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With the help of the generalized Jacobi elliptic function, an improved Jacobi elliptic function
method is used to construct exact traveling wave solutions of the nonlinear partial differential
equations in a unified way. A class of nonlinear Schrödinger-type equations including the
generalized Zakharov system, the Rangwala-Rao equation, and the Chen-Lee-Lin equation are
investigated, and the exact solutions are derivedwith the aid of the homogenous balance principle.

1. Introduction

Nonlinear phenomena appear in a wide variety of scientific fields, such as applied math-
ematics, physics and engineering problems. However, solving nonlinear partial differential
equations (NLPDEs) corresponding to the nonlinear problems is often complicate. Especially,
obtaining their explicit solutions is even more difficult. Up to now, a lot of new methods
for solving NLPDEs are developed, for example, Bäckland transformation method, inverse
scattering method, Darboux transformation method, Hirota’s bilinear method, homogeneous
balance method, Jacobi elliptic function method, tanh-function method, variational iteration
method, the sine-cosine method, F-expansion method, Lucas Riccati method, and so on
[1–15]. But, generally speaking, all of the above methods have their own advantages and
shortcomings, respectively.

Nowadays, many exact solutions of NLPDEs can be written as a polynomial in several
elementary or special functions which satisfy first-order nonlinear ordinary differential
equation (NLODE) with a sixth-degree nonlinear term. The aim of this paper, motivated
by [13, 15], is to perform a first-order NLODE with sixth-degree nonlinear term which is,
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in nature, an extension of a type of elliptic equation, into a new algebraic or new auxiliary
equation method to seek exact solutions to a class of nonlinear Schrödinger-type equations.

The rest of this paper is organized as follows. In Section 2, we give the description
of the generalized improved Jacobi elliptic function method. In Section 3, we apply this
method to the generalized Zakharov system, the Rangwala-Rao equation, and the Chen-Lee-
Lin equation. Finally, we conclude the paper and give some futures and comments.

2. Description of the Improved Jacobi Elliptic Function Method

The main idea of this method is to take full advantage of the elliptic equation that the
generalized Jacobi elliptic functions (GJEFs) satisfy [13, 16–18]. The desired elliptic equation
read

F ′(ξ) =
√
A0 +A2F2(ξ) +A4F4(ξ) +A6F6(ξ),

′ ≡ d

dξ
, (2.1)

where ξ ≡ ξ(x, t) and A0, A2, A4, A6 are constants.

Case 1. If A0 = 1, A2 = −(1 + k21 + k
2
2), A4 = k21 + k

2
2 + k

2
1k

2
2 and A6 = −k21k22, then (2.1) has a

solution s(ξ, k1, k2).

Case 2. If A0 = 1 − k21 − k22 + k21k
2
2, A2 = 2k21 + 2k22 − 3k21k

2
2 − 1, A4 = 3k21k

2
2 − k21 − k22 and

A6 = −k21k22, then (2.1) has a solution c(ξ, k1, k2).

Case 3. If A0 = k21 − 1 − k22 + k22k
−2
1 , A2 = 2k22 + 2 − k21 − 3k22k

−2
1 , A4 = 3k22k

−2
1 − k22 − 1

and A6 = −k22k−21 , then (2.1) has a solution d1(ξ, k1, k2).

Case 4. If A0 = k22 − 1 − k21 + k21k
−2
2 , A2 = 2k21 + 2 − k22 − 3k21k

−2
2 , A4 = 3k21k

−2
2 − k21 − 1 and

A6 = −k21k−22 , then (2.1) has a solution d2(ξ, k1, k2).

s(ξ, k1, k2) is the generalized Jacobi elliptic sine function, ξ is an independent variable,
k1, k2 (0 ≤ k2 ≤ k1 ≤ 1) are two modulus of the GJEFs, c(ξ, k1, k2) is the generalized Jacobi
elliptic cosine function, d1(ξ, k1, k2) is the generalized Jacobi elliptic function of the third kind,
and d2(ξ, k1, k2) is the generalized Jacobi elliptic function of the forth kind [13, 16–18]. The
definitions and properties of the GJEFs are given in the appendix.

For a given NLPDEs involving the two independent variables x, t,

P(u, ut, ux, uxx, . . .) = 0, (2.2)

where P is in general a polynomial function of its argument and the subscripts denote the
partial derivatives, by using the traveling wave transformation, Equation (2.2) possesses the
following ansätz:

u(x, t) = U(ξ), ξ = k(x −ωt), (2.3)

where k,ω are constants to be determined later. Substituting (2.3) into (2.2) yields an ordinary
differential equation (ODE):
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O(u(ξ), u(ξ)ξ, u(ξ)ξξ, . . .) = 0. Then, u(ξ) is expanded into a polynomial of F(ξ) in the
form

u(ξ) = a0 +
n∑
i=1

aiF
i(ξ). (2.4)

The processes take the following steps.

Step 1. Determine n in (2.4) by balancing the linear term(s) of the highest order with the
nonlinear term(s) in (2.2).

Step 2. Substituting (2.4)with (2.1) into (2.2), then the left-hand side of (2.2) can be converted
into a polynomial in F(ξ). Setting each coefficient of the polynomial to zero yields system of
algebraic equations for a0, a1, . . . , an, k and ω.

Step 3. Solving this system obtained in Step 2, then a0, a1, . . . , an, k and ω can be expressed
by A0, A2, A4, A6. Substituting these into (2.4), then general form of traveling wave solution
of (2.2) can be obtained. In the following section, we apply this method to class of nonlinear
Schrödinger-type equations to obtain new quasidoubly periodic solution.

3. Applications

In the following, we use the improved Jacobi elliptic function method to seek exact traveling
wave solutions of class of nonlinear Schrödinger-type equations which are of interest in
plasma physics, wave propagation in nonlinear optical fibers, Ginzburg-Landau theory of
superconductivity, and so forth.

3.1. Generalized Zakharov’s System

In the interaction of laser-plasma the system of Zakharov’s equation plays an important role.
This system has wide interest and attention for many scientists.

Let us consider the generalized Zakharov system [19]

utt − c2suxx = β
(
|E|2

)
xx
,

iEt + αExx − δ1uE + δ2|E|2E + δ3|E|4E = 0.
(3.1)

When δ2 = δ3 = 0, the generalized Zakharov system reduces to the famous Zakharov system
which describe the propagation Langmuir waves in plasmas. The real unknown function
u(x, t) is the fluctuation in the ion density about its equilibrium value, and the complex
unknown function E(x, t) is the slowly varying envelope of highly oscillatory electron field.
The parameters α, β, δ1, δ2, δ3, and cs are real numbers, where cs is proportional to the ion
acoustic speed (or electron sound speed). Here, we seek its traveling wave solution in the
forms

E(x, t) = H(ξ)ei(kx−ωt), u(x, t) = u(ξ), ξ = x − ct, (3.2)
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where k, ω, and c are constants andH(ξ) is real function. Therefore, system (3.1) reduces to

(
c2 − c2s

)
u′′ = β

(
H2

)
ξξ
, (3.3)

αH ′′ + i(2αk − c)H ′ +
(
ω − αk2

)
H − δ1uH + δ2H3 + δ3H5 = 0. (3.4)

Integrating (3.3)with respect to ξ and taking the integration constants to zero yield

u =
β

c2 − c2s
H2, c2 − c2s /= 0. (3.5)

Substituting (3.5) into (3.4) results in

H ′′ +
1
α

[(
ω − αk2

)
H +

(
δ2 −

βδ1

c2 − c2s

)
H3 + δ3H5

]
= 0, c = 2αk, α /= 0. (3.6)

According to Step 3, we assume that (3.6) possesses the solutions in the form

H(ξ) = a0 + a1F(ξ). (3.7)

Substituting (3.7) with (2.1) into (3.6) and equating each of the coefficients of Fi(ξ), i =
0, 1, . . . , 5 to zero, we obtain system of algebraic equations. To avoid tediousness, we omit
the overdetermined algebraic equations. From the output of Maple, we obtain the following
solution:

a0 = 0, c = 2αk, ω = α
(
k2 −A2

)
, a1 = ±

√
3A6

2δ3A4

(
δ2 −

βδ1

4α2k2 − c2s

)
. (3.8)

Now, based on the solutions of (2.1), one can obtain new types of quasiperiodic wave solution
of the generalized Zakharov system. We obtain the general formulae of the solution of system
(3.1)

u(x, t) =
3A6β

2δ3A4
(
4α2k2 − c2s

)
(
δ2 −

βδ1

4α2k2 − c2s

)
F2(x − 2αkt),

E(x, t) = ±
√

3A6

2δ3A4

(
δ2 −

βδ1

4α2k2 − c2s

)
F(x − 2αkt)ei(kx−ωt).

(3.9)
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By selecting the special values of the A0, A2, A4, A6 and the corresponding function F(ξ), we
have the following solutions of the generalized Zakharov system (3.1):

u1(x, t) =
−3k21k22β

2δ3
(
k21 + k

2
2 + k

2
1k

2
2

)(
4α2k2 − c2s

)
(
δ2 −

βδ1

4α2k2 − c2s

)
s2(x − 2αkt, k1, k2),

E1(x, t) = ±
√√√√ −3k21k22

2δ3
(
k21 + k

2
2 + k

2
1k

2
2

)
(
δ2 −

βδ1

4α2k2 − c2s

)
s(x − 2αkt, k1, k2)ei(kx−ωt),

u2(x, t) =
−3k21k22β

2δ3
(
3k21k

2
2 − k21 − k22

)(
4α2k2 − c2s

)
(
δ2 −

βδ1

4α2k2 − c2s

)
c2(x − 2αkt, k1, k2),

E2(x, t) = ±
√√√√ −3k21k22

2δ3
(
3k21k

2
2 − k21 − k22

)
(
δ2 −

βδ1

4α2k2 − c2s

)
c(x − 2αkt, k1, k2)ei(kx−ωt).

(3.10)

We omitted the reminder solutions for simplicity.

3.2. Rangwala-Rao Equation

The Rangwala-Rao equation [20] is

uxt − β1uxx + u + iTβ2|u|2ux = 0, T = ±1, (3.11)

where β1, β2 are real constants. Rangwala and Rao introduced Equation (3.11) as the integra-
bility condition when they studied the mixed, derivative, nonlinear Schrödinger equations
and looked for the Bäcklund transformation and solitary wave solutions.

Suppose the exact solutions of (3.11) is of the form

u(x, t) = e−iωteiψ(x−ct)H(x − ct), (3.12)

where ω, c are constants determined later and ψ, H are undetermined functions with one
variable only. Set the relation of ψ,H as

ψ ′(ξ) =
ω

2
(
c + β1

) +
Tβ2

4
(
c + β1

)H2(ξ),
′
=
d

dξ
, ξ = x − ct. (3.13)

Substituting (3.12) with (3.13) into (3.11) simultaneously yields

H ′′ − 4
(
c + β1

) −ω2

4
(
c + β1

)2 H − Tβ2ω

2
(
c + β1

)2H3 +
3T2β22

16
(
c + β1

)2H5 = 0. (3.14)



6 Mathematical Problems in Engineering

According to the homogeneous balance principle, we suppose that the exact solutions of
(3.14) take the form

H(ξ) = a0 + a1F(ξ). (3.15)

Substituting (3.15) with (2.1) into (3.14) and equating each of the coefficients of Fi(ξ), i =
0, 1, . . . , 5 to zero, we obtain system of algebraic equations. Solving this system with the aid
of Maple, we obtain the following solution:

a0 = 0, ω = 2
√(

c + β1
)[
1 − (

c + β1
)
A2

]
, a1 = ±

√
−8A6ω

3TA4β2
. (3.16)

The general formulae of the solutions of Rangwala-Rao equation

u(x, t) = ±
√

−8A6ω

3TA4β2
F(x − ct)e−iωteiψ(x−ct), (3.17)

with ψ(ξ) = ω/6A4(c + β1)
∫
[3A4 − 4A6F

2(ξ)]dξ, ω = 2
√
(c + β1)[1 − (c + β1)A2].

By selecting the special values of the A0, A2, A4, A6 and the corresponding function
F(ξ), we have the following intensities of the solutions of the Rangwala-Rao equation.

When A0 = 1, A2 = −(1 + k21 + k22), A4 = k21 + k
2
2 + k

2
1k

2
2 and A6 = −k21k22, we have

|u1|2 = −
16k21k

2
2

√(
c + β1

)[
1 +

(
1 + k21 + k

2
2

)(
c + β1

)]

3Tβ2
(
k21 + k

2
2 + k

2
1k

2
2

) s2(x − ct, k1, k2), (3.18)

and when A0 = 1 − k21 − k22 + k21k
2
2, A2 = 2k21 + 2k22 − 3k21k

2
2 − 1, A4 = 3k21k

2
2 − k21 − k22, and

A6 = −k21k22, we have

|u2|2 = −
16k21k

2
2

√(
c + β1

)[
1 − (

2k21 + 2k22 − 3k21k
2
2

)(
c + β1

)]

3Tβ2
(
3k21k

2
2 − k21 − k22

) c2(x − ct, k1, k2). (3.19)

We omitted the reminder intensities for simplicity.

3.3. Chen-Lee-Lin Equation

The Chen-Lee-Lin equation [20] is

iut + uxx + iδ|u|2ux = 0, (3.20)

where δ is a real constant. Similarly as before, we suppose the exact solution of (3.20) is of
the form

u(x, t) = e−iωteiψ(x−ct)H(x − ct). (3.21)
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Set the relation of ψ,H as

ψ ′(ξ) =
c

2
− δ

4
H2(ξ),

′
=
d

dξ
, ξ = x − ct. (3.22)

Substituting (3.21) with (3.22) into (3.20) simultaneously yields

H ′′ +

(
ω +

c2

4

)
H − cδ

2
H3 +

3δ2

16
H5 = 0. (3.23)

According to the homogeneous balance principle, we suppose that the exact solutions of
(3.23) take the form

H(ξ) = a0 + a1F(ξ). (3.24)

Substituting (3.24) with (2.1) into (3.23) and equating each of the coefficients of Fi(ξ), i =
0, 1, . . . , 5 to zero, we obtain system of algebraic equations. Solving this system with the aid
of Maple, we obtain the following solution:

a0 = 0, ω = A2 − c2

4
, a1 = ±2

√
−cA6

δA4
. (3.25)

The general formulae of the solution of Chen-Lee-Lin equation

u(x, t) = ±2
√

−cA6

δA4
F(x − ct)e−iωteiψ(x−ct), (3.26)

with ψ(ξ) = (c/2A4)
∫
[A4 − 2A6F2(ξ)]dξ and ω = A2 − c2/4. By selecting the special values of

the A0, A2, A4, A6 and the corresponding function F(ξ), we have the following intensities of
the solutions of the Chen-Lee-Lin equation.

When A0 = 1, A2 = −(1 + k21 + k22), A4 = k21 + k
2
2 + k

2
1k

2
2 and A6 = −k21k22, we have

|u1|2 = − 4ck21k
2
2

δ
(
k21 + k

2
2 + k

2
1k

2
2

)s2(x − ct, k1, k2), (3.27)

and whenA0 = 1−k21−k22+k21k22,A2 = 2k21+2k
2
2−3k21k22−1,A4 = 3k21k

2
2−k21−k22 andA6 = −k21k22,

we have

|u2|2 = − 4ck21k
2
2

δ
(
3k21k

2
2 − k21 − k22

)c2(x − ct, k1, k2). (3.28)

We omitted the reminder intensities for simplicity.
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Besides the solutions obtained above, the ODE Equation (2.1), albeit with different
parameters, has been studied in the different context [21–24]. It has been shown that
this equation possesses abundant solutions, Including Weierstrass function solutions, kink
solutions, periodic solutions, and so forth. To the best of our knowledge, some of our explicit
solutions are new.

Notice that the GJEFs are generalization of the Jacobi elliptic, hyperbolic, and trigono-
metric functions as stated in the appendix. Also, the two modulus parameters k1 and k2
describe the degree of the wave energy localization in the obtained solutions.

4. Conclusion

There is no systematic way for solving (2.1). Nevertheless, this ansätz with four arbitrary
parameters A0, A2, A4, A6 is reasonable since its solution can be expressed in terms of fun-
ctions, such as generalized Jacobi elliptic functions, that appear only in the nonlinear
problems. In addition, these functions go back, in some limiting cases, to sn, cn, dn,
tanh, sech, sin, and cos functions that describe the double periodic, periodic, solitary,
and shock wave propagation. The values of the constants ai (i = 0, 1, . . . , n) in (2.4)
depend crucially on the nature of differential equations whereas different types of their
solutions can be classified in terms of A0, A2, A4, A6 as shown in Cases 1–4. In this
work, we obtain the exact solutions of the generalized Zakharov system, the Rangwala-
Rao equation, and the Chen-Lee-Lin equation by using GJEFs. We believe one can
apply this method to many other nonlinear partial differential equations in mathematical
physics.

Appendix

In this appendix, we review the GJEFs and study some properties of these functions [13, 16–
18]. We consider the (pseudo-) hyperelliptic integral

y(x, k1, k2) =
∫x

0

dt√
(1 − t2)(1 − k21t2

)(
1 − k22t2

) . (A.1)

We define the generalized Jacobi elliptic sine function as the inverse function x =
s(y, k1, k2), where y is an independent variable and k1, k2 (0 ≤ k2 ≤ k1 ≤ 1) are two

modulus of the GJEFs. Similarly,
√
1 − x2,

√
1 − k21x2, and

√
1 − k22x2 are defined as the

generalized Jacobi elliptic cosine function, the generalized Jacobi elliptic function of the
third kind, and the generalized Jacobi elliptic function of the forth kind. They are expressed
as

√
1 − x2 = c(y, k1, k2

)
,

√
1 − k21x2 = d1

(
y, k1, k2

)
,

√
1 − k22x2 = d2

(
y, k1, k2

)
. (A.2)
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The GJEFs possess the following properties of the triangular functions (we use the abbrevi-
ated notations s(y) ≡ s(y, k1, k2), c(y) ≡ (y, k1, k2), . . ., and so forth):

c2
(
y
)
= 1 − s2(y), d2

1

(
y
)
= 1 − k21s2

(
y
)
,

d2
2
(
y
)
= 1 − k22s2

(
y
)
, k21d

2
2
(
y
) − k22d2

1

(
y
)
= k21 − k22 ,

d2
i

(
y
) − k2i c2

(
y
)
= 1 − k2i , (i = 1, 2).

(A.3)

The first derivatives of these functions are given by

s′
(
y
)
= c

(
y
)
d1
(
y
)
d2
(
y
)
, c′

(
y
)
= −s(y)d1

(
y
)
d2
(
y
)
,

d′
1

(
y
)
= −k21s

(
y
)
c
(
y
)
d2
(
y
)
, d′

2
(
y
)
= −k22s

(
y
)
c
(
y
)
d1
(
y
)
.

(A.4)

Moreover, in the limiting case k2 → 0, the GJEF reduced to the usual JEFs

s
(
y, k1, 0

) −→ sn
(
y, k1

)
, c

(
y, k1, 0

) −→ cn
(
y, k1

)
,

d1
(
y, k1, 0

)
, d2

(
y, k1, 0

) −→ dn
(
y, k1

)
.

(A.5)

When k1 → 1, k2 → 0, we have

s
(
y, 1, 0

) −→ tanh
(
y
)
, c

(
y, 1, 0

)
, d1

(
y, 1, 0

)
, d2

(
y, 1, 0

) −→ sech
(
y
)
. (A.6)

Also, in the limiting case k1 → 0, k2 → 0, we have

s
(
y, 0, 0

) −→ sin
(
y
)
, c

(
y, 0, 0

) −→ cos
(
y
)
, d1

(
y, 0, 0

)
, d2

(
y, 0, 0

) −→ 1. (A.7)

The GJEFs can be expressed in terms of the standard Jacobi elliptic functions

s
(
y, k1, k2

)
=

sn
(
k′2y, k

)
√
1 − k22 + k22sn2

(
k′2y, k

) , c
(
y, k1, k2

)
=

k′2cn
(
k′2y, k

)
√
1 − k22cn2

(
k′2y, k

) ,

d1
(
y, k1, k2

)
=

√
k21 − k22dn

(
k′2y, k

)
√
k21 − k22dn2

(
k′2y, k

) , d2
(
y, k1, k2

)
=

√
k21 − k22√

k21 − k22dn2
(
k′2y, k

) ,

(A.8)
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with k′2 =
√
1 − k22, k =

√
(k21 − k22)/(1 − k22), and 0 ≤ k2 ≤ k1 ≤ 1. From the double periodic

properties of the Jacobi elliptic functions, one can see that the GJEFs are quasidouble periodic

s

(
y +

4K(k)
k′2

)
= s

(
y +

2iK(k′)
k′2

)
= ±s(y),

c

(
y +

4K(k)
k′2

)
= c

(
y +

2K(k) + 2iK(k′)
k′2

)
= ±c(y),

d1

(
y +

2K(k)
k′2

)
= d1

(
y +

4iK(k′)
k′2

)
= ±d1

(
y
)
,

d2

(
y +

2K(k)
k′2

)
= d2

(
y +

2iK(k′)
k′2

)
= ±d2

(
y
)
,

(A.9)

where K(k) is the complete elliptic integral of the first kind and k′ =
√
1 − k2 [13, 16–18].
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