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An auxiliary function method is proposed for finding the global minimizer of integer program-
ming problem. Firstly, we propose a method to transform the original problem into an integer
programming with box constraint, which does not change the properties of the original problem.
For the transformed problem, we propose an auxiliary function to escape from the current local
minimizer and to get a better one. Then, based on the proposed auxiliary function, a new algorithm
to find the global minimizer of integer programming is proposed. At last, numerical results are
given to demonstrate the effectiveness and efficiency of the proposed method.

1. Introduction

Consider the following integer programming problem:

min f(x),

s.t. gi(x) � 0, i = 1, 2, . . . , l,

hi(x) = 0, i = l + 1, l + 2, . . . , m,

x ∈ Zn,

(P)

where Zn is the n-dimensional integer set, and the set S = {x ∈ Zn | gi(x) � 0, i =
1, 2, . . . , l, hi(x) = 0, i = l + 1, l + 2, . . . , m} is bounded.

Many real-life applications can be modeled as problem (P), such as production
planning, scheduling, and operations research problem. The objective functions of most of
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the problems are nonlinear and have more than one local optimal solutions over feasible
region S. This requires the global optimization techniques to find the best solution amongst
multiple local optima.

Since integer programming problems are generally NP-hard, there are no efficient
algorithms with polynomial-time complexity for solving them. Thus, many approximate
algorithms have been rapidly developed in recent years, such as greedy search (see [1–4]),
simulated annealing (see [5, 6]), genetic algorithm (see [7–9]), tabu search (see [10, 11]), and
discrete filled function techniques (see [12–17]). The discrete filled function method is one
of the more recently developed global optimization methods to solve integer programming
problems. Once a local minimizer has been found by a local search method, the discrete filled
function method introduces an auxiliary function to escape from the current local minimizer
and to get a better one.

At present, the discrete filled function methods mainly focus on the unconstrained
integer programming problems, and most of the existing filled functions contain parameters
which are needed to adjust. Thus, solving general integer programming problems is difficult,
and solving the unconstrained integer programming problems needs much computation. In
this paper, we propose an auxiliary function method to solve problem (P). The proposed
auxiliary function has no parameters, and the computation of the proposed method is
relatively small.

The remainder of this paper is organized as follows: Section 2 gives some useful
notations and definitions. In Section 3, we propose a method to transform the original
problem into an integer programming with box constraint. Based on the transformed
problem, an auxiliary function is proposed in Section 4, and its properties are also analyzed.
An algorithm for solving problem (P) is proposed in Section 5 with several numerical
experiments. Some concluding remarks are given in Section 6.

2. Preliminaries

In this section, some useful notations and definitions are listed firstly. By estimating the bound
of S, we can find a box region Ω =

∏n
i=1[Li,Ui] with S ⊂ Ω. In most practical problems, Ω

can be easily estimated or is usually given.
Let M be a constant which satisfies

M � max
z∈S

f(z) + 1, (2.1)

and let

D = {±ei, i = 1, 2, . . . , n} (2.2)

be a direction set, where ei is an n-dimensional unit vector in which the ith component is 1,
and the others are 0.

Definition 2.1. x is said to be a vertex of Zn
⋂
Ω, if and only if, for all d ∈ D, x + d ∈ Zn

⋂
Ω

and x − d /∈ Zn
⋂
Ω, or x + d /∈ Zn

⋂
Ω and x − d ∈ Zn

⋂
Ω hold.

The set of vertices of Ω
⋂
Zn is denoted as V .
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Definition 2.2 (see [18]). For all x ∈ Zn
⋂
Ω, the neighborhood of x is denoted as N(x) =

{x}⋃{w ∈ Zn
⋂
Ω | w = x + d, d ∈ D}.

Definition 2.3 (see [18]). A point x ∈ Zn
⋂
Ω is called a local minimizer (maximizer) of f(x)

over Zn
⋂
Ω if for all y ∈ N(x), f(y) � f(x)(f(y) � f(x)) holds; a point x ∈ Zn

⋂
Ω is

called a global minimizer (maximizer) of f(x) over Zn
⋂
Ω if for all y ∈ Zn

⋂
Ω, f(y) �

f(x)(f(y) � f(x)) holds. In addition, if equality does not hold, x is called a strictly local
(global) minimizer (maximizer) of f(x).

For finding a local minimizer of integer programming, the following local search
algorithm is taken in most cases.

Local Search Algorithm (see [12])

Step 1. Choose an initial point x ∈ Zn
⋂
Ω.

Step 2. If x is a local minimizer of f(x), then stop; otherwise, find another point y ∈ N(x)
which minimizes f(x) over N(x).

Step 3. Set x := y, and go to Step 2.

3. Transformation of the Original Problem

The local search algorithm usually requires that the search region should be a connected one.
However, the feasible region of the original problem may not be connected, so we need to
transform the original problem into a simple problem with a connected search region. In
order to transform the original problem, we need to define three unary functions firstly:

g(t) =

⎧
⎨

⎩

0, t > 0,

1, t � 0,

h(t) =

⎧
⎨

⎩

1, t = 0,

0, t /= 0,

s(t) =

⎧
⎨

⎩

0, t = m,

1, t < m,

(3.1)

where m is the number of constraints.
Consider the following function:

F(x) = f(x) +
(
M − f(x)

) × s

(
l∑

i=1

g
(
gi(x)

)
+

m∑

i=l+1

h(hi(x))

)

(3.2)
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and the problem

min F(x),

s.t. x ∈ Ω
⋂

Zn,
(TP)

where M is taken to satisfy (2.1). The following theorem will show that problem (TP) does
not change the local minimizers of problem (P).

Theorem 3.1. If x is a local minimizer of problem (P), then x is a local minimizer of problem (TP);
in turn, if x is a local minimizer of the problem (TP), then x is a local minimizer of the problem (P),
or F(x) = M.

Proof. If x is a local minimizer of the problem (P), then for all y ∈ N(x)
⋂
S, one has F(y) =

f(y) � f(x) = F(x); for y = N(x) \ S and by the definition of M, one has F(y) = M >
maxz∈Sf(z) � f(x). So F(y) � F(x) for all y ∈ N(x), namely, x is a local minimizer of the
problem (TP).

If x is a local minimizer of the problem (TP), then for all y ∈ N(x), one has F(y) >
F(x). If F(x) < M, namely, x ∈ S, then one has f(y) = F(y) > F(x) = f(x) for all y ∈
N(x)

⋂
S. So x is a local minimizer of the problem (P).

Theorem 3.1 shows that problem (P) and problem (TP) have the same minimizers
except the infeasible points. If we can find a global minimizer of problem (TP), then problem
(P) is solved.

In most cases, using the local search algorithm to solve problem (TP) will trap in a
local minimizer of problem (TP). We hope to find a method to escape from a local minimizer
and to get a better one. Section 4 will give an auxiliary function for solving this problem.

4. Auxiliary Function and Its Properties Proof

Let x∗
1 be the current best local minimizer of problem (TP), and define the following two

integer sets:

S1 =
{
x ∈ Ω

⋂
Zn | F(x) � F

(
x∗
1

)}
,

S2 =
{
x ∈ Ω

⋂
Zn | F(x) < F

(
x∗
1

)}
.

(4.1)

To begin with, a unary function is given as follows:

w(t) =

⎧
⎨

⎩

1, t � 0,

t, t < 0.
(4.2)

Consider the following auxiliary function:

AF
(
x, x∗

1

)
=

1
1 + ‖x − x∗

1‖
×w
((
F(x) − F

(
x∗
1

))(
1 + ‖x − x∗

1‖
))
, (4.3)

and its properties are analyzed as follows.
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Theorem 4.1. AF(x, x∗
1) has no local minimizer in set S1 \ V .

By definition of S1, for all x ∈ S1 \ V , one has F(x) � F(x∗
1), then

AF
(
x, x∗

1

)
=

1
1 + ‖x − x∗

1‖
> 0. (4.4)

In order to prove that x is not a local minimizer of AF(x, x∗
1), we only need to find a

point y0 inN(x) such that AF(y0, x
∗
1) < AF(x, x∗

1).
If there exists y0 ∈ N(x) satisfies F(y0) < F(x∗

1), then

AF
(
y0, x

∗
1

)
= F
(
y0
) − F

(
x∗
1

)
< 0 < AF

(
x, x∗

1

)
. (4.5)

For all y ∈ N(x)with F(y) � F(x∗
1), since x /∈ V , there exists y0 ∈ N(x) such that ‖y0 − x∗

1‖ >
‖x − x∗

1‖, then

AF
(
y0, x

∗
1

)
=

1
1 + ‖y0 − x∗

1‖
<

1
1 + ‖x − x∗

1‖
= AF

(
x, x∗

1

)
. (4.6)

Therefore, AF(x, x∗
1) has no minimizer in the set S1 \ V .

Theorem 4.2. If there exists another local minimizer x∗
2 of F(x) such that F(x∗

2) < F(x∗
1), then x∗

2 is
also a local minimizer of AF(x, x∗

1).

Proof. By F(x∗
2) < F(x∗

1), one has

AF
(
x∗
2, x

∗
1

)
= F
(
x∗
2
) − F

(
x∗
1

)
< 0. (4.7)

Since x∗
2 is a local minimizer of F(x), one has F(y) � F(x∗

2) for all y ∈ N(x∗
2).

When F(y) � F(x∗
1), and by (4.3), one has

AF
(
y, x∗

1

)
=

1
1 + ‖x − x∗

1‖
> 0 > AF

(
x∗
2, x

∗
1

)
. (4.8)

When F(y) < F(x∗
1), and by (4.3), one has

AF
(
y, x∗

1

)
= F
(
y
) − F

(
x∗
1

)
� F
(
x∗
2
) − F

(
x∗
1

)
= AF

(
x∗
2, x

∗
1

)
. (4.9)

Namely, AF(y, x∗
1) � AF(x∗

2, x
∗
1) for all y ∈ N(x∗

2). So, x
∗
2 is a local minimizer of

AF(x, x∗
1).

Theorem 4.3. Any local minimizer x ofAF(x, x∗
1) is in set S2 or a vertex ofΩ

⋂
Zn. IfAF(x, x∗

1) <
0, then x is not only a local minimizer of F(x) which is better than x∗

1, but also a local minimizer of
f(x) over S.
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Proof. Let x be a local minimizer of AF(x, x∗
1), and suppose that x is not a vertex of Ω

⋂
Zn,

then there exists an integer i0 ∈ [1, n] (n is the dimension of problem (P)), such that x ± ei0 ∈
Ω
⋂
Zn. It can be proved that F(x) < F(x∗

1).
In fact, suppose that F(x) � F(x∗

1) holds.
If there exists y1 ∈ {x ± ei0} satisfies F(y1) < F(x∗

1), then

AF
(
x, x∗

1

)
=

1
1 + ‖x − x∗

1‖
> 0 > F

(
y1
) − F

(
x∗
1

)
= AF

(
y1, x

∗
1

)
. (4.10)

Otherwise, there exists y2 ∈ {x ± ei0} satisfies ‖y2 − x∗
1‖ > ‖x − x∗

1‖, then

AF
(
x, x∗

1

)
=

1
1 + ‖x − x∗

1‖
>

1
1 + ‖y2 − x∗

1‖
= AF

(
y2, x

∗
1

)
, (4.11)

which contradicts with the fact that x is a local minimizer of AF(x, x∗
1), so x ∈ S2.

If AF(x, x∗
1) < 0, we have F(x) < F(x∗

1). In fact, suppose that F(x) � F(x∗
1), then

AF
(
x, x∗

1

)
=

1
1 + ‖x − x∗

1‖
> 0, (4.12)

which contradicts with AF(x, x∗
1) < 0.

Suppose that x is not a local minimizer of F(x), then there exists y3 ∈ N(x) such
that F(x) > F(y3) holds. By the definition of AF(x, x∗

1), one has AF(x, x∗
1) = F(x) − F(x∗

1) >
F(y3) − F(x∗

1) = AF(y3, x
∗
1), which contradicts with the fact that x is a local minimizer of

AF(x, x∗
1).
By the definition of F(x), we know that F(x) < F(x∗

1) � M, then x is a feasible point.
By Theorem 3.1, we know that x is a local minimizer of f(x). The proof is completed.

From Theorems 4.2 and 4.3, it can be seen that S2 contains a minimizer of AF(x, x∗
1),

and when the minimizer x of AF(x, x∗
1) satisfies AF(x, x∗

1) < 0, it is also a local minimizer
of F(x) and better than the current local minimizer. It can also be seen that even if x∗

1 is an
infeasible local minimizer, a feasible local minimizer of f(x) will be found by an iteration,
and there will be no infeasible local minimizer in the subsequent iterations.

5. Global Optimization Algorithm Based on New Auxiliary Function

5.1. Global Optimization Algorithm

Based on the theoretical analysis in Section 4, a global optimization algorithm to solve
problem (P) is given as follows.
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Algorithm 5.1.

Step 0. Take an initial point x0 ∈ Ω
⋂
Zn, a sufficiently large number M.

Step 1. Use the local search algorithm in Section 2 to F(x) at x0, obtain a local minimizer x∗
1

of F(x), and set k := 1.

Step 2. Let D = {d1, d2, . . . , d2n}, where di = ei, dn+i = −ei, i = 1, 2, . . . , n.

Step 3. Construct the auxiliary function

AF
(
x, x∗

k

)
=

1
1 + ‖x − x∗

k
‖ ×w

((
F(x) − F

(
x∗
k

))(
1 + ‖x − x∗

k‖
))
. (5.1)

Let xk,i = x∗
k
+ di, set MS = ∅, and i := 1.

Step 4. Use the local search algorithm in Section 2 to AF(x, x∗
k) with the initial point xk,i

and obtain a local minimizer x∗
k,i of AF(x, x∗

k) over Ω
⋂
Zn. If F(x∗

k,i) < F(x∗
k), set MS =

MS
⋃{x∗

k,i
}. Go to Step 5.

Step 5. If i � 2n, go to Step 6; otherwise, i =: i + 1; go to Step 4.

Step 6. If MS = ∅, go to Step 7; otherwise, find a point in MS/= ∅ with the smallest function
value of F(x) and denote it as x∗

k+1. Set k := k + 1, and go back to Step 3.

Step 7. Output x∗
k.

Remarks on the Algorithm

(1) In Step 4, if a local minimizer x∗
k+1 of AF(x, x∗

k) is found, then x∗
k+1 is a local

minimizer of the problem (P). It is different from the discrete filled functionmethod
in which the local search algorithm should be employed to F(x) and AF(x, x∗

k
)

repeatedly. Therefore, the proposed algorithm can reduce the computational cost.

(2) From the above theorems, we can see that although x∗
1 may be an infeasible point,

{x∗
i , i � 2} are all feasible local minimizers of f(x) over S.

(3) Generally, M must be a sufficiently large number. In the implementation of the
proposed algorithm, we first estimate an upper bound Bupper of f(x) over S, then
take M = Bupper + 1 or directly the upper bound Bupper if it is big enough.

5.2. Numerical Experiment

We apply the proposed algorithm to solve the following test problems.
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Problem 1.

min f(x) = (x1 − 10)3 + (x2 − 20)3,

s.t. − (x1 − 5)2 − (x2 − 5)2 + 100 � 0

− x1 + 10 � 0,

− x2 + 5 � 0,

x ∈ Ω = {x | 0 � xi � 100, i = 1, 2}.

(5.2)

The box Ω has 10201 points. The global minimizer is x∗ = [15, 5]T with f(x∗) = −3250.

Problem 2.

min f(x) = −24 ×
4∏

i=1

xi

100
,

s.t.
4∑

i=1

(
xi

100

)2

= 1,

x ∈ Ω = {x | 0 � xi � 100, i = 1, 2, 3, 4}.

(5.3)

The boxΩ has 104060401 points. The global minimizer is x∗ = [50, 50, 50, 50]T with f(x∗) = −1.

Problem 3.

min f(x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2,

s.t. − (x3 − 3)2 − x4 + 4 � 0,

− (x5 − 3)2 − x6 + 4 � 0,

x1 − 3x2 − 2 � 0,

− x1 + x2 − 2 � 0,

x1 + x2 − 6 � 0,

− x1 − x2 + 2 � 0,

0 � x1 � 6, 0 � x2 � 8, 0� x3 � 5,

0 � x4 � 6, 0 � x5 � 10, 0 � x6 � 10.

(5.4)

The boxΩ has 320166 points. The global minimizer is x∗ = (5, 1, 5, 0, 5, 10)T with f(x∗) = −310.



Mathematical Problems in Engineering 9

Problem 4 (Colville’s function).

min f(x) = 100
(
x2 − x2

1

)2
+ (1 − x1)2 + 90

(
x4 − x2

3

)2
+ (1 − x3)2

+ 10.1
[
(x2 − 1)2 + (x4 − 1)2

]
+ 19.8(x2 − 1)(x4 − 1),

s.t. − 10 ≤ xi ≤ 10, xi is integer, i = 1, 2, 3, 4.

(5.5)

This box-constrained problem has 1.94481 × 105 feasible points. The global minimizer
is x∗ = [1, 1, 1, 1]T with f(x∗) = 0.

Problem 5 (Goldstein and Price’s function).

min f(x) = g(x)h(x),

s.t. xi =
yi

1000
, −2000 � yi � 2000, yi is integer, i = 1, 2,

(5.6)

where g(x) = 1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 16x1x2 + 3x2

2) and h(x) = 30 +
(2x1 − 3x2)

2(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2).
This box constrained problem has 1.6008001×107 feasible points. The global minimizer

is x∗ = [0,−1]T with f(x∗) = 3.

Problem 6 (Beale’s function).

min f(x) = [1.5 − x1(1 − x2)]2 +
[
2.25 − x1

(
1 − x2

2

)]2
+
[
2.65 − x1

(
1 − x3

2

)]2
,

s.t. xi =
yi

1000
, −10000 � yi � 10000, yi is integer, i = 1, 2.

(5.7)

This box-constrained problem has 4.00040001 × 108 feasible points. The global minimizer is
x∗ = [3, 0.5]T with f(x∗) = 0.

Problem 7 (Rosenbrock’s function).

min f(x) =
24∑

i=1

[

100
(
xi+1 − x2

i

)2
+ (1 − xi)2

]

,

s.t. − 5 � xi � 5, xi is integer, i = 1, 2, . . . , 25.

(5.8)

This box-constrained problem has 1.08347 × 1026 feasible points. The global minimizer
is x∗ = [1, 1, . . . , 1]T with f(x∗) = 0.

We apply the proposed algorithm to solve the above problems, and numerical results
are shown in Tables 1 to 5. In these tables, x0 denotes the initial point; x∗ denotes the last
local minimizer of the original objective function; Ef+g denotes the total number evaluations
of original function and auxiliary (filled) function.
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Table 1: Numerical results for Problems 1–3.

Problem x0 M x∗ Ef+g

1
[25, 25] 108 [15, 5]T 2632
[50, 50] 108 [15, 5]T 2832
[75, 75] 108 [15, 5]T 3032

2
[25, 25, 25, 25] 1 [50, 50, 50, 50]T 12522
[50, 50, 50, 50] 1 [50, 50, 50, 50]T 9172
[75, 75, 75, 75] 1 [50, 50, 50, 50]T 13629

3
[0, 0, 0, 0, 0, 0] 1 [5, 1, 5, 0, 5, 10]T 93307
[3, 4, 2, 3, 5, 5] 1 [5, 1, 5, 0, 5, 10]T 62671
[6, 8, 5, 6, 10, 10] 1 [5, 1, 5, 0, 5, 10]T 96443

Table 2: Numerical results of Problem 4 (M = 108).

Algorithm x0 x∗ Ef+g

AFM

[1, 1, 0, 0]T [1, 1, 1, 1]T 3936
[1, 1, 1, 1]T [1, 1, 1, 1]T 3324

[−10, 10,−10, 10]T [1, 1, 1, 1]T 4977
[−10,−5, 0, 5]T [1, 1, 1, 1]T 3454
[−10, 0, 0,−10]T [1, 1, 1, 1]T 3571

[0, 0, 0, 0]T [1, 1, 1, 1]T 3539

DFMA

[1, 1, 0, 0]T [1, 1, 1, 1]T 9153
[1, 1, 1, 1]T [1, 1, 1, 1]T 9123

[−10, 10,−10, 10]T [1, 1, 1, 1]T 14543
[−10,−5, 0, 5]T [1, 1, 1, 1]T 9248
[−10, 0, 0,−10]T [1, 1, 1, 1]T 9285

[0, 0, 0, 0]T [1, 1, 1, 1]T 9162

DFMB

[1, 1, 0, 0]T [1, 1, 1, 1]T 6523
[1, 1, 1, 1]T [1, 1, 1, 1]T 6498

[−10, 10,−10, 10]T [1, 1, 1, 1]T 8553
[−10,−5, 0, 5]T [1, 1, 1, 1]T 6701
[−10, 0, 0,−10]T [1, 1, 1, 1]T 6655

[0, 0, 0, 0]T [1, 1, 1, 1]T 6530

Table 1 gives the results obtained by the proposed algorithm for Problems 1–3.
Problems 1–3 are with nonlinear objective function and nonlinear constraint functions.

It is hard for an algorithm to solve. However, it can be seen from Table 1 that for Problems
1–3, the proposed algorithm can find the global optimal solutions for all these three problems
using relatively small number of function evaluations.

In order to demonstrate the efficiency of the proposed algorithm, we compare the
proposed algorithm with other two discrete filled function methods DFMA and DFMB
([14, 19]) for Problems 4–7. The results are summarized in Tables 2–5, where DFMA and
DFMB denote the discrete filled function methods proposed in [14, 19], respectively, and
AFM denotes the proposed auxiliary function algorithm. In implementation of the algorithm,
F(x) = f(x) for Problems 4–7.

For Problem 4, it can be seen from Table 2 that all three algorithms can find global
optimal solution, but the number of the function evaluations used by proposed algorithm
AFM is only about 1/3 of that used by DFMA and only about half of that used by DFMB. For
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Table 3: Numerical results of Problem 5 (M = 108).

Algorithm x0 x∗ Ef+g

AFM

[2,−2]T [0,−1]T 118743
[0,−1]T [0,−1]T 83181
[−2,−2]T [0,−1]T 91850
[−0.5,−1]T [0,−1]T 86024
[1,−1.5]T [0,−1]T 113741
[1,−1]T [0,−1]T 91698

DFMA

[2,−2]T [0,−1]T 268489
[0,−1]T [0,−1]T 254444
[−2,−2]T [0,−1]T 270930
[−0.5,−1]T [0,−1]T 254444
[1,−1.5]T [0,−1]T 267978
[1,−1]T [0,−1]T 254444

DFMB

[2,−2]T [0,−1]T 176397
[0,−1]T [0,−1]T 170351
[−2,−2]T [0,−1]T 175828
[−0.5,−1]T [0,−1]T 171831
[1,−1.5]T [0,−1]T 173889
[1,−1]T [0,−1]T 173334

Table 4: Numerical results of Problem 6 (M = 108).

Algorithm x0 x∗ Ef+g

AFM

[10,−10]T [3, 0.5]T 815212
[0.997,−6.867]T [3, 0.5]T 813561

[0,−1]T [3, 0.5]T 414793
[1, 1]T [3, 0.5]T 438751
[−2, 2]T [3, 0.5]T 537546
[0, 0]T [3, 0.5]T 410793

DFMA

[10,−10]T [3, 0.5]T 2189978
[0.997,−6.867]T [3, 0.5]T 2192230

[0,−1]T [3, 0.5]T 2197097
[1, 1]T [3, 0.5]T 1356906
[−2, 2]T [3, 0.5]T 1356906
[0, 0]T [3, 0.5]T 2527711

DFMB

[10,−10]T [3, 0.5]T 1430248
[0.997,−6.867]T [3, 0.5]T 1431740

[0,−1]T [3, 0.5]T 1439584
[1, 1]T [3, 0.5]T 830822
[−2, 2]T [3, 0.5]T 829445
[0, 0]T [3, 0.5]T 911090

Problems 5 and 6, we can see from Tables 3-4 that all three algorithms can also find global
optimal solutions, but the number of function evaluations used by DFMA is more than twice
of that used by AFM, and the number of function evaluations used by DFMB is more than
1.5 times of that used by AFM. For Problem 7, it can be seen from Table 5 that the number
of function evaluations used by AFM is also much smaller than those used by DFMA and
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Table 5: Numerical results of Problem 7 (M = 106).

Algorithm x0 x∗ Ef+g

AFM

[0, . . . , 0]T [1, . . . , 1]T 873553
[3, . . . , 3]T [1, . . . , 1]T 557111

[−5, . . . ,−5]T [1, . . . , 1]T 463176
[2,−2, . . . , 2,−2, 2]T [1, . . . , 1]T 576770
[3,−3, . . . , 3,−3, 3]T [1, . . . , 1]T 794156
[5,−5, . . . , 5,−5, 5]T [1, . . . , 1]T 581242

DFMA

[0, . . . , 0]T [1, . . . , 1]T 893881
[3, . . . , 3]T [1, . . . , 1]T 1317062

[−5, . . . ,−5]T [1, . . . , 1]T 899485
[2,−2, . . . , 2,−2, 2]T [1, . . . , 1]T 896281
[3,−3, . . . , 3,−3, 3]T [1, . . . , 1]T 1516925
[5,−5, . . . , 5,−5, 5]T [1, . . . , 1]T 1518820

DFMB

[0, . . . , 0]T [1, . . . , 1]T 615173
[3, . . . , 3]T [1, . . . , 1]T 956979

[−5, . . . ,−5]T [1, . . . , 1]T 620725
[2,−2, . . . , 2,−2, 2]T [1, . . . , 1]T 617573
[3,−3, . . . , 3,−3, 3]T [1, . . . , 1]T 655048
[5,−5, . . . , 5,−5, 5]T [1, . . . , 1]T 756943

DFMB. These results demonstrate that the proposed algorithm is effective and more efficient
than the compared algorithms.

6. Concluding Remarks

In this paper, we propose an auxiliary function method for finding the global minimizer
of integer programming problems. The auxiliary function can help to escape from a local
minimizer and to get a better one. The minimizer of the auxiliary function also is a feasible
minimizer of the original problem and better than the current best one obtained. The
numerical results show that the proposed algorithm is more effective and efficient than the
compared ones.
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