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We extend existing theory on robust nonlinear observer design to the class of nonlinear Lipschitz
systems where the systems are subject to sensor faults and disturbances. The designed observer is
used for robust reconstruction of fault signals. Allowing bounded unknown disturbances to model
system uncertainties, it is shown that by adjusting a design parameter we can trade off between
fault reconstruction and disturbance attenuation. An LMI procedure solvable using commercially
available softwares is presented. Two examples are presented to illustrate the application of the
results.

1. Introduction

Modern control systems strongly rely on actuators, sensors, and data acquisition/interface
components to ensure a proper interaction between the physical controlled system and
control devices. Any faults in sensors and/or actuators may cause process performance
degradation, process shutdown, or a fatal accident. For instance, in feedback control
applications, faulty sensors give wrong information about the system status, which could
cause disastrous results as the system may go unstable. On the other hand, even if the system
is stable, inaccurate sensor values can introduce poor regulation or tracking performance,
which may be highly undesirable for many high precision control applications. Similarly,
faulty actuators may severely affect the overall system performance. Therefore, there is a
growing demand for reliability, safety, and fault tolerance in modern control systems. To
improve the reliability and safety, much effort has been made to develop model-based fault
detection and isolation (FDI) techniques (see, e.g., [1–3], and the references therein for recent
advances). One of the particular interesting techniques among all model-based techniques
for FDI is an observer-based fault detection filter design. The goal has been to utilize the
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underlying system model to generate a residual signal [4–6]. This signal is then processed
to detect the occurrence of a fault and possibly identification of its type (bias, drift, noise,
or complete failure) and location. However, the magnitude of the fault cannot be provided
by FDI. The process of estimating the magnitude of the fault is called fault reconstruction.
This approach is however different from the residual generation techniques in the sense
that it not only detects and isolates the faults, but provides an estimate of the faults that
can be then used to design a fault tolerant controller (FTC) which stabilizes the closed-loop
system and guarantees a prescribed performance level in the presence of faults; for example,
see [7–10]. For example, if the magnitude of the sensor fault can be obtained, the correct
measurement can be obtained by subtracting the fault from the faulty measurement. Thus,
the controller and observer can continue to function normally without the need of recon-
figuration. Clearly, sensor and/or actuator fault reconstruction plays a key role in the FTC
design.

During the last decade, a number of results have been reported on sensor and/or
actuator fault reconstruction for Linear Time-Invariant (LTI) systems: pseudo-inverse [11],
discretemax-min approach [12], slidingmode-based techniques [13–20], frequencyweighted
approach [21], adaptive techniques [22, 23], and descriptor approach [24]. In contrast to the
LTI case, however, the nonlinear problem lacks a universal approach and is currently an
active area of research, for example, see [25–39] for some important nonlinear results. The
main obstacle in the solution of the observer-based nonlinear fault reconstruction problem is
the lack of a universal approach for nonlinear observer synthesis.

A class of nonlinear systems that has recieved much attention in the literature is the
class of Lipschitz nonlinear systems [40]. In recent years, different approaches to the observer-
based FDI problem for this class of nonlinear systems have been reported and is currently
an active area of research, for example, see descriptor system approach [10], unknown
input observers (UIO) [35], adaptive techniques [37], sensor fault diagnosis using dynamic
observers [38], and high-gain observers [39]. It is worth mentioning that the technique
proposed for fault reconstruction in this paper is different from [10, 39]. The main idea
in these works is to include the fault model in the state variables and try to estimate the
states of the resulting augmented system. These techniques can however increase the order
of the augmented system. In addition, they are only applicable for a special class of faults; for
example, constant-like faults, step-like faults and ramp-like faults. In particular, the technique
presented in [10] is valid provided that the kth derivative of the fault signal f is bounded,
even when k is high. The use of high-gain observer for fault reconstruction as discussed in
Proposition 3.1 in [39] is limited due to strict conditions on the system dynamics. For example
in [39], the system dynamic must be in a semitriangular form and the states must remain
bounded. In [35], an unknown input observer is designed for estimation of disturbances and
faults, but there is no systematic solution for computing observer gain, for example, in terms
of linear matrix inequalities (LMIs).

The main contribution of this paper is the generalization of the obtained results for
sensor fault reconstruction in [16, 19] for linear time-invariant (LTI) systems to continuous-
time Lipschitz nonlinear systems in the presence of disturbances and measurement noises.
This generalization is based on robust H∞ observer design recently reported in [41]. In
this direction, the sensor fault reconstruction problem is formulated as an LMI feasibility
problem whose solution is easily generated by using commercial softwares [42, 43]. As it will
be shown, by adjusting a single design parameter, it becomes possible to trade off between
fault reconstruction performance and robustness to unknown disturbances and noises. The
proposed approach is practical for real systems and FTC design.
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This paper is organized as follows. In Section 2, the sensor fault reconstruction
problem is formulated. In Section 3, an easily implementable design algorithm summarizes
the proposed methodology for fault reconstruction. In Section 4, this algorithm is applied to
two numerical examples and simulation results are presented. Concluding remarks are given
in Section 5.

The notation used in this paper is fairly standard. For a given matrix A, AT denotes
its transpose. I denotes unity matrix with appropriate dimension. If A and B are symmetric
matrices, A ≥ B (resp., A > B) denotes A − B positive semidefinite (resp., positive definite)
and A ≤ B (resp., A < B) denotes A − B negative semidefinite (resp., negative definite).
λmin(M) and λmax(M) denote minimum and maximum eigenvalue of M, respectively. The
space L2[0,∞] represents the set of all signals ω(t) which are square integrable and satisfy∫∞
0 ω(t)Tω(t)dt < ∞; and the L2-norm of ω(t) ∈ L2 is defined by ‖ω‖2 := (

∫∞
0 ω(t)Tω(t)dt)1/2.

The following result is used in the paper.

Lemma 1.1 (see [22]). Let D, S and F be real matrices of appropriate dimensions and F satisfying
FTF ≤ I. Then for any scalar ε > 0 and vectors x, y ∈ �n , we have

2xTDFSy ≤ ε−1xTDDTx + εyTSTSy. (1.1)

2. Problem Formulation

We consider the nonlinear systems given by S:

S :

⎧
⎨

⎩

ẋ = Ax + Γ
(
y, u, t

)
+ Bφφ(x, u, t) + Bw,

y = Cx +Du + Ew + Ff,
(2.1)

where x ∈ �n is the state, u ∈ �m is the control, y ∈ �p is the output, and Γ(y, u, t) is a known
nonlinear vector function. The inputw ∈ �l is assumed to be the unknown disturbancewhich
can also be used to represent a general class of modeling errors. In any case,w is assumed to
be an unknown exogenous disturbance/noise. Here, sensor faults are described by the vector
f ∈ �

q , assumed to be zero prior to the failure time nonzero after the fault occurrence. A,
B, Bφ, C, D, E and F are assumed to be known constant matrices of appropriate dimensions.
It is worth noting that the distribution matrix Bφ indicates how the system (2.1) is affected
by the nonlinearity φ. We assume that rank(C) = p, rank(F) = q, and p ≥ q. Without loss of
generality, it can be assumed that the outputs of the system have been reordered (and scaled
if necessary) so that the matrix F has a structure

F =

(
0

F2

)

, (2.2)

where F2 ∈ �
q×q is a nonsingular matrix. As mentioned in [16], the assumption that

only certain sensors are fault prone is a limitation. However in practical situations, some
sensors may be more vulnerable to damage or may be more sensitive or delicate in terms of
construction than others, and so such a situation is not unrealistic. Also certain key sensors
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may have backups (hardware redundancy) and so essentially a fault-free signal can be
assumed from a certain subset of the sensors.

Finally, we assume that the system (2.1) is locally Lipschitz in a region Ω containing
the origin, uniformly in u, that is:

∥
∥φ(x1, u, t) − φ(x2, u, t)

∥
∥ ≤ α‖x1 − x2‖, (2.3)

for all u ∈ �
m , for all t ∈ �

+ , for all x1 and x2 ∈ Ω. Here, the parameter α > 0 is referred to
as the Lipschitz constant and is independent of x, u, and t. Many nonlinearities are locally
Lipschitz. Examples include trigonometric nonlinearities occurring in robotics, nonlinearities
which are square or cubic in nature, and so forth. The function φ can also be considered as a
perturbation affecting the system; see [40] for more details about nonlinear Lipschitz systems.

Scaling the output y and partitioning appropriately yields

y1 = C1x +D1u + E1w,

y2 = C2x +D2u + E2w + F2f,

(2.4)

where y1 ∈ �
p−q and C1, C2, D1, D2, E1, and E2 are appropriate matrices depending on C,

D and E. The output vector has now been partitioned into nonfaulty (y1) and potentially
faulty (y2). Notice now that the subsystem (2.1) and y1 in (2.4)makes up a fault-free system.
Assume further that (A,C1) is detectable.

Consider a nonlinear observer for the fault-free system defined by (2.1) and y1 in(2.4)

˙̂x = Ax̂ + Γ
(
y, u, t

)
+ Bφφ(x̂, u, t) + L

(
y1 −C1x̂ −D1u

)
,

ŷ = Cx̂ +Du,

(2.5)

where x̂ ∈ �
n is an estimate for the state x and L ∈ �

n×(p−q) is the observer gain. Define
e := x − x̂ as the state estimation error. Equations (2.1), (2.4), and (2.5) are combined to yield

ė = (A − LC1)e + Bφφ̃ + (B − LE1)w, (2.6)

where φ̃ = φ(x, u, t) − φ(x̂, u, t). A well-known result in [44] states that the error system (2.6)
is asymptotically stable for all φ in (2.3)with a Lipschitz constant α if the observer gain L can
be chosen in such a way that

α <
λmin(Q)
2λmax(P)

, (2.7)

where

(A − LC1)TP + P(A − LC1) = −Q, Q > 0. (2.8)
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The ratio in (2.7) is maximized when Q = I [45]. The problem is then reduced to that of
choosing L to satisfy

α <
1

2λmax(P)
. (2.9)

As shown in [41], using Schur’s complement lemma, the inequality (2.9) is equivalent to

⎛

⎜
⎜⎜⎜
⎝

1
2α

I P

P
1
2α

I

⎞

⎟
⎟⎟⎟
⎠

> 0. (2.10)

In the following, motivated by the development in [16, 19] for the LTI systems, an
approach for reconstructing the sensor fault f from the residual for Lipschitz nonlinear
systems in (2.1) is proposed. Define a reconstruction for the sensor fault f

f̂ = Kν, (2.11)

where ν = y − ŷ is the residual and

K =
(
K1 F2

−1
)
, (2.12)

with K1 ∈ �
q×(p−q) being a weighting matrix. It is easy to show that combining (2.1), (2.2),

(2.11), and (2.12) yields

ef = H1e +H2w, (2.13)

where ef = f − f̂ is the fault reconstruction error, and

H1 = −KC, H2 = −KE. (2.14)

Equations (2.6) and (2.13) show the effect of the disturbance w on the quality of the fault
reconstruction error, that is,

Σ :

⎧
⎨

⎩

ė = (A − LC1)e + Bφφ̃ + (B − LE1)w,

ef = H1e +H2w.
(2.15)

The objective now would be to minimize the effect of w on ef . To achieve unknown
disturbance attenuation and fault reconstruction, the following problem can be formulated:
find the gain L such that the system Σ in (2.15) be asymptotically stable and the L2-gain from the
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disturbancew to the fault reconstruction error ef is less than or equal to a prescribedH∞ performance
γ > 0, that is,

∥∥ef
∥∥
2 < γ‖w‖2. (2.16)

This motivates us to consider the following optimization problem.

Problem 1. Given γ > 0, find the gain L such that the error dynamic system in (2.15) be
asymptotically stable and

J :=
∫∞

0

(
ef

Tef − γ2wTw
)
dt < 0. (2.17)

In the next section, a solution is proposed to Problem 1 in terms of LMIs.

3. Fault Reconstruction

Following the lines of [41] for robust nonlinear observer design, we propose an LMI-based
solution to Problem 1 that leads to a constructive algorithm for sensor fault reconstruction.
The following result summarizes the main result of this section.

Theorem 3.1. Consider the nonlinear system (2.1). Given Lipschitz constant α > 0 and γ > 0, there
exists an nth-order nonlinear observer in the form (2.5) which solves Problem 1, if there exist β > 0
and the solutions P = PT > 0 and Z such that the following LMIs have a solution

⎛

⎜
⎜
⎝

Ω PBφ H1
TH2 + PB − ZE1

BT
φP −βI 0

H2
TH1 + BTP − E1

TZT 0 H2
TH2 − γ2I

⎞

⎟
⎟
⎠ < 0,

⎛

⎜
⎝

1
2α

I P

P
1
2α

I

⎞

⎟
⎠ > 0,

(3.1)

where

Ω = ATP + PA − C1
TZT − ZC1 + βα2I +H1

TH1. (3.2)

Once the problem is solved

L = P−1Z. (3.3)
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Proof. Define a Lyapunov function V = eTPe, where P = PT > 0 satisfies in (2.10). From the
error system (2.6), we have

V̇ = ėTPe + eTPė

= −eTQe + 2φ̃TBφ
TPe +wT(B − LE1)TPe + eTP(B − LE1)w,

(3.4)

where Q is given by (2.8). The second term in the right-hand side of (3.4) can be upper
bounded as follows

2φ̃TBφ
TPe ≤ 2

∥∥
∥φ̃
∥∥
∥
∥∥
∥Bφ

TPe
∥∥
∥

≤ 2α‖e‖
∥∥∥Bφ

TPe
∥∥∥.

(3.5)

Using Lemma 1.1, we have

2α‖e‖
∥
∥∥Bφ

TPe
∥
∥∥ ≤ eT

(
βα2I +

1
β
PBφBφ

TP

)
e, (3.6)

where β is any positive real constant and hence from (3.4), we have

V̇ ≤ eTQ̃e +wT(B − LE1)TPe + eTP(B − LE1)w, (3.7)

where

Q̃ = (A − LC1)TP + P(A − LC1) + βα2I +
1
β
PBφBφ

TP. (3.8)

Now, from (2.17), it is easy to show that

J <

∫∞

0

(
ef

Tef − γ2wTw + V̇
)
dt. (3.9)

Therefore, a sufficient condition for J < 0 is that

∀t ∈ [0,∞), ef
Tef − γ2wTw + V̇ < 0. (3.10)
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But, from (3.7), we have

ef
Tef − γ2wTw + V̇ = (H1e +H2w)T (H1e +H2w) − γ2wTw + V̇

≤ eTQ̃e +wT(B − LE1)TPe + eTP(B − LE1)w

+ eTH1
TH1e + eTH1

TH2w +wTH2
TH1e

+wTH2
TH2w − γ2wTw

=
(
eT wT

)
M

(
e

w

)

,

(3.11)

where

M =

⎛

⎝
H1

TH1 + Q̃ P(B − LE1) +H1
TH2

H2
TH1 + (B − LE1)TP H2

TH2 − γ2I

⎞

⎠. (3.12)

Thus a sufficient condition for J < 0 is that M < 0. Using Schur’s complement lemma and
the change of variable Z = PL, the inequality M < 0 can be replaced by (3.1) immediately.
Therefore, if there exists scalars β > 0 and γ > 0 and matrices P = PT > 0 and Z such that the
LMIs in (3.1) have a solution, then L = P−1Z.

Using (2.5) and (2.11), the nonlinear dynamical system for sensor fault reconstruction
is given by

Σ :

⎧
⎨

⎩

˙̂x = Ax̂ + Γ
(
y, u, t

)
+ Bφφ(x̂, u, t) + L

(
y1 − C1x̂ −D1u

)
,

f̂ = K
(
y − Cx̂ −Du

)
.

(3.13)

Thanks to Theorem 3.1, Problem 1 can be solved efficiently using the following
algorithm and by reducing γ iteratively, an optimal solution is approached.

Algorithm 1. Given plant (2.1) with Lipschitz constant α > 0, construct the sensor fault signal
by performing the following steps.

Step 1. Choose the weighting matrixK1 and compute K using (2.12).

Step 2. Given γ > 0 and β > 0, obtain P = PT > 0 and Z to the LMIs in (3.1).

Step 3. Compute the gain L using (3.3).

Step 4. Construct the nonlinear dynamical system Σ in (3.13).
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This algorithm is constructive and can be implemented using standard scientific
softwares such as Scilab [42] and Matlab [43].

Remark 3.2. Although the main objective of this paper is sensor fault reconstruction, but the
proposed method has good potential to extended to the even more interesting case of the
reconstruction of actuator fault situations. It can however be an interesting topic for future
research and it is under investigation. A good staring point for this research can be motivated
by the developments in [46] to transform the plant (2.1) into two subsystems with one of
them decoupled from the actuator fault. Then, the nonlinear observer (2.5) could be designed
to provide the estimation of unmeasurable state, which are used to construct actuator fault
estimation algorithm. It is worth mentioning that a constructive algorithm based on mixed
H2/H∞ approach is also proposed in [25] for actuator fault reconstruction for Lipschitz
nonlinear systems.

4. Numerical Examples

To illustrate the application of the results obtained in the paper, we consider two different
examples of nonlinear systems.

Example 4.1. Consider the plant (2.1) with the following state space matrices for an aircraft
model [47]

A =

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

−1.05 −2.55 0 0 −169 −0.0091
2.55 −1.05 0 0 57.09 0.0017

0 0 −77.53 39.57 0 0

0 0 0 −20.2 0 0

0 0 −8.8 0 −20.2 0

0 0 0 0 0 −0.1

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

, Bφ =

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

0

1

0

0

1

0

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

,

C =

⎛

⎜
⎜⎜⎜
⎜
⎝

−0.01 0.09 0.07 0 0 0

−0.48 −0.59 0 0 −49.51 −0.0026
0.03 0.09 −0.06 0 0 0

0.26 −0.07 0.01 0 0 0

⎞

⎟
⎟⎟⎟
⎟
⎠

, D =

⎛

⎜
⎜⎜⎜
⎜
⎝

0

0

0

0

⎞

⎟
⎟⎟⎟
⎟
⎠

,

B =

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

1 0 0

0 0 0

1 0 0

0 0 0

1 0 0

1 0 0

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

, E =

⎛

⎜⎜
⎜⎜⎜
⎝

0 1 0

0 0 1

0 0 0

0 0 0

⎞

⎟⎟
⎟⎟⎟
⎠

, F =

⎛

⎜⎜
⎜⎜⎜
⎝

0 0

0 0

1 0

0 1

⎞

⎟⎟
⎟⎟⎟
⎠

, Γ =

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

0

0

0

−4.49
0

0

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

u,

(4.1)
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Figure 1: The faulty outputs y1 and y2.

and φ(x, u, t) = 0.5(|x1(t) + 1| − |x1(t) − 1|) with Lipschitz constant α = 1. The sensor fault
reconstruction is obtained by using Algorithm 1 where γ = 0.3 and β = 0.01. The LMI
minimization has been performed using LMITOOL, a user-friendly Scilab package [42]. The
simulation results are shown in Figures 1–3. The disturbancew1 is set as [47]

w1(t) =
1

1 +
√
t
, t ≥ 0. (4.2)

And w2 and w3 are white noise processes which are assumed to be zero-mean white
noise processes with variance 0.05. The control signal is assumed to be u(t) = sin(t).
The faulty outputs y1 and y2 are shown in Figure 1. As shown in Figures 2-3, the fault
reconstruction scheme reconstructs the faults perfectly when sensor faults are applied in
the presence of disturbance and noises which justify the proposed scheme for fault tolerant
control.

Here, a comparison of the estimation capabilities of the presented approach with the
descriptor system approach for Lipschitz nonlinear systems as recently proposed in [10] can be
performed. In this direction, the sensor fault model (2.1) with D = 0 can be denoted as

Eẋ = Ax + Γ + Φ(x, u, t) + Bω,

y = Cx,

(4.3)
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Figure 2: The reconstructed sensor fault f̂1.
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Figure 3: The reconstructed sensor fault f̂2.

where

x =

(
x

xwf

)

, xwf = Eω + Ff,

E =

(
In 0

0 0

)

, A =

(
A 0

0 0

)

, Γ =

(
Γ

0

)

,

Φ(x, u, t) =

(
Bφφ(x, u, t)

0

)

, B =

(
B

0

)

, C =
(
C Ip

)
.

(4.4)
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Following the approach presented in [10], a sensor fault estimator in the form

˙̂
x = Mx̂ + Ly + Γ + Φ(x̂, u, t),

f̂ = Nx̂,

(4.5)

can be constructed, where x̂ = (In 0)x̂ and the matricesM, L, andN can be obtained through
satisfying an LMI as proposed in Theorem 2 in [10]. Using LMITOOL in Scilab package, it
can be shown that for the aircraft example there does not exist any solution to this LMI for all
α > 0 and γ > 0, so the descriptor system approach as proposed in [10] is no longer applicable
this exhibits the significance of our approach proposed in this paper.

Example 4.2. Consider the following nonlinear system [41]

ẋ =

(
0 1

−1 −1

)

x +

(
x3
1

−6x5
1 − 6x2

1x2 − 2x4
1 − 2x2

1

)

+

(
1 0

1 0

)

w,

y =

(
1 0

0 1

)

x +

(
0 1

0 0

)

w +

(
0

1

)

f,

(4.6)

wherew = (w1 w2)T , wherew1 is the disturbance andw2 is the measurement noise which is
assumed to be a zero-meanwhite noise process with unit covariance and f is the sensor fault.
The fault reconstruction scheme is performed by using Algorithm 1 in the previous section
with α = 1.17 and β = 3. To be able to make a fair comparison between the fault reconstruction
for different values of γ , the actual and estimated fault are displayed in Figures 4, 5, 6, and 7.
As shown in these figures, in order to analyze the performance of the fault reconstruction, a
sensor fault f with magnitude 1 and a disturbancew1 are applied. Figures 4–7 clearly indicate
that by reducing γ , the effect of w1 on f̂ can be made arbitrarily small and the sensor fault
f can be effectively reconstructed. Also, as shown in Figure 7, when γ is reduced to optimal
value 0.38, the effect of noise will increase. This clearly shows that there is a definite tradeoff
between fault reconstruction, disturbance attenuation, and noise rejection.

5. Conclusion

In this paper, a robust sensor fault reconstruction method for a class of Lipschitz nonlinear
systems is proposed through LMI optimization in the presence of disturbances and noises.
The advantage of the fault reconstruction method is that it provides a good estimate of
faults, thus providing useful information for fault tolerant controller design. As shown in
simulation results, by adjusting a single parameter, it becomes possible to trade off between
fault reconstruction, disturbance attenuation and noise rejection.
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Figure 4: Fault reconstruction and disturbance attenuation for γ = 1.
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Figure 5: Fault Reconstruction and disturbance attenuation for γ = 0.7.

Further research work includes two aspects. The first one is that the proposed sensor
fault reconstruction approach could be extended to nonlinear systems with arbitrarily large
Lipschitz constant or one-sided Lipschitz systems as described in [48]. Possible extensions to
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Figure 6: Fault Reconstruction and disturbance attenuation for γ = 0.5.
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Figure 7: Fault Reconstruction and disturbance attenuation for γ = 0.38.

a large class of uncertain nonlinear systems as described in [49] with simultaneous actuator
and sensor faults and implementation on an experimental setup similar to that in [19] could
be another interesting issues.
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