have that

∣
∣
∣uT

nT1vn

∣
∣
∣ =

∣
∣
∣
∣
∣

n∑

t=2

(
ft(θ0) − ft(θ)

)
uT
nxt−1

(
xt − ft(θ0)xt−1

)T
vn

∣
∣
∣
∣
∣

≤ max
2≤t≤n

∣
∣ft(θ0) − ft(θ)

∣
∣

∣
∣
∣
∣
∣

n∑

t=2

uT
nxt−1

(
xt − ft(θ0)xt−1

)T
vn

∣
∣
∣
∣
∣

≤ max
2≤t≤n

∣
∣ft(θ0) − ft(θ)

∣
∣

(
n∑

t=2

uT
nxt−1xT

t−1un

)1/2

·
(

n∑

t=2

vT
n

(
xt − ft(θ0)xt−1

)(
xt − ft(θ0)xt−1

)T
vn

)1/2

≤ max
2≤t≤n

∣
∣ft(θ0) − ft(θ)

∣
∣

(
n∑

t=2

uT
nxtx

T
t un

)1/2

≤ max
2≤t≤n

∣
∣
∣f ′

t

(
θ̃
)∣
∣
∣|θ0 − θ| · √nmax

1≤t≤n

(
xT
t X

−1
n (θ0)xt

)

≤ C

√
n

Δn(θ0, σ0)
o(1) −→ 0.

(4.27)

Here θ̃ = aθ + (1 − a)θ0 for some 0 ≤ a ≤ 1. Similar to the proof of T1, we easily obtain that

∣
∣
∣uT

nT2vn

∣
∣
∣ −→ 0. (4.28)

By Cauchy-Schwartz inequality, Lemma 4.2, condition (A3), and noting thatNθ
n(A), we have

that

∣
∣
∣uT

nT3vn

∣
∣
∣ =

∣
∣
∣
∣
∣
uT
n

n∑

t=2

(
ft(θ0) − ft(θ)

)2
xt−1xT

t−1vn

∣
∣
∣
∣
∣

≤ max
2≤t≤n

∣
∣ft(θ0) − ft(θ)

∣
∣2
(

n∑

t=2

uT
nxtx

T
t un

n∑

t=2

vT
nxtx

T
t vn

)1/2

≤ nmax
2≤t≤n

∣
∣
∣f ′

t

(
θ̃
)∣
∣
∣
2
|θ0 − θ|2max

1≤t≤n

(
xT
t X

−1
n (θ0)xt

)

≤ nA2

Δn(θ0, σ0)
o(1) −→ 0.

(4.29)

Hence, (4.24) follows from (4.25)–(4.29).
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In the second step, we will show that

X−1/2
n (θ0)

∑n
t=2
(
f ′
t(θ)εt−1xt + f ′

t(θ)εtxt−1 − 2ft(θ)f ′
t(θ)εt−1xt−1

)

√
Δn(θ0, σ0)

−→p0. (4.30)

Note that

εt = yt − xT
t β = xT

t

(
β0 − β

)
+ et,

εt − ft(θ0)εt−1 =
(
xt − ft(θ0)xt−1

)T(
β0 − β

)
+ ηt.

(4.31)

Consider

J =
n∑

t=2

(
f ′
t(θ)εt−1xt + f ′

t(θ)εtxt−1 − 2ft(θ)f ′
t(θ)εt−1xt−1

)

=
n∑

t=2

(
εt−1f ′

t(θ)
(
xt − ft(θ0)xt−1

)
+ f ′

t(θ)
(
εt − ft(θ0)εt−1

)
xt−1

)

+ 2ft(θ)
(
ft(θ0) − ft(θ)

)
εt−1xt−1

= T1 + T2 + T3 + T4 + 2T5 + 2T6,

(4.32)

where

T1 =
n∑

t=2

xT
t−1f

′
t(θ)

(
β0 − β

)(
xt − ft(θ0)xt−1

)
, T2 =

n∑

t=2

f ′
t(θ)et−1

(
xt − ft(θ0)xt−1

)
,

T3 =
n∑

t=2

f ′
t(θ)

(
xt − ft(θ0)xt−1

)T(
β0 − β

)
xt−1, T4 =

n∑

t=2

f ′
t(θ)ηtxt−1,

T5 =
n∑

t=2

f ′
t(θ)

(
ft(θ0) − ft(θ)

)
xT
t−1
(
β0 − β

)
xt−1, T6 =

n∑

t=2

f ′
t(θ)

(
ft(θ0) − ft(θ)

)
et−1xt−1.

(4.33)

For β ∈ N
β
n(A) and each A > 0, we have

∣
∣
∣
(
β0 − β

)T
xt

∣
∣
∣
2
=
(
β0 − β

)T
X1/2

n (θ0)X−1/2
n (θ0)xtx

T
t X

−T/2
n (θ0)XT/2

n (θ0)
(
β0 − β

)

≤ max
1≤t≤n

(
xT
t X

−1
n (θ0)xt

)(
β0 − β

)T
Xn(θ0)

(
β0 − β

)

≤ A2 max
1≤t≤n

(
xT
t X

−1
n (θ0)xt

)
.

(4.34)
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By (4.34) and Lemma 4.2, we have

sup
β∈Nβ

n(A)

max
1≤t≤n

∣
∣
∣
(
β0 − β

)T
xt

∣
∣
∣ −→ 0, n −→ ∞, A > 0. (4.35)

Using Cauchy-Schwartz inequality, condition (A3), and (4.35), we obtain

uT
nT1 =

n∑

t=2

uT
nx

T
t−1
(
β0 − β

)
f ′
t(θ)

(
xt − ft(θ0)xt−1

)

≤
{

n∑

t=2

(
xT
t−1
(
β0 − β

))2
}1/2

×
{

n∑

t=2

(
f ′
t
2(θ)uT

n

(
xt − ft(θ0)xt−1

)(
xt − ft(θ0)xt−1

)T
un

)2
}1/2

≤ √
nmax

1≤t≤n

∣
∣
∣
(
β0 − β

)T
xt

∣
∣
∣max
1≤t≤n

∣
∣f ′

t(θ)
∣
∣

= o
(√

n
)
.

(4.36)

Let

atn = uT
nf

′
t(θ)

(
xt − ft(θ0)xt−1

)
. (4.37)

Then from Lemma 4.2,

max
2≤t≤n

a2
tn = max

2≤t≤n

∣
∣
∣f ′

t
2(θ)

∣
∣
∣

×max
2≤t≤n

{
uT(xt − ft(θ0)xt−1

)
X−1

n (θ0)
(
xt − ft(θ0)xt−1

)T
u
}

= o(1).

(4.38)
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By condition (A2) and (4.38), we have

Var
(
uT
nT2
)
= Var

(
n∑

t=2

atnet−1

)

= Var

(
n∑

t=2

atnet−1

)

= Var

⎧
⎨

⎩

n−1∑

j=1

ηj

⎛

⎝
n∑

t=j+1

atn

t−j−1∏

i=0

ft−i(θ0)

⎞

⎠

⎫
⎬

⎭

= σ2
0

n−1∑

j=1

⎛

⎝
n∑

t=j+1

atn

t−j−1∏

i=0

ft−i(θ0)

⎞

⎠

≤ σ2
0 max
2≤t≤n

|atn|
n−1∑

j=1

(
t−j−1∏

i=0

ft−i(θ0)

)

≤ ασ2
0 max
2≤t≤n

|atn|n = o(n).

(4.39)

Thus by Chebychev inequality and (4.39),

uT
nT2 = op

(√
n
)
. (4.40)

Using the similar argument as T1, we obtain that

uT
nT3 = op

(√
n
)
. (4.41)

Using the similar argument as T2, we obtain that

uT
nT4 = op

(√
n
)
, uT

nT6 = op
(√

n
)
. (4.42)

By Cauchy-Schwartz inequality, (4.35), and (4.27), we get

uT
nT5 =

n∑

t=2

f ′
t(θ)

(
ft(θ0) − ft(θ)

)
xT
t−1
(
β0 − β

)
uT
t xt−1

≤
{

n∑

t=2

f ′
t
2(θ)

(
ft(θ0) − ft(θ)

)2
(
xT
t−1
(
β0 − β

))2 n∑

t=2

(
uT
t xt−1

)2
}1/2

≤ max
2≤t≤n

∣
∣f ′

t(θ)
∣
∣max
2≤t≤n

∣
∣
∣f ′

t

(
θ̃
)∣
∣
∣|θ0 − θ| ·

{
n∑

t=2

(
xT
t−1
(
β0 − β

))2 n∑

t=2

(
uT
t xt−1

)2
}1/2

≤ C
A

√
Δn(θ0, σ0)

√
no(1) = o

(√
n
)
.

(4.43)

Thus (4.30) follows immediately from (4.32), (4.36), and (4.40)–(4.43).
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In the third step, we will show that

∑n
t=2

((
f ′
t
2(θ) + ft(θ)f ′′

t (θ)
)
ε2t−1 − f ′′

t (θ)εtεt−1
)
−∑n

t=2 f
′
t
2(θ0)e2t−1

√
Δn(θ0, σ0)

−→p0. (4.44)

Let

J =
n∑

t=2

((
f ′
t
2(θ) + ft(θ)f ′′

t (θ)
)
ε2t−1 − f ′′

t (θ)εtεt−1
)
−

n∑

t=2

f ′
t
2(θ0)e2t−1. (4.45)

Then

J =
n∑

t=2

((
f ′
t
2(θ) + ft(θ)f ′′

t (θ)
)
ε2t−1 − f ′′

t (θ)
(
ft(θ)εt−1 + ηt

)
εt−1

)
−

n∑

t=2

f ′
t
2(θ0)e2t−1

=
n∑

t=2

{
f ′
t
2(θ)ε2t−1 − f ′′

t (θ)ηtεt−1 − f ′
t
2(θ0)e2t−1

}

=
n∑

t=2

{

f ′
t
2
(
xT
t−1
(
β0 − β

))2
+
(
f ′
t
2(θ) − f ′

t
2(θ0)

)2
e2t−1

}

+
n∑

t=2

{
2f ′

t
2(θ0)xT

t−1
(
β0 − β

)
et−1 − f ′′

t (θ)x
T
t−1
(
β0 − β

)
ηt−1 − f ′′

t (θ0)ηtet−1
}

= T1 + T2 + 2T3 − T4 − T5.

(4.46)

By (4.34), it is easy to show that

T1 = o(n). (4.47)

From condition (A3), (2.30), and (4.23), we obtain that

|ET2| =
∣
∣
∣
∣

(
f ′
t
2(θ) − f ′

t
2(θ0)

)2
Ee2t−1

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
f ′′
t

(
θ̃
)
(θ − θ0)

(
f ′
t(θ) + f ′

t(θ0)

f ′
t
2(θ0)

)

f ′
t
2(θ0)Ee2t−1

∣
∣
∣
∣
∣

≤ max
2≤t≤n

∣
∣
∣
∣
∣
f ′′
t

(
θ̃
)
(

f ′
t(θ) + f ′

t(θ0)

f ′
t
2(θ0)

)∣
∣
∣
∣
∣
|θ − θ0|Δn(θ0, σ0)

≤ max
2≤t≤n

∣
∣
∣
∣
∣
f ′′
t

(
θ̃
)
(

f ′
t(θ) + f ′

t(θ0)

f ′
t
2(θ0)

)∣
∣
∣
∣
∣

A
√
Δn(θ0, σ0)

Δn(θ0, σ0)

= o

(√
Δn(θ0, σ0)

)

.

(4.48)
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Hence, by Markov inequality,

T2 = Op

(√
Δn(θ0, σ0)

)

. (4.49)

Using the similar argument as (4.40), we easily obtain that

T3 = op
(√

n
)
. (4.50)

By Markov inequality and noting that

Var(T4) ≤ σ2
0nmax

2≤t≤n

∣
∣f ′′

t (θ)
∣
∣2 max

2≤t≤n

(
xT
t

(
β0 − β

))
= o(n), (4.51)

we have that

T4 = op
(√

n
)
. (4.52)

Using the similar argument as (4.6), we easily obtain that

T5 = Op

(√
Δn(θ0, σ0)

)

. (4.53)

Hence, (4.44) follows immediately from (4.46), (4.47), and (4.49)–(4.53).
This completes the proof of (4.15) from (4.21), (4.24), (4.30), and (4.44). To prove (4.16),

we need to show that

∑n
t=2 f

′
t
2(θ0)e2t−1

Δn(θ0, σ0)
−→p1, n −→ ∞. (4.54)

This follows immediately from (2.27) and Markov inequality.
Finally, we will prove (4.17). By (4.15) and (4.16), we have

D−1/2
n F

(
ϕ
)
D−T/2

n −→pI, n −→ ∞, (4.55)

uniformly in ϕ ∈ Nn(A) for each A > 0. Thus, by Lemma 4.3,

λmin

(
D−1/2

n F
(
ϕ
)
D−T/2

n

)
−→p1, n −→ ∞. (4.56)

This implies (4.17).
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Lemma 4.5 (see [49]). Let {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} be a zero-mean, square-integrable martingale
array with differencesXni, and let η2 be an a.s. finite random variable. Suppose that

∑
i E{X2

niI(|Xni| >
ε) | Fn,i−1}→ p0, for all ε → 0, and

∑
i E{X2

ni | Fn,i−1}→ pη
2. Then

Snkn =
∑

i

Xni−→DZ, (4.57)

where the r.v. Z has characteristic function E{exp(−(1/2)η2t2)}.

5. Proof of Theorems

5.1. Proof of Theorem 3.1

Take A > 0, let

Mn(A) =
{
ϕ ∈ Rd+1 :

(
ϕ − ϕ0

)T
Dn

(
ϕ − ϕ0

)
= A2

}
(5.1)

be the boundary of Nn(A), and let ϕ ∈ Mn(A). Using (2.27) and Taylor expansion, for each
σ2 > 0, we have

Ψn

(
ϕ, σ2

)
= Ψn

(
ϕ0, σ

2
)
+
(
ϕ − ϕ0

)T ∂Ψn

(
ϕ0, σ

2)

∂ϕ
+
1
2
(
ϕ − ϕ0

)T ∂
2Ψn

(
ϕ0, σ

2)

∂ϕ∂ϕT

(
ϕ − ϕ0

)

=
1
σ2

Ψn

(
ϕ0, σ

2
)
+
(
ϕ − ϕ0

)T
Sn

(
ϕ0
) − 1

2σ2

(
ϕ − ϕ0

)T
Fn

(
ϕ̃
)(
ϕ − ϕ0

)
,

(5.2)

where ϕ̃ = aϕ + (1 − a)ϕ0 for some 0 ≤ a ≤ 1.
Let Qn(ϕ) = (1/2)(ϕ − ϕ0)

TFn(ϕ̃)(ϕ − ϕ0) and vn(ϕ) = (1/A)DT/2
n (ϕ − ϕ0). Take c > 0

and ϕ ∈ Mn(A), and by (5.2)we obtain that

P
{
Ψn

(
ϕ, σ2

)
≥ Ψn

(
ϕ0, σ

2
)
for some ϕ ∈ Mn(A)

}

≤ P
{(

ϕ − ϕ0
)T
Sn

(
ϕ0
) ≥ Qn

(
ϕ
)
, Qn

(
ϕ
)
> cA2 for some ϕ ∈ Mn(A)

}

+ P
{
Qn

(
ϕ
) ≤ cA2 for some ϕ ∈ Mn(A)

}

≤ P
{
vT
n

(
ϕ
)
D−1/2

n Sn

(
ϕ0
)
> cA for some ϕ ∈ Mn(A)

}

+ P
{
vT
n

(
ϕ
)
D−1/2

n Fn

(
ϕ̃
)
D−T/2

n vn

(
ϕ
) ≤ c for some ϕ ∈ Mn(A)

}

≤ P
{∣
∣
∣D−1/2

n Sn

(
ϕ0
)∣∣
∣ > cA

}
+ P

{

inf
ϕ∈Nn(A)

λmin

(
D−1/2

n Fn

(
ϕ̃
)
D−T/2

n

)
≤ c

}

.

(5.3)
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By Lemma 4.1 and Chebychev inequality, we obtain

P
{∣
∣
∣D−1/2

n Sn

(
ϕ0
)∣∣
∣ > cA

}
≤

Var
(
D−1/2

n Sn

(
ϕ0
))

c2A2
=

σ2
0

c2A2
. (5.4)

Let A → ∞, then c ↓ 0, and using (4.17), we have

P

{

inf
ϕ∈Nn(A)

λmin

(
D−1/2

n Fn

(
ϕ̃
)
D−T/2

n

)
≤ c

}

−→ 0. (5.5)

By (5.3)–(5.5), we have

lim
A→∞

lim inf
n→∞

P
{
Ψn

(
ϕ, σ2

)
< Ψn

(
ϕ0, σ

2
)
∀ϕ ∈ Mn(A)

}
= 1. (5.6)

By Lemma 4.3, λmin(Xn(θ0)) → ∞ as n → ∞. Hence λmin(Dn) → ∞. Moreover, from (4.17),
we have

inf
ϕ∈Nn(A)

λmin
(
Fn

(
ϕ
))−→p∞. (5.7)

This implies that Ψn(ϕ, σ2) is concave on Nn(A). Noting this fact and (5.6), we get

lim
A→∞

lim inf
n→∞

P

{

sup
ϕ∈Mn(A)

Ψn

(
ϕ, σ2

)
< Ψn

(
ϕ0, σ

2
)
,Ψn

(
ϕ, σ2

)
is concave on Nn(A)

}

= 1.

(5.8)

On the event in the brackets, the continuous function Ψn(ϕ, σ2) has a unique maximum in ϕ
over the compact neighborhood Nn(A). Hence

lim
A→∞

lim inf
n→∞

P
{
Sn

(
ϕ̂n(A)

)
= 0 for a unique ϕ̂n(A) ∈ Nn(A)

}
= 1. (5.9)

Moreover, there is a sequence An → ∞ such that ϕ̂n = ϕ̂(An) satisfies

lim inf
n→∞

P
{
Sn

(
ϕ̂n

)
= 0 and ϕ̂n maximizes Ψn

(
ϕ, σ2

)
uniquely in Nn(A)

}
= 1. (5.10)

Thus the ϕ̂n = (β̂n, θ̂n) is a QML estimator for ϕ0. It is clearly consistent, and

lim
A→∞

lim inf
n→∞

P
{
ϕ̂n ∈ Nn(A)

}
= 1. (5.11)

Since ϕ̂n = (β̂n, θ̂n) is a QML estimator for ϕ0, σ̂2
n is a QML estimator for σ2

0 from (2.9).
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To complete the proof, we will show that σ̂2
n → σ2

0 as n → ∞. If ϕ̂n ∈ Nn(A), then

β̂n ∈ N
β
n(A) and θ̂n ∈ Nθ

n(A). By (2.12) and (2.1), we have

ε̂t − ft
(
θ̂n
)
ε̂t−1 =

(
xt − ft

(
θ̂n
)
xt−1

)T(
β0 − β̂n

)
+
(
et − ft

(
θ̂net−1

))
. (5.12)

By (2.9), (2.11), and (5.12), we have

(n − 1)σ̂2
n =

n∑

t=2

(
ε̂t − ft

(
θ̂n
)
ε̂t−1

)2

=
n∑

t=2

(
ε̂t − ft

(
θ̂n
)
ε̂t−1

){(
xt − ft

(
θ̂n
)
xt−1

)T(
β0 − β̂n

)
+
(
et − ft

(
θ̂n
)
et−1

)}

=
n∑

t=2

(
ε̂t − ft

(
θ̂n
)
ε̂t−1

)(
xt − ft

(
θ̂n
)
xt−1

)T(
β0 − β̂n

)

+
n∑

t=2

(
ε̂t − ft

(
θ̂n
)
ε̂t−1

)(
et − ft

(
θ̂n
)
et−1

)

=
n∑

t=2

(
ε̂t − ft

(
θ̂n
)
ε̂t−1

)(
et − ft

(
θ̂n
)
et−1

)
.

(5.13)

From (5.12), it follows that

n∑

t=2

{(
xt − ft

(
θ̂n
)
xt−1

)T(
β0 − β̂n

)}2

=
n∑

t=2

(
ε̂t − ft

(
θ̂n
)
ε̂t−1

)2

− 2
n∑

t=2

ft(θ̂n)xt−1)
T(

β0 − β̂n
)(

et − ft
(
θ̂n
)
et−1

)

+
n∑

t=2

(
et − ft

(
θ̂n
)
et−1

)2
.

(5.14)

From (2.2),

n∑

t=2

(
et − ft

(
θ̂n
)
et−1

)2
=

n∑

t=2

(
ft(θ0)et−1 − ft

(
θ̂n
)
et−1

)2

=
n∑

t=2

η2
t + 2

n∑

t=2

(
ft(θ0) − ft

(
θ̂n
))

ηtet−1

+
n∑

t=2

(
ft(θ0) − ft

(
θ̂n
))2

e2t−1.

(5.15)
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By (5.13)–(5.15), we have

(n − 1)σ̂2
n =

n∑

t=2

(
et − ft

(
θ̂n
)
et−1

)2 −
n∑

t=2

((
xt − ft

(
θ̂n
)
xt−1

)T(
β0 − β̂n

))2

=
n∑

t=2

η2
t + 2

n∑

t=2

(
ft(θ0) − ft

(
θ̂n
))

ηtet−1 +
n∑

t=2

(
ft(θ0) − ft

(
θ̂n
))2

e2t−1

−
n∑

t=2

((
xt − ft

(
θ̂n
)
xt−1

)T(
β0 − β̂n

))2

= T1 + 2T2 + T3 − T4.

(5.16)

By the law of large numbers,

1
n − 1

T1 =
1

n − 1

n∑

t=2

η2
t −→ σ2

0 , a.s. (n −→ ∞). (5.17)

Since {(ft(θ0) − ft(θ̂n))ηtet−1,Ht−1} is a martingale difference sequence with

Var
{(

ft(θ0) − ft
(
θ̂n
))

ηtet−1
}
=
(
ft(θ0) − ft

(
θ̂n
))2

σ2
0Ee

2
t−1,

Var(T2) =
n∑

t=2

E
((

ft(θ0) − ft
(
θ̂n
))

ηtet−1
)2

= σ2
0

n∑

t=2

(
ft(θ0) − ft

(
θ̂n
))2

Ee2t−1

= σ2
0

n∑

t=2

f ′
t
2
(
θ̃
)

f ′
t
2(θ0)

(
θ0 − θ̂n

)2
f ′
t
2(θ0)Ee2t−1

≤ σ2
0 max
2≤t≤n

∣
∣
∣
∣
∣

f ′
t(θ̃)

f ′
t(θ0)

∣
∣
∣
∣
∣

2∣
∣
∣
(
θ0 − θ̂n

)∣
∣
∣
2
Δn

(
θ0, σ

2
0

)

≤ CA2.

(5.18)

By Chebychev inequality, we have

1
n − 1

T2−→p0, (n −→ ∞). (5.19)

By Markov inequality and noting that ET3 ≤ CA2, we obtain that

1
n − 1

T3−→p0, (n −→ ∞). (5.20)
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Write

T4 =
n∑

t=2

((
xt − ft(θ0)xt−1

)T
(
β0 − β̂n

)
+
(
ft(θ0) − ft

(
θ̂n
))

xT
t−1
(
β0 − β̂n

))2

=
(
β0 − β̂n

)T
Xn(θ0)

(
β0 − β̂n

)
+

n∑

t=2

(
ft(θ0) − ft

(
θ̂n
))2(

xT
t−1
(
β0 − β̂n

))2

+ 2
n∑

t=2

(
xt − ft(θ0)xt−1

)T
(
β0 − β̂n

)(
ft(θ0) − ft

(
θ̂n
))

xT
t−1
(
β0 − β̂n

)

= I1 + I2 + 2I3.

(5.21)

Noting that β ∈ N
β
n(A), we have

I1 = Op(1), (n −→ ∞). (5.22)

By (4.34) and condition (A3), we have

|I2| ≤ max
2≤t≤n

∣
∣
∣xT

t−1(β0 − β̂n)
∣
∣
∣
2
nmax

2≤t≤n

∣
∣
∣f ′

t(θ̃)
∣
∣
∣
2∣∣
∣θ0 − θ̂n

∣
∣
∣
2
= o(1), (n −→ ∞). (5.23)

By (4.34), condition (A3), and Cauchy-Schwartz inequality, we have

|I3|2 ≤
n∑

t=2

(
β0 − β̂n

)T(
xt − ft(θ0)xt−1

)T(
xt − ft(θ0)xt−1

)(
β0 − β̂n

)

·
n∑
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(
ft(θ0) − ft

(
θ̂n
))2(

xT
t−1
(
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))2

≤
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)T
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(
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)
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∣
∣
∣f ′

t(θ̃)
∣
∣
∣
2∣∣
∣θ0 − θ̂n

∣
∣
∣
2

·max
2≤t≤n

∣
∣
∣xT

t−1(β0 − β̂n)
∣
∣
∣
2

≤ Op(1)n
A2

Δn

(
θ0, σ

2
0

)o(1) = op(1).

(5.24)

By (5.21)–(5.24), we obtain

1
n − 1

T4−→p0, (n −→ ∞). (5.25)

From (5.16), (5.17), (5.19), (5.20), and (5.25), we have σ̂2
n → σ2

0 . We therefore complete the
proof of Theorem 3.1.
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5.2. Proof of Theorem 3.2

It is easy to know that Sn(ϕ̂n) = 0 and Fn(ϕ̂n) is nonsingular from Theorem 3.1. By Taylor’s
expansion, we have

0 = Sn

(
ϕ̂n

)
= Sn

(
ϕ0
) − Fn

(
ϕ̃n

)(
ϕ̂n − ϕ0

)
. (5.26)

Since ϕ̂n ∈ Nn(A), also ϕ̃n ∈ Nn(A). By (4.15), we have

Fn

(
ϕ̃n

)
= D1/2

n

(
Φn + Ãn

)
DT/2

n , (5.27)

where Ãn is a symmetric matrix with Ãn → p0. By (5.26) and (5.27), we have

DT/2
n

(
ϕ̂n − ϕ0

)
= DT/2

n F−1
n

(
ϕ̃n

)
Sn

(
ϕ0
)
=
(
Φn + Ãn

)−1
D−1/2

n Sn

(
ϕ0
)
. (5.28)

Similar to (5.27), we have

Fn

(
ϕ̂n

)
= D1/2

n

(
Φn + Ân

)
DT/2

n =
(

D1/2
n

(
Φn + Ân

)1/2
)((

Φn + Ân

)T/2
DT/2

n

)

= F1/2
n

(
ϕ̂n

)
FT/2
n

(
ϕ̂n

)
.

(5.29)

Here Ân → p0. By (5.28), (5.29), and noting that σ̂2
n → pσ

2
0 andD−1/2

n Sn(ϕ0) = Op(1), we obtain
that

FT/2
n

(
ϕ̂n

)(
ϕ̂n − ϕ0

)

σ̂n
=

(
Φn + Ân

)1/2(
Φn + Ãn

)−1
D−1/2

n Sn

(
ϕ0
)

σ̂n

=
Φ−1/2

n D−1/2
n Sn

(
ϕ0
)

σ0
+ op(1).

(5.30)

From (2.7) and (2.8), we have

Sn

(
ϕ0
)

σ0
=

1
σ0

(
n∑

t=2

ηt
(
xt − ft(θ0)xt−1

)
,

n∑

t=2

f ′
t(θ0)ηtet−1

)

. (5.31)
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From (2.29) and (4.18), we have

Φ−1/2
n D−1/2

n =

⎛

⎜
⎜
⎝

Id 0

0
√

Δn(θ0, σ0)
∑n
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′
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⎟
⎟
⎠
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⎜
⎝

X−1/2
n (θ0) 0

0
1

√
Δn(θ0, σ0)

⎞

⎟
⎠

=

⎛

⎜
⎜
⎝

X−1/2
n (θ0) 0

0
1

√∑n
t=2 f

′
t
2(θ0)e2t−1

⎞

⎟
⎟
⎠.

(5.32)

By (5.30)–(5.32), we have

Φ−1/2
n D−1/2

n Sn

(
ϕ0
)

σ0
=

1
σ0

⎛

⎜
⎝

n∑

t=2

ηtX
−1/2
n (θ0)

(
xt − ft(θ0)xt−1

)
,

∑n
t=2 f

′
t(θ0)ηtet−1

√∑n
t=2 f

′
t
2(θ0)e2t−1

⎞

⎟
⎠. (5.33)

Let u ∈ Rd with |u| = 1, and atn = uX−1/2
n (θ0)(xt − ft(θ0)xt−1). Then max2≤t≤natn = o(1),

and we will consider the limiting distribution of the following 2-vector:

1
σ0

⎛

⎜
⎝

n∑

t=2

atnηt,

∑n
t=2 f

′
t(θ0)ηtet−1

√∑n
t=2 f

′
t
2(θ0)e2t−1

⎞

⎟
⎠. (5.34)

By Cramer-Wold device, it will suffice to find the asymptotic distribution of the following
random:

n∑

t=2

ηt

(
u1atn

σ0
+

u2f
′
t(θ0)et−1

σ0
√
Δn(θ0, σ0)

)

=
n∑

t=2

ηtmt(n), (5.35)

where (u1, u2) ∈ R2 with u2
1 + u2

2 = 1. Note that E{ηtmt(n) | Ht−1} = 0, so the sums in (5.35)
are partial sums of a martingale triangular array with respect to {Ht}, and we will verify the
Lindeberg conditions for their convergence to normality as follows:

n∑

t=2

E
(
η2
t m

2
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)
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t (n)
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1
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a2
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2u1u2
√
Δn(θ0, σ0)

n∑
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f ′
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+
u2
2

Δn(θ0, σ0)

n∑

t=2

f ′
t
2(θ0)e2t−1

= u2
1 + op(1) + u2

2 = 1 + op(1).

(5.36)
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Noting that max1≤t≤n(e2t /n) = op(1) and max2≤t≤natn = o(1), we obtain that

max
2≤t≤n

|mt(n)| ≤ max
2≤t≤n

∣
∣
∣
∣
u1atn

σ0

∣
∣
∣
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∣
∣
∣
∣
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′
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σ0
√
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∣
∣
∣
∣
∣
= op(1). (5.37)

Hence, for given δ > 0, there is a set whose probability approaches 1 as n → ∞ on which
max2≤t≤n|mt(n)| ≤ δ. On this event, for any c > 0,

n∑

t=2

E
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η2
t m

2
t (n)I

(∣
∣ηtmt(n)

∣
∣ > c

) | Ht−1
}
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∫∞
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∣η1
∣
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}

≤
n∑
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m2
t (n)

∫∞

c/δ

y2dp
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∣η1
∣
∣ ≤ y | Ht−1

}

= oδ
n∑
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m2
t (n) = oδOp(1) −→ 0, n −→ ∞.

(5.38)

Here oδ → 0 as δ → 0. This verifies the Lindeberg conditions, and by Lemma 4.5

n∑

t=2

ηtmt(n)−→DN(0, 1). (5.39)

Thus we complete the proof of Theorem 3.2.

6. Numerical Examples

6.1. Simulation Example

We will simulate a regression model (1.1), where xt = t/20, β = 3.5, t = 1, 2, . . . , 100, and the
random errors

εt =
1
2
sin
(π

2
t + θ

)
εt−1 + ηt, (6.1)

where θ = 2, ηt ∼ N(0, 1).
By the ordinary least squares method, we obtain the least squares estimators β̂LS =

3.5136, and σ̂2
LS = 1.0347. So we take β(0) = 3.5136, σ(0)2 = 1.0347, θ(0) = π/2, and δ = 0.01.

Therefore, using the iterative computing method, we obtain

−→
θ
(1)

= (1.0159, 3.5076, 1.6573)T ,
−→
θ
(2)

= (1.0283, 3.5076, 1.7599)T . (6.2)
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Since ‖−→θ
(2)

− −→
θ
(1)
‖/‖−→θ

(1)
‖ < 0.01, the QML estimators of β, θ, and σ2 are given by

σ̂2
n = 1.0283, β̂n = 3.5076, θ̂n = 1.7599. (6.3)

These values closely approximate their true values, so our method is successful,
especially in estimating the parameters β and σ2.

6.2. Empirical Example

We will use the data studied by Fuller in [14]. The data pertain to the consumption of spirits
in the United Kingdom from 1870 to 1983. The dependent variable yt is the annual per capita
consumption of spirits in the United Kingdom. The explanatory variables xt1 and xt2 are per
capita income and price of spirits, respectively, both deflated by a general price index. All
data are in logarithms. The model suggested by Prest can be written as

yt = β0 + β1xt1 + β2xt2 + β3xt3 + β4xt4 + εt, (6.4)

where 1869 is the origin for t, xt3 = t/100, and xt4 = (t − 35)2/104, and assuming that εt is a
stationary time series.

Fuller [14] obtained the estimated generalized least squares equation

ŷt = 2.36 + 0.72xt1 − 0.80xt2 − 0.81xt3 − 0.92xt4,

εt = 0.7633εt−1 + ηt,
(6.5)

where ηt is a sequence of uncorrelated (0, 0.000417) random variables.
Using our method, we obtain the following models:

ŷt = 2.3607 + 0.7437xt1 − 0.8210xt2 − 0.7857xt3 − 0.9178xt4,

εt = (0.70054 + 0.00424t)εt−1 + ηt,
(6.6)

where ηt is a sequence of uncorrelated (0, 0.000413) random variables.
By the models (6.6), the residual mean square is 0.000413, which is smaller than

0.000417 calculated by the models (6.5).
From the above examples, it can be seen that our method is successful and valid.

However, a further discussion of fitting the function ft(θ) is needed so that we can find a
good method to use in practical applications.
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