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This paper studies a perishable inventory model, which assumes that each perishable item has
finite lifetime, and only one item is consumed each time. The lifetimes of perishable items are
independent random variables with the general distribution and so are the consumption internal.
Under this assumption, by using backward equations and limit distribution of Markov skeleton
processes, this paper obtains the existence conditions and the explicit expression of the limit
distribution of the inventory level of perishable inventory model.

1. Introduction

Perishable goods are common in our daily life. In this paper, perishable goods refer to
the items that have finite lifetime, like putrescible foods, easily-expired medicines, volatile
liquids, and so on. Perishable inventory model can be widely used in blood banks, chemical
and food industry.

In the past few decades, researchers have paid much attention to perishable inventory
model. The inventory problem of perishable items was first studied by Whitin [1] who
considered fashion goods perishing at the end of a prescribed storage period. Ghare and
Schrader [2] proposed an inventory model, in which the rate of perishable is a constant,
and the consumption internals have exponential distribution. Based on the inventory model
proposed by Ghare and Schrader [2], series of studies are carried out (see Raafat [3], Goyal
and Giri [4], and their references). Recently, Li et al. [5] considered some factors, like demand,
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deteriorating rate, price discount, allow shortage or not, inflation, time value of money, and
so on, as important factors in the perishable inventory study, then they divided current
perishable items inventory study literatures into two categories from the perspective of study
scope and reviewed the literature for each category. Karmakar and Choudhury [6] focused on
the modeling of perishable items with shortages and reviewed the corresponding inventory
models. Other representative works can be seen in [7–15].

An interesting and important study of perishable inventory model is about the
inventory level process. Ravichandran [16] obtained the explicit expression of the stationary
distribution of the inventory level in operating the (S, s) policy, with positive lead time
and poisson demand. Chiu [17] developed the expected inventory level to determine a best
(Q, r) ordering policy under a positive order lead time and fixed life perishability. Liu and
Yang [18] analyzed an (s, S) continuous review model and obtains the matrix-geometric
solutions for the steady-state probability distribution of the inventory level, with finite
lifetimes and positive lead times. Sivakumar [19] obtained the joint probability distribution
of the inventory level and the number of demands in the orbit, where the life time of
each items is assumed to be exponential. Other related papers can be seen in [20–22]
and so on.

In order to facilitate the mathematical treatment, most of these papers assume that the
lifetime of item or consumption internal equals to constant or has exponential distribution,
so that the inventory level of perishable inventory model can be reduced to a Markov
process. However, in practice, the lifetime of item or consumption interval is not necessarily
exponential, but a wide range of distribution. In this case, the inventory level of perishable
inventory model is not and hardly been converted into a Markov process, which leads to a
bottleneck on the mathematical treatment. To the best of our knowledge, no previous studies
obtained the existence conditions of the limit distribution of the inventory level. Thus, we
intend to work at it.

Markov skeleton process provides an effective solution to the problem. Markov
skeleton processes which are proposed by Hou et al. [23] in 1997 are more extensive than
Markov processes. Markov skeleton process has been in-depth studied (representativeworks,
see [24–27]). This paper proves that the inventory level of perishable inventory model is a
positive recurrent Doob skeleton process which is a special case ofMarkov skeleton processes.
Hence, by applying backward equations and limit distribution of Markov skeleton processes,
this paper obtains the existence conditions and the explicit expression of the limit distribution
of the inventory level. Moreover, this paper obtains the probability of the inventory level
greater than 0 and the probability of the inventory level less than or equal to 0, which can
then be used for the evaluation of inventory system performance.

This paper is organized as follows. Section 2 introduces Markov skeleton processes
and presents its backward equations and limit distribution. Section 3 introduces a perishable
inventory model and applies Markov skeleton processes approach to study the limit
distribution of inventory level process.

2. Markov Skeleton Processes

In this section, we introduce Markov skeleton processes and present its backward equations
and limit distribution.
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2.1. Definition of Markov Skeleton Processes

Definition 2.1 (see [26]). A stochastic processX = {X(t, ω), 0 ≤ t < ∞)}which takes values on
a polish space (E,E) is called a Markov skeleton process if there exists a sequence of optional
stopping times {τn}n≥0, satisfying

(i) τn ↑ +∞with τ0 = 0, and for each n ≥ 0, τn < ∞;

(ii) for all n = 0, 1, . . ., τn+1 = τn + θτn · τ1;
(iii) for every τn and any bounded E[0,∞)-measurable function f defined on E[0,∞)

E
[
f(X(τn + ·)) | FX

τn

]
= E

[
f(X(τn + ·)) | X(τn)

]
P-a.s., (2.1)

whereΩτn = (ω : τn(ω) < ∞), and FX
τn = {A : ∀t ≥ 0, A ∩ (ω : τn ≤ t) ∈ FX

t } is the σ-algebra on
Ωτn . {τn}∞n=0 is called skeleton time sequence of the Markov skeleton process X. Furthermore,
if on Ωτn

E
[
f(X(τn + ·)) | FX

τn

]
= E

[(
f(X(τn + ·)) | X(τn)

)]
= EX(τn)

[
f(X(·))] (2.2)

P-a.s. holds, where Ex(·) denotes the expectation corresponding to P(· | X(0) = x), then X is
called a time homogeneous Markov skeleton process.

Definition 2.2 (see [26]). A time homogeneous Markov skeleton process X = {X(t, ω), ≤ t <
∞} → {X(t, ω), 0 ≤ t < ∞} is called normal, if there exists a function h(x, t,A) on E ×R+ × ε,
such that

(i) for fixed x and t, h(x, t, ·) is a finite measure on ε,

(ii) for fixed A ∈ ε, h(·, ·, A) is ε × B(R+) measurable function on E × R+,

(iii) for any t ≥ 0, A ∈ ε,

h(X(τn), t, A) = P{X(τn + t) ∈ A, τn+1 − τn > t | X(τn)} P-a.s. (2.3)

2.2. Backward Equations of Markov Skeleton Processes

Theorem 2.3 (see [26]). Suppose that X = {X(t); t ≥ 0} is a normal Markov skeleton process with
{τn}∞n=0 as its skeleton time sequence, then for any x ∈ E, t ≥ 0, A ∈ ε,

p(x, t,A) = h(x, t,A) +
∫

E

∫ t

0

∞∑
n=1

q(n)
(
x, ds, dy

)
h
(
y, t − s,A

)
. (2.4)

Thus, p(x, t,A) is a minimal nonnegative solution to the following nonnegative equation system:
∀x ∈ E, t ≥ 0, A ∈ ε,

p(x, t,A) = h(x, t,A) +
∫

E

∫ t

0
q
(
x, ds, dy

)
p
(
y, t − s,A

)
. (2.5)

Formula (2.5) is called the backward equations of Markov skeleton processes.
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2.3. Limit Distribution of Markov Skeleton Processes

Definition 2.4 (see [27]). Suppose that X(t) is a normal Markov skeleton process with {τn}∞n=0
as its skeleton time sequence. If there exists probability measure π(·) on (E,E), such that for
any A ∈ E,

P(X(τ1) ∈ A | X(0) = x, τ1 = s) = P(X(τ1) ∈ A) = π(A), (2.6)

then X(t) is called a Doob skeleton process, π(·) is called the characteristic measure of X(t),
and {τn, n = 1, 2, . . .} is the Doob skeleton time sequence of X(t).

For any n ∈ N, t ≥ 0, A ∈ E,

q(n)(X(τm), t, A) = P{X(τm+n) ∈ A, τm+n ≤ t | X(τm)} (2.7)

and q(1)(x, t,A) is abbreviated to q(x, t,A),

p(x, t,A) = P{X(t) ∈ A | X(0) = x},
F(x, t) = P(τ1 ≤ t | X(0) = x), ∀x ∈ E, t ≥ 0,

F(t) =
∫

E

F(x, t)π(dx), t ≥ 0,

h(t, A) =
∫

E

h(x, t,A)π(dx),

m =
∫∞

0
tdF(t).

(2.8)

Definition 2.5 (see [27]). Suppose thatX(t) is a Doob skeleton processes. Ifm < ∞ and for any
x ∈ E, F(x, 0) ≡ 0, F(x,∞) ≡ 1, then X(t) is called a positive recurrent Doob skeleton process.

Theorem 2.6 (see [27]). Suppose that X(t) is a positive recurrent Doob skeleton process. If F(t) is
not lattice distribution, then for ∀A ∈ E, the limit distribution p(·) of X(t) exists,

p(A) = lim
t→∞

p(x, t,A) =

∫∞
0 h(t, A)dt

m
, (2.9)

and p(·) is a probability distribution in (E,E).

3. Limit Distribution of Inventory Level of Perishable Inventory Model

The perishable inventory model studied in this paper has been proposed and investigated in
[26], which obtained the backward equations of the inventory level of this model. Different
from [26], this paper study the limit distribution of the inventory level.
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3.1. Perishable Inventory Model

First, we present the details of the perishable inventory model as follows (see [26]).

(1) Assume that lifetimes of inventory commodities are i.i.d random variables, with
a common distribution function F(t), where F(t) is continuous and satisfies∫∞
0 tdF(t) = μ1.

(2) Sell one item each time, and the sale times of each item are i.i.d random variables,
with a common distribution function G(t), where G(t) is continuous and satisfies∫∞
0 tdG(t) = μ2. Assume that the sale times are also independent of the commodities’
lifetimes.

(3) The maximum capacity of the warehouse is a fixed value Smax. When the inventory
level becomes Smin (Smin < 0) (i.e., the quantity of out of stock arrives Smin), new
commodities are replenished to increase the inventory level until it reaches Smax.

Let S(t) denote inventory level at time t. When F(t) and G(t) are not exponential
distributions, {S(t), t ≥ 0} is not a Markov process. In this case, we introduce supplementary
variables as follows: θ(t) denotes the lifetime of the item in stock at time t, and θ̂(t) denotes
the time interval between the last sale before t and time t.

As one item is consumed and the other item perishes at the same time is a rare event,
so we don’t consider this case and suppose F(t) and G(t) are continuous distribution. Let
τn denote the nth discontinuous point of (S(t), θ(t), θ̂(t)), that is, one item is consumed
or perishes at τn. At τn, (S(t), θ(t), θ̂(t)) has Markov property, so by Definition 2.1,
(S(t), θ(t), θ̂(t)) is a Markov skeleton process with τn as its Markov skeleton time sequence.

3.2. Limit Distribution of Inventory Level

In this subsection, we obtain the limit distribution of inventory level.
Suppose that T0 = 0, and Tn denotes the nth times when the process (S(t), θ(t), θ̂(t))

returns to state (Smax, 0, 0). Let

Tn+1 = Tn + θTn · T1, n = 1, 2, . . . ,

Y0 = T1, Yi = Ti+1 − Ti, i ≥ 1,
(3.1)

then Yi is the replenishment interval. By Definition 2.2,

hSmax,j(t) = P
{
S(t) = j, t ≤ T1 | S(0) = Smax, θ(0) = θ̂(0) = 0

}
. (3.2)
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Let M(t) denote the distribution function of Yi, and M denote the expectation of Yi, then,

M = E
{
T1 | S(0) = Smax, θ(0) = θ̂(0) = 0

}

=
∫∞

0
P
{
T1 ≥ t | S(0) = Smax, θ(0) = θ̂(0) = 0

}
dt

=
∫∞

0

Smax∑
j=Smin+1

hj(t)dt.

(3.3)

Theorem 3.1. If μ1 < +∞, μ2 < +∞, S(t) is a positive recurrent Doob skeleton process with {Tn} as
its Doob skeleton time sequence.

Proof. As Tn denotes the beginning of the nth replenishment and Tn− denotes the moment
before the nth replenishment, we have S(Tn−) = Smin, S(Tn) = Smax, then S(t) satisfiesMarkov
property at Tn, which assures that S(t) is aMarkov skeleton process. At the beginning of every
replenishment, S(Tn) ≡ Smax, so we have

P
(
S(T1) = j | S(0) = i, T1 = s

)
= δ0

(
j − Smax

)
. (3.4)

Thus, S(t) is Doob skeleton process by Definition 2.4. If μ1 < +∞, μ2 < +∞, we obtain M =
E[Yi] < +∞. Therefore, S(t) is a positive recurrent Doob skeleton process with {Tn} as its
Doob skeleton time sequence.

Theorem 3.2. If μ1 < +∞, μ2 < +∞, and F(x), G(x) are not lattice distribution, then, for j ∈
{Smin + 1, Smin + 2, . . . , Smax},

pj(t) = lim
t→∞

p
(
S(t) = j | S(0) = i

)
=

∫∞
0 hj(t)dt

M
=

∫∞
0 hj(t)dt

∫∞
0

[∑Smax
j=Smin+1

hj(t)
]
dt

; (3.5)

for A = {1, 2, . . . , Smax},

p(A) = lim
t→∞

p(S(t) ∈ A | S(0) = i) =

∫∞
0 h(t, A)dt

M
=

∫∞
0

[∑Smax
j=1 hj(t)

]
dt

∫∞
0

[∑Smax
j=Smin+1

hj(t)
]
dt

; (3.6)

for B = {Smin + 1, Smin + 2, . . . , 0},

p(B) = lim
t→∞

p(S(t) ∈ B | S(0) = i) =

∫∞
0 h(t, B)dt

M
=

∫∞
0

[∑0
j=Smin+1 hj(t)

]
dt

∫∞
0

[∑Smax
j=Smin+1

hj(t)
]
dt

, (3.7)

and p(·) is a probability distribution in (E,E).

Proof. If F(x),G(x) are not lattice distribution, thenM(t) is not lattice distribution. According
to Theorems 2.6, 3.1, and formula (3.3), we get formulas (3.5)–(3.7). Thus, the proof of the
theorem is completed.
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3.3. The Explicit Expression of hj(t)

Next, we intend to give the explicit expression of hj(t) by applying backward equations of
Markov skeleton processes.

By formula (3.4), we have π(dx) = δ0(x − Smax). Then,

hj(t) =
∞∑
i=0

hij(t)δ0(i − Smax) = hSmax,j(t), (3.8)

where hSmax,j(t) is defined in (3.2).
Let τ̂0 = 0, τ̂n = τn ∧ T1, n = 1, 2, . . ., where τn denotes the nth discontinuous point of

(S(t), θ1(t), θ2(t)), then

τ̂n ↑ T1, n ↑ +∞. (3.9)

According to Theorem 3.1, (S(t), θ1(t), θ2(t), t < T1) is a Markov skeleton process with
τ̂n as its skeleton time sequence.

For i > 0, let

ĥ
(
i, θ, θ̂, j, A, Â, t

)
= P

{
S(t) = j, θ(t) ∈ A, θ̂(t) ∈ Â, t < τ̂1 | S(0) = i, θ(0) = θ, θ̂(0) = θ̂

}
;

q̂
(
i, θ, θ̂, ds, j, A, Â

)
= P

{
S(ds) = j, θ(ds) ∈ A, θ̂(ds) ∈ Â | S(0) = i, θ(0) = θ, θ̂(0) = θ̂

}
;

p̂
(
i, θ, θ̂, j, A, Â, t

)
= P

{
S(t) = j, θ(t) ∈ A, θ̂(t) ∈ Â, t < T1 | S(0) = i, θ(0) = θ, θ̂(0) = θ̂

}
.

(3.10)

Thus, hSmax,j(t) can be expressed as follows:

hSmax,j(t) = p̂
(
Smax, 0, 0, j, t

)
. (3.11)

Lemma 3.3. When F(t) and G(t) are continuous, we have

ĥ
(
Smax, 0, 0, j, t

)
=

⎧
⎨
⎩
0, j /=Smax;

(1 − F(t))Smax(1 −G(t)), j = Smax,

q̂
(
Smax, 0, 0, ds, j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
Smax

(1 − F(s))Smax−1(1 −G(s))F(ds), j = Smax − 1,

one item perishes, and no item is consumed;

C1
Smax

(1 − F(s))SmaxG(ds), j = Smax − 1,

one item is consumed, and no item perishes;

0, j /=Smax − 1.

(3.12)
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Proof. By the definition of ĥ(Smax, 0, 0, j, t), there is no state transition of S(t) up to t. If j /=Smax,
ĥ(Smax, 0, 0, j, t) = 0. If j = Smax, which means that no item is consumed or perishes up to t,
then ĥ(Smax, 0, 0, j, t) = (1 − F(t))Smax(1 −G(t)).

By the definition of q̂(Smax, 0, 0, ds, j), S(t)will transfer from state Smax to state j at ds.
As F(t), G(t) are continuous, when j /=Smax − 1, q̂(Smax, 0, 0, ds, j) = 0.

If one item perishes at time ds, and no item is consumed up to s, then j = Smax − 1,
q̂(Smax, 0, 0, ds, j) = C1

Smax
(1 − F(s))Smax−1(1 −G(s))F(ds).

If one item is consumed at time ds, and no item perishes up to s, then j = Smax − 1,
q̂(Smax, 0, 0, ds, j) = C1

Smax
(1 − F(s))SmaxG(ds).

According to Theorem 2.3 and Lemma 3.3, we have the following.

Theorem 3.4. p̂(Smax, 0, 0, j, t) is the minimal nonnegative solution to the following nonnegative
linear equation,

p̂
(
Smax, 0, 0, j, t

)
= δSmax,j(1 − F(t))Smax(1 −G(t))

+
∫ t

0
C1

Smax
(1 − F(s))Smax−1(1 −G(s))F(ds)p̂

(
Smax − 1, s, s, j, t − s

)

+
∫ t

0
C1

Smax
(1 − F(s))SmaxG(ds)p̂

(
Smax − 1, s, 0, j, t − s

)
.

(3.13)

Thus, combining formulas (3.8), (3.11), and Theorem 3.4, the explicit expression of
hj(t) is obtained; hj(t) = p̂(Smax, 0, 0, j, t) is the minimal nonnegative solution to formula
(3.13).
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