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This paper investigates the stability of a thin electrically conductive fluid under an applied
uniform magnetic filed during spin coating. A generalized nonlinear kinematic model is derived
by the long-wave perturbation method to represent the physical system. After linearizing the
nonlinear evolution equation, the method of normal mode is applied to study the linear stability.
Weakly nonlinear dynamics of film flow is studied by the multiple scales method. The Ginzburg-
Landau equation is determined to discuss the necessary conditions of the various critical flow
states, namely, subcritical stability, subcritical instability, supercritical stability, and supercritical
explosion. The study reveals that the rotation number and the radius of the rotating circular
disk generate similar destabilizing effects but the Hartmann number gives a stabilizing effect.
Moreover, the optimum conditions can be found to alter stability of the film flow by controlling
the applied magnetic field.

1. Introduction

The study of magnetohydrodynamic (MHD) effects is important for a wide range of
situations, varying from plasma engineering, MEMS technology, and thin film materials
technology. Due to various applications, attention has gradually been focused on this subject
[1–12]. In fact, stabilization of the film flow by applying a magnetic field is advantageous as
follows: (1) neither electrical nor mechanical contacts with the fluid are necessary; (2) active
control of a technological process is simple.

The spin coating process is one of the fundamental fabrication methods found in
the chip manufacturing processes of integrated circuit (IC) such as wafer manufacturing,
photolithography, and sputtering deposition. Therefore, it is highly desirable to develop
suitable working techniques for homogeneous film growth, techniques that are able to adapt
to various flow configurations and associated time-dependent properties. For these reasons,
the ability to control and maintain uniform and stable thin films is an important research
topic with regard to spin coating [13–17].
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Linear stability theories for various film flows have been presented by Chandrasekhar
[18] and Lin [19]. Stuart [20] was the first to study the weakly nonlinear theory of
hydrodynamic stability. This model has been widely employed in subsequent investigations.
Long-wave perturbation method is an effective means of revealing the linear and nonlinear
evolution equation of the film thickness. The wavelength of surface waves is assumed to be
sufficiently large and the perturbation amplitude α � 1; so the long-wavelength modes that
give the smallest wave number are most likely to induce flow instability. Yih [21] indicated
that the long-wave perturbation method is appropriate for film flow with a small Reynolds
number. Alekseenko et al. [22] investigated the wave formation of a vertical liquid film.
The maximum growth rates, wave number, and wave velocities were found theoretically
and compared with obtained experimentally at Re ∼ 30. Then, the hydrodynamic stability
analysis of the thin liquid film by the long-wave perturbation method was performed [23–
26]. Furthermore, numerous investigations of hydrodynamic stability have been studied by
the experimental observations [27, 28].

Several researchers presented hydromagnetic stability of film flows on a rotating disk
[29–32] and the weakly nonlinear analysis of the MHD flow down a vertical plate was
published [33]. In this study, the authors present a weakly nonlinear stability analysis of
a thin electrically conductive fluid under an applied uniform magnetic field on a rotating
disk, namely, spin coating. The induced magnetic field is neglected by assuming that the
magnetic Reynolds number Rem � 1 [30] during spin coating. It is also assumed that the
disk radius is much larger than the film thickness. Therefore, the peripheral effect is negligible
in comparison to the total film area [15]. It is demonstrated that stability is revealed in the
region near the rotating axis due to centrifugal forces and MHD effects. The influence of the
rotational motion, disk size, and the Hartmann number on the equilibrium finite amplitude is
studied and characterized mathematically. In an attempt to verify the computational results
and to illustrate the effectiveness of the proposed modeling approach, several numerical
examples are presented.

2. Mathematical Formulation

Under the assumption that no polarization voltage is applied (i.e.,
−→
E =

−→
0 ), the

electromagnetic force
−−→
Fm acting on the MHD flow is given:

−−→
Fm =

−→
J × −→

B = σ
(−→
V × −→

B
)
× −→
B, (2.1)

where
−→
E is the electric field,

−→
J the current density,

−→
B the magnetic flux, σ the electrical

conductivity, and
−→
V the velocity vector.

Consider axisymmetric flow of a thin electrically conductive fluid flowing on a rotating
circular disk which rotates with constant angular velocity Ω∗ under an applied magnetic
field B∗

0. The external uniform magnetic field is applied perpendicular to the plane of the
disk (see Figure 1). A variable with a superscript “∗” represents a dimensional quantity.
Here the cylindrical polar coordinate axes r∗, θ∗, z∗ are chosen as the radial direction,
the circumferential direction, and the direction perpendicular to the plate, respectively. All
associated physical properties and the rate of film flow are assumed to be constant (i.e.,
time-invariant) because of the steady mass flow source at the center of rotation. Let u∗ and
w∗ be the velocity components in the radial direction r∗ and the perpendicular direction z∗



Mathematical Problems in Engineering 3

z∗

U∗
0(r

∗)

h∗
0(r

∗) h∗(r∗)

r∗

Ω∗

B∗
0

Disk surface

Figure 1: Schematic diagram of a thin MHD fluid flowing on a rotating circular disk.

of a circular disk, respectively. According to the experimental observation by Takama and
Kobayashi [34], it is reasonable to assume negligible circumferential flow when the liquid
film is very thin (h∗ � r∗). As a matter of simplification, we take the fluid velocity in the
thinning film to be independent of θ∗. For small magnetic Reynolds number (Rem � 1),
the electromagnetic force Fm is σB∗2

0 u∗ [30, 35], when imposed and induced electric fields
are negligible and the only applied magnetic field is B∗

0. The MHD governing equations of
motion can be expressed as

1
r∗

∂(r∗u∗)
∂r∗

+
∂w∗

∂z∗
= 0,

ρ

(
∂u∗

∂t∗
+ u∗ ∂u

∗

∂r∗
+w∗ ∂u

∗

∂z∗
− v∗2

r∗

)
= −∂p

∗

∂r∗
+ μ

(
∂2u∗

∂r∗2
+

1
r∗

∂u∗

∂r∗
+
∂2u∗

∂z∗2
− u∗

r∗2

)
− σB∗2

0 u∗,

∂w∗

∂t∗
+ u∗ ∂w

∗

∂r∗
+w∗ ∂w

∗

∂z∗
= −1

ρ

∂p∗

∂z∗
− g +

μ

ρ

(
1
r∗

∂

∂r∗

(
r∗
∂w∗

∂r∗

)
+
∂2w∗

∂z∗2

)
,

(2.2)

where v∗ is the azimuthal velocity, ρ the constant fluid density, p∗ the fluid pressure, g the
acceleration due to gravity, μ the dynamic viscosity of the fluid, and B∗

0 is the magnetic flux
density.

On the disk surface z∗ = 0, the boundary conditions are treated as no-slip as

u∗ = 0,

w∗ = 0.
(2.3)

On the free surface z∗ = h∗, the boundary condition approximated by the vanishing of the
shear stress is expressed as

(
∂u∗

∂z∗
+
∂w∗

∂r∗

)(
1 −

(
∂h∗

∂r∗

)2
)

− 2∗
(
∂u∗

∂r∗
− ∂w∗

∂z∗

)(
∂h∗

∂r∗

)
= 0. (2.4)
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The normal stress condition obtained by solving the balance equation in the direction normal
to the free surface is given as

p∗ + 2μ

(
1 +

(
∂h∗

∂r∗

)2
)−1[

∂h∗

∂r∗

(
∂u∗

∂z∗
+
∂w∗

∂r∗

)
− ∂w∗

∂z∗
− ∂u∗

∂r∗

(
∂h∗

∂r∗

)2
]

+ S∗ ∂
2h∗

∂r∗2

[
1 +

(
∂h∗

∂r∗

)2
]−3/2

= p∗a.

(2.5)

The kinematic condition for a material free surface can be given as

∂h∗

∂t∗
+
∂h∗

∂r∗
u∗ −w∗ = 0, (2.6)

where h∗ is the local film thickness, S∗ is surface tension, and p∗a is the atmospheric pressure.
By introducing a stream function ϕ∗, the dimensional velocity components can be expressed
as

u∗ =
1
r∗

∂ϕ∗

∂z∗
, w∗ = − 1

r∗
∂ϕ∗

∂r∗
. (2.7)

The following variables are used to form the dimensionless governing equations and
boundary conditions

z =
z∗

h∗
0
, r =

αr∗

h∗
0
, t =

αt∗u∗
0

h∗
0

, h =
h∗

h∗
0
, ϕ =

αϕ∗

u∗
0h

∗2
0

, p =
p∗ − p∗a
ρu∗2

0

, Re =
u∗
0h

∗
0

ν
,

Fr =
gh∗

0

u∗2
0

, S =
S∗

ρu∗2
0 h∗

0

, m =
σB∗2

0 h∗2
0

μ
, α =

2πh∗
0

λ
,

(2.8)

where h∗
0 is the average film thickness, α the dimensionless wave number, u∗

0 the scale of the
velocity, ν the kinematic viscosity, Re the Reynolds number, Fr the Froude number, m the
Hartmann number, and λ the wavelength.

In order to investigate the effects of angular velocity, Ω∗ on the stability of the flow
field, it is assumed that the azimuthal velocity is constant [30, 35, 36] throughout the radial
direction in the thin film, that is, v∗ = r∗Ω∗. The dimensionless parameter Ro (rotation
number) is defined as

Ro =
Ω∗h∗

0

u∗
0

. (2.9)
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In terms of these nondimensional variables, the equations of motion can be expressed as

r−1ϕzzz = −Re rRo2 + r−1mϕz + αRe
(
pr + r−1ϕtz + r−2ϕzϕrz − r−3ϕ2

z − r−2ϕrϕzz

)
+O

(
α2
)
,

pz = −Fr + α
(
−Re−1r−1ϕrzz

)
+O

(
α2
)
.

(2.10)

Using the nondimensional variables, the boundary conditions at the surface of the disk z = 0
reduce to

ϕ = ϕr = ϕz = 0, (2.11)

and the boundary conditions at the free surface of the disk z = h become

r−1ϕzz = α2
[
r−1ϕrr − r−2ϕr + 2hr

(
1 − α2h2

r

)−1(
2r−1ϕrz − r−2ϕz

)]
, (2.12)

p = −Sα2hrr

(
1 + α2h2

r

)−3/2
+ α

[
−2Re−1

(
1 + α2h2

r

)−1(
r−1ϕrz + r−1ϕzzhr

)]
+O

(
α2
)
, (2.13)

ht + r−1hrϕz + r−1ϕr = 0. (2.14)

In practice, the parameter S has a large value and α � 1; so the term α2S is taken to be of
order one [33, 37]. Long-wave length modes are considered in the present analysis; this can
be done by expanding the stream function and flow pressure in terms of some small wave
number (α � 1) as

ϕ = ϕ0 + αϕ1 +O
(
α2
)
,

p = p0 + αp1 +O
(
α2
)
.

(2.15)

The flow conditions of a film can be obtained by inserting the above expressions
into (2.10)–(2.13) and then solving systematically the resulting equations. By collecting all
terms of zeroth-order α0 and first-order α1 in the above governing equations and boundary
conditions, the solutions of the zeroth-order and first-order equations were obtained and are
given in Appendix A.

The zeroth-order and first-order solutions are inserted into the dimensionless free
surface kinematic equation to yield the following generalized nonlinear kinematic equation:

ht +A(h)hr + B(h)hrr + C(h)hrrr +D(h)hrrrr + E(h)h2
r + F(h)hrhrrr = 0, (2.16)

where A(h), B(h), C(h), D(h), E(h), and F(h) are given in Appendix B. When the
Hartmann number m approaches 0, the fluid flow is reduced to the typical Newtonian film
flow with no applied magnetic field [38].
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3. Stability Analysis

The dimensionless film thickness, when expressed in terms of the perturbed variables, can be
given as

h(r, t) = 1 + η(r, t), (3.1)

where η is a perturbed quantity to the stationary film thickness. Substituting the value of
h(r, t) into the evolution equation (2.16) and all terms up to order η3 being collected, the
evolution equation of η becomes

ηt +Aηr + Bηrr + Cηrrr +Dηrrrr + Eη2
r + Fηrηrrr

=
(
A′η +

A′′

2
η2
)
ηr +

(
B′η +

B′′

2
η2
)
ηrr

+
(
C′η +

C′′

2
η2
)
ηrrr +

(
D′η +

D′′

2
η2
)
ηrrrr +

(
E + E′η

)
η2
r

+
(
F + F ′η

)
ηrηrrr +O

(
η4
)
,

(3.2)

where the values ofA,B,C,D, E, F and their derivatives are all evaluated at the dimensionless
height of the film, h = 1.

3.1. Linear Stability Analysis

When the nonlinear terms of (3.2) are neglected, the linearized equation is given as

ηt +Aηr + Bηrr + Cηrrr +Dηrrrr = 0. (3.3)

In order to use the normal mode analysis, we assume that

η = a exp[i(r − dt)] + c.c., (3.4)

where a is the perturbation amplitude, and c.c. is the complex conjugate counterpart. The
complex wave celerity d is given as

d = dr + idi = (A − C) + i(B −D), (3.5)

where dr and di are the linear wave speed and linear growth rate of the disturbance,
respectively. The solution of the disturbance about h(r, t) = 1 is asymptotically stable or
unstable according as di < 0 or di > 0. This is equivalent to the inequality B < D or B > D.
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Table 1: Various states of Landau equation.

Linearly stable
(subcritical
region) di < 0

Subcritical
instability E1 < 0

εa0 < (di/E1)
1/2 a0 → 0 Conditional

stability

εa0 > (di/E1)
1/2 a0 ↑ Subcritical

explosive state
Subcritical
(absolute)
stability E1 > 0

a0 → 0

Linearly
unstable
(supercritical
region) di > 0

Supercritical
explosive state
E1 < 0

a0 ↑

Supercritical
stability E1 > 0

εa0 → (di/E1)
1/2

Ncr → dr + di(F1/E1)

3.2. Weakly Nonlinear Stability Analysis

Nonlinear effects, when they are sufficiently weak, do not fundamentally alter the nature
of the motion. A weakly nonlinear solution can be usefully expressed as weak stability or
instability, but the definition is restricted to some neighborhood of critical value [39]. In
this paper the authors are interested in investigating the existence of the supercritical and
subcritical regions. In order to characterize the weakly nonlinear behavior of the film flows,
themethod ofmultiple scales [40] is employed here; as a result, the Ginburg-Landau equation
[41] can be derived following the same procedure as in [33] and Cheng and Lin [42]:

∂a

∂t2
+D1

∂2a

∂r21
− ε−2dia + (E1 + iF1)a2a = 0, (3.6)

where ε is a small perturbation parameter, t2 = ε2t, r1 = εr, and

e = er + iei =
(B′ −D′ + E − F)(16D − 4B) + 6C(A′ − C′)

(16D − 4B)2 + 36C2

+ i
6C(B′ −D′ + E − F) − (A′ − C′)(16D − 4B)

(16D − 4B)2 + 36C2
,

D1 = [(B − 6D) + i(3C)],

E1 =
(−5B′ + 17D′ + 4E − 10F

)
er −

(
A′ − 7C′)ei +

(
−3
2
B′′ +

3
2
D′′ + E′ − F ′

)
,

F1 =
(−5B′ + 17D′ + 4E − 10F

)
ei +

(
A′ − 7C′)er + 1

2
(
A′′ − C′′).

(3.7)

The overhead bar appearing in (3.6) stands for the complex conjugate of the same variable.
Equation (3.6) can be used to investigate the weak nonlinear behavior of the fluid film flow.
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In order to solve (3.6), we assume a filtered wave with no spatial modulation; so the filtered
wave can be expressed as

a = a0 exp[−ib(t2)t2]. (3.8)

After substituting (3.8) into (3.6), one can obtain

∂a0

∂t2
=
(
ε−2di − E1a

2
0

)
a0, (3.9)

∂[b(t2)t2]
∂t2

= F1a
2
0. (3.10)

The associated wave amplitude εa0 in the supercritical stable region is derived and given as

εa0 =

√
di

E1
. (3.11)

If E1 = 0, then (3.9) is reduced to a linear equation. The second term on the right-hand side
of (3.9) is due to the nonlinearity and may moderate or accelerate the exponential growth of
the linear disturbance according to the signs of di and E1. Equation (3.10) is used to modify
the perturbed wave speed caused by infinitesimal disturbances appearing in the nonlinear
system. The Ginzburg-Landau equation can be used to characterize various flow states, with
the results summarized in Table 1.

4. Numerical Examples

In order to study the effects of the dimensionless radius, rotation number, and Hartmann
number on the stability of a thin flow, we select randomly but within specified ranges
physical parameters for the numerical experiments. The ranges for these parameters are
based on published reasonable ranges for these parameters [33, 36, 38, 43]. More specifically,
these parameters and their values include (1) Reynolds number (range from 0 to 15), (2)
dimensionless perturbation wave numbers (range from 0 to 0.12), (3) Rotation number (any
one of the three values 0.15, 0.175, and 0.2), (4) dimensionless radius (any one of the three
values 10, 15, and 20). (5)Hartman number (any one of the four values 0, 0.05, 0.1, and 0.15).
The remaining parameters are treated as constants for all numerical computations since we
are considering practical spin coating systems in which these variables are not expected to
undergo significant variation. Further, for a simplified analysis, α2S, Re, and Fr are taken to
be of the same order (O (1)) [34, 38, 43]; so the values of some dimensionless parameters are
taken as constants, for example, the dimensionless surface tension S = 6173.5 and the Froude
number Fr = 9.8.

4.1. Linear Stability Analysis

By setting di = 0 in the linear stability analysis, the neutral stability curve can be determined
easily from (3.5). The α2S-Re plane is divided into two different characteristic regions by the
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Figure 2: Linear neutral stability curves for three different Ro values at r = 10 and m = 0.1. Linear neutral
stability curves for three different r values atm = 0.1 and Ro = 0.1. Linear neutral stability curves for three
differentm values at r = 10 and Ro = 0.1

neutral stability curve. One is the linearly stable region where small disturbances decay with
time, and the other is the linearly unstable region where small perturbations grow as time
increases. Figure 2(a) shows that the stable region decreases and unstable region increases
with an increase of rotation number. Figure 2(b) shows that the stable region decreases and
unstable region increases with increasing radius of the circular disk. The reason for this
phenomenon is the existence of the centrifugal force term, which is a radius-related force in
the governing equation. To increase the radius and the rotation number results in accelerated
growth of the linear disturbance due to the centrifugal force. Figure 2(c) shows that the stable
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Figure 3: Neutral stability curves of MHD film flows for r = 10, Ro = 0.15, and m = 0.1. Neutral stability
curves of MHD film flows for r = 10, Ro = 0.175, and m = 0.1. Neutral stability curves of MHD film flows
for r = 15, Ro = 0.15, and m = 0.1. Neutral stability curves of MHD film flows for r = 10, Ro = 0.15, and
m = 0.05

region increases and unstable region decreases with an increase of the Hartman number.
The reason for this phenomenon is that the Lorentz forces can modify the velocity field and
moderate the growth of linear disturbance. Hence one can say that in linear stability analysis
the rotation number and the radius of the circular disk generate similar destabilizing effects
but the Hartmann number gives a stabilizing effect.

4.2. Weakly Nonlinear Stability Analysis

Figures 3(a) to 3(d) reveal various conditions for subcritical instability (di < 0, E1 < 0), sub-
critical stability (di < 0, E1 > 0), supercritical stability (di > 0, E1 > 0) and the supercritical
explosion (di > 0, E1 < 0). Figure 4(a) shows the threshold amplitude in the sub-critical
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Figure 4: Threshold amplitude in subcritical instability region for three different Ro values at Re = 3, r = 10,
and m = 0.1. Threshold amplitude in subcritical instability region for three different m values at Re = 3,
r = 10, and Ro = 0.15
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Figure 5: Threshold amplitude in supercritical stability region for two different Ro values at Re = 6, r = 10
and m = 0.1. Threshold amplitude in supercritical stability region for two different m values at Re = 6,
r = 10 and Ro = 0.15
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instability region for various wave numbers with different Ro values at Re = 3, r = 10 and
m = 0.1. The results indicate that the threshold amplitude εa0 becomes smaller as the value
of the rotation number (Ro) increases. Figure 4(b) shows the threshold amplitude in the sub-
critical instability region for various wave numbers with different Hartmann number (m)
values at Re = 3, r = 10, and Ro = 0.15. The results indicate that the threshold amplitude
εa0 becomes smaller as the value of m decreases. The film flow which holds the higher
threshold amplitude value will become more stable than that holds the smaller one. If the
initial finite-amplitude disturbance is less than the threshold amplitude, the system will
become conditionally stable.

Figure 5(a) shows the threshold amplitude in the supercritical stability region for
various wave numbers with different Ro values at Re = 6, r = 10, and m = 0.1. It is found
that decreasing the rotation number will lower the threshold amplitude, whereupon the flow
becomes relativelymore stable. Figure 5(b) shows the threshold amplitude in the supercritical
stability region for various wave numbers with different m values at Re = 6, r = 10
and Ro = 0.15. It is found that increasing the Hartmann number will lower the threshold
amplitude, and the flow will become relatively more stable.

5. Concluding Remarks

The stability of a thin electrically conductive fluid under the applied uniform magnetic field
during spin coating is investigated using the method of long-wave perturbation. On the basis
of the results of numerical modeling, several conclusions can be drawn.

(1) The modeling results indicate that the region of linear stability becomes smaller for
increasing rotation number or increasing radius. Hence one can say that in the linear
stability analysis the rotation number and the radius of the circular disk generate
similar destabilizing effects.

(2) The modeling results also show that the stable region increases and unstable region
decreases with an increase of the Hartmann number. In linear stability analysis
Hartmann number gives a stabilizing effect.

(3) Weakly nonlinear stability analysis has successfully revealed sub-critical stability,
sub-critical instability, supercritical stability, and supercritical explosion regions
for the flow patterns of a thin film on a rotating disk under the applied uniform
magnetic field. It is found that in sub-critical instability regions, the threshold
amplitude εa0 becomes smaller as the value of the rotation number becomes larger.
When the initial finite-amplitude disturbance is less than the threshold amplitude,
the flow will be conditionally stable.

(4) It is also shown that in sub-critical instability regions, the threshold amplitude εa0

becomes larger as the value of the Hartman number becomes larger. Optimum
conditions can be obtained: the system is used to increase the stability of the film
flow by controlling the applied magnetic field.
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Appendices

A. Zeroth-Order and First-Order Solutions

Zeroth-order solution:

ϕ0 =
Re ·r2 · Ro2 · Sech(h√m

)[√
m · z · Cosh(h√m

) − Sinh
(
h
√
m
)
+ Sinh

(
(h − z)

√
m
)]

m3/2
,

(A.1)

where the zero-order governing equation:

r−1ϕ0zzz = −Re rRo2 + r−1mϕ0z,

p0z = −Fr,
(A.2)

associated with boundary condition:

z = 0, ϕ0 = ϕ0z = 0, z = h,

r−1ϕ0zz = 0, p0 = −α2Shrr .
(A.3)

First-order solution:

ϕ1 = k1z
4 + k2z

3 + k3z
2 + k4z + k5, (A.4)

where

k1 = −r
2 · Re ·Ro4
12m2

,

k2 =
1

6m5/2

×
(
r
(
2r · Re ·Ro4

(√
m
(
1 + Sech

(
h
√
m
)2) + Tanh

(
h
√
m
))

+
(
Fr ·m5/2 −m · r2 · Re ·Ro4 · Sech(h√m

)2 · Tanh(h√m
))

hr −m5/2S · α2hrrr

))

k3 =
1

4m3

×
(
r
(
−2m2 · r · Re ·Ro2 · h0t · Sech

(
h
√
m
)
+ r · Re ·Ro4

× (
2(−2 + h)h ·m + Sech

(
h
√
m
)

×(−4h ·m + (1 − 4h ·m)Sech
(
h
√
m
)
+ 4

√
m
(−h + Sech

(
h
√
m
))
Sinh

(
h
√
m
)))

− 2
(
Fr · h ·m3 +m · r2 · Re ·Ro4 · Sech(h√m

)2

×(−h√m + Sinh
(
h
√
m
))
Tanh

(
h
√
m
))
hr + 2h ·m3 · S · α2hrrr

))
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k4 =
1

8m7/2

×
(
r2 · Re ·Ro4 · Sech(h√m

)3

×
(
4
√
m
(
13Cosh

(
h
√
m
)
+ 3Cosh

(
3h

√
m
)
+ Cosh

(√
m(−3h + z)

)

+ 2Cosh
(√

m(−h + z)
)
+ Cosh

(√
m(h + z)

) − Sinh
(
h
√
m
)

− Sinh
(
3h

√
m
)
+ 4 Sinh

(√
m(−3h + z)

)

+2 Sinh
(√

m(−h+z)+Sinh(√m(h + z)
)−8mr Sinh

(√
mhr

))

×hr+2h ·m3 · S · α2hrrr

)))

k5 =
1

16m4

×
(
r2 · Re ·Ro4 · Sech(h√m

)3

×
(
16m2Cosh

(
h
√
m
)
Cosh

(
z
√
m
)
h0t − Ro2Cosh

(√
m(h − 2z)

)

+ 8Cosh
(√

m(−3h + z)
)
+ 32Cosh

(√
m(−h + z)

)

+ 24Cosh
√
m(h + z) + Cosh

(√
m(−3h + 2z)

)

+ 16
√
m
(
2 Sinh

(√
m(−3h + z)

)
+ 5 Sinh

(√
m(−h + z)

)
+ 3 Sinh

(√
m(h + z)

)

−16m · r · Sinh(h√m
)
Sinh

(
z
√
m
)
hr

)))

h0t = −
Re ·Ro2

(
2
(
h
√
m − Tanh

(
h
√
m
))

+
√
m · r · Tanh(h√m

)2
hr

)

m3/2
(A.5)

where the first-order governing equation:

r−1ϕ1zzz = Re
(
p0r + r−1ϕ0tz + r−2ϕ0zϕ0rz − r−3ϕ2

0z − r−2ϕ0rϕ0zz

)
,

p1z = −Re−1r−1ϕ0rzz.

(A.6)

associated with boundary condition

z = 0, ϕ0 = ϕ0z = 0, z = h,

r−1ϕ1zz = 0, p1 = −2Re−1
(
r−1ϕ0rz + r−1ϕ0zzhr

)
.

(A.7)
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B. Generalized Nonlinear Kinematic Equation

One has

A(h) =
1

12m7/2r
Sech

(
h
√
m
)2

×
(
2
√
m
(
−3m2r2Ro2 − Fr · h3m3α + 30r2Re2Ro4α

+ (h − 18)h2m · r2Re2Ro4α
+
(
3m2r2Ro2−Fr · h3m3α+h2(5h−6)m · r2Re2Ro4α

)

×Cosh(2h√m
)) −r2Re2Ro4α

×
(
2h ·m(42 + h(9 − 14h ·m)) − 48Cosh

(
h
√
m
)
+ 3

(
1 + 4h2m

)
Cosh

(
h
√
m
))

×Tanh(h√m
))

,

B(h) =
1
3
h · α · Re

(
−Fr · h2 +

(
3 − h2m

)
r2Re2 · Ro4Sech(h√m

)2Tanh(h√m
)

m5/2

)
,

C(h) =
S · Re ·h3α3

3r
,

D(h) =
S · Re ·h3α3

3
,

E(h) =
1

24m5/2

×
(
α · Sech(h√m

)4

×
(
h
√
m
(
−9 Fr · h ·m2 + 16

(
h2m − 3

)
r2Re3Ro4

− 4
(
3 Fr · h ·m2+2

(
h ·m2−3

)
r2 Re Ro4

)
Cosh

(
2h

√
m
)

−3 Fr · h ·m2Cosh
(
4h

√
m
))

+12
(
h2m − 1

)
r2Re3Ro4Sinh

(
2h

√
m
)))

,

F(h) = Re ·S · h2α3. (B.1)
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