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Lightlike geometry has its applications in general relativity, particularly in black hole theory.
Indeed, it is known that lightlike hypersurfaces are examples of physical models of Killing
horizons in general relativity (Galloway, 2007). In this paper, we introduce the definition of generic
lightlike submanifolds of an indefinite cosymplectic manifold. We investigate new results on a
class of generic lightlike submanifolds M of an indefinite cosymplectic manifold M.

1. Introduction

In the generalization from Riemannian to semi-Riemannian manifolds, the induced metric
may be degenerate (lightlike) therefore there is a natural existence of lightlike submanifolds
and for which the local and global geometry is completely different than nondengerate case.
In lightlike case, the standard textbook definitions do not make sense- and one fails to use
the theory of non-degenerate geometry in the usual way. The primary difference between the
lightlike submanifolds and non-degenerate submanifolds is that in the first case, the normal
vector bundle intersects with the tangent bundle. Thus, the study of lightlike submanifolds
becomes more difficult and different from the study of non-degenerate submanifolds.
Moreover, the geometry of lightlike submanifolds is used in mathematical physics, in
particular, in general relativity since lightlike submanifolds producemodels of different types
of horizons (event horizons, Cauchy’s horizons, and Kruskal’s horizons). The universe can be
represented as a four-dimensional submanifold embedded in a (4+n)-dimensional spacetime
manifold. Lightlike hypersurfaces are also studied in the thoery of electromagnetism [1].
Thus, large number of applications but limited information available, motivated us to do
research on this subject matter. Kupeli [2] and Bejancu and Duggal [1] developed the general
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theory of degenerate (lightlike) submanifolds. They constructed a transversal vector bundle
of lightlike submanifold and investigated various properties of these manifolds. The geom-
etry of both lightlike hypersurfaces and half lightlike submanifolds of indefinite cosymplectic
manifolds was studied by Jin ([3, 4]). However, a general notion of generic lightlike subman-
ifolds of an indefinite cosymplectic manifold has not been introduced as yet.

The objective of this paper is to study generic r-lightlike submanifolds M of an indef-
inite cosymplectic manifold M subject to the conditions: (1) M is totally umbilical, or (2)
S(TM) is totally umbilical in M. In Section 1, we first of all recall some of fundamental
formulas in the theory of r-lightlike submanifolds. In Section 2, we newly define generic
lightlike submanifolds. After that, we prove some basic theorems which will be used in the
rest of this paper. In Section 3, we study generic r-lightlike submanifolds of M.

2. Lightlike Submanifolds

Let (M,g) be an m-dimensional lightlike submanifold of an (m + n)-dimensional semi-
Riemannian manifold (M,g). Then the radical distribution Rad(TM) = TM ∩ TM⊥ is a
vector subbundle of the tangent bundle TM and the normal bundle TM⊥, of rank r(1 ≤
r ≤ min{m,n}). In general, there exist two complementary non-degenerate distributions
S(TM) and S(TM⊥) of Rad(TM) in TM and TM⊥, respectively, called the screen and coscreen
distributions onM, such that

TM = Rad(TM)⊕orthS(TM), TM⊥ = Rad(TM)⊕orthS
(
TM⊥

)
, (2.1)

where the symbol ⊕orth denotes the orthogonal direct sum. We denote such a lightlike sub-
manifold by (M,g, S(TM), S(TM⊥)). Denote by F(M) the algebra of smooth functions onM
and by Γ(E) the F(M) module of smooth sections of a vector bundle E over M. We use the
same notation for any other vector bundle. We use the following range of indices:

i, j, k, . . . ∈ {1, . . . , r}, α, β, γ, . . . ∈ {r + 1, . . . , n}. (2.2)

Let tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles to
TM in TM|M and TM⊥ in S(TM)⊥, respectively, and let {N1, . . . ,Nr} be a lightlike basis of
Γ(ltr(TM)|U) consisting of smooth sections of S(TM)⊥|U , whereU is a coordinate neighborhood
of M, such that

g
(
Ni, ξj

)
= δij , g

(
Ni,Nj

)
= 0, (2.3)

where {ξ1, . . . , ξr} is a lightlike basis of Γ(Rad (TM)). Then we have

TM = TM ⊕ tr(TM) = {Rad(TM) ⊕ tr(TM)}⊕orthS(TM)

= {Rad(TM) ⊕ ltr(TM)}⊕orthS(TM)⊕orthS
(
TM⊥

)
.

(2.4)
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We say that a lightlike submanifold (M,g, S(TM), S(TM⊥)) of M is

(1) r-lightlike if 1 ≤ r < min{m,n};
(2) coisotropic if 1 ≤ r = n < m;

(3) isotropic if 1 ≤ r = m < n;

(4) totally lightlike if 1 ≤ r = m = n.

The above three classes (2)–(4) are particular cases of the class (1) as follows: S(TM⊥) =
{0}, S(TM) = {0}, and S(TM) = S(TM⊥) = {0}, respectively. The geometry of r-lightlike
submanifolds is more general form than that of the other three type submanifolds. For this
reason, in this paperwe consider only r-lightlike submanifoldsM ≡ (M,g, S(TM), S(TM⊥)),
with the following local quasiorthonormal field of frames ofM:

{ξ1, . . . , ξr ,N1, . . . ,Nr, Fr+1, . . . , Fm, Er+1, . . . , En}, (2.5)

where the sets {Fr+1, . . . , Fm} and {Er+1, . . . , En} are orthonormal basis of Γ(S(TM)) and
Γ(S(TM⊥)), respectively.

Let∇ be the Levi-Civita connection ofM and P the projection morphism of Γ(TM) on
Γ(S(TM)) with respect to (2.1). For an r-lightlike submanifold, the local Gauss-Weingarten
formulas are given by

∇XY = ∇XY +
r∑
i=1

h�
i (X, Y)Ni +

n∑
α=r+1

hs
α(X, Y)Eα, (2.6)

∇XNi = −ANiX +
r∑

j=1

τij(X)Nj +
n∑

α=r+1

ρiα(X)Eα, (2.7)

∇XEα = −AEαX +
r∑
i=1

φαi(X)Ni +
n∑

β=r+1

σαβ(X)Eβ, (2.8)

∇XPY = ∇∗
XPY +

r∑
i=1

h∗
i (X, PY)ξi, (2.9)

∇Xξi = −A∗
ξi
X −

r∑
j=1

τji(X)ξj , (2.10)

for any X, Y ∈ Γ(TM), where ∇ and ∇∗ are induced linear connections on TM and S(TM),
respectively, the bilinear forms h�

i and hs
α on M are called the local lightlike and screen second

fundamental forms on TM, respectively, h∗
i are called the local radical second fundamental forms

on S(TM). ANi , A
∗
ξi
, and AEα are linear operators on Γ(TM) and τij , ρiα, φαi and σαβ are 1-

forms on TM. Since∇ is torsion-free,∇ is also torsion-free and both h�
i and hs

α are symmetric.
From the fact h�

i (X, Y) = g(∇XY, ξi), we know that h�
i are independent of the choice of a screen

distribution. We say that

h(X, Y) =
r∑
i=1

h�
i (X, Y)Ni +

n∑
α=r+1

hs
α(X, Y)Eα (2.11)

is the second fundamental tensor of M.
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The induced connection ∇ on TM is not metric and satisfies

(∇Xg
)
(Y,Z) =

r∑
i=1

{
h�
i (X, Y) ηi(Z) + h�

i (X,Z)ηi(Y)
}
, (2.12)

for all X, Y ∈ Γ(TM), where ηis are the 1-forms such that

ηi(X) = g(X,Ni), ∀X ∈ Γ(TM). (2.13)

But the connection ∇∗ on S(TM) is metric. The above three local second fundamental forms
are related to their shape operators by

h�
i (X, Y) = g

(
A∗

ξi
X, Y

)
−

r∑
k=1

h�
k(X, ξi)ηk(Y), (2.14)

h�
i (X, PY) = g

(
A∗

ξi
X, PY

)
, g

(
A∗

ξi
X,Nj

)
= 0, (2.15)

εαh
s
α(X, Y) = g(AEαX, Y) −

r∑
i=1

φαi(X)ηi(Y), (2.16)

εαh
s
α(X, PY) = g(AEαX, PY), g(AEαX,Ni) = εαρiα(X), (2.17)

h∗
i (X, PY) = g(ANiX, PY), ηj(ANiX) + ηi

(
ANjX

)
= 0, (2.18)

εβσαβ = −εασβα, ∀X, Y ∈ Γ(TM), (2.19)

where εα = g(Eα, Eα)(= ±1) is the sign of the vector field Eα. From (2.18), we know that each
ANi is shape operator related to the local second fundamental form h∗

i on S(TM). Replace Y
by ξj in (2.14), we have

h�
i

(
X, ξj

)
+ h�

j (X, ξi) = 0, (2.20)

for all X ∈ Γ(TM). It follows

h�
i (X, ξi) = 0, h�

i

(
ξj , ξk

)
= 0. (2.21)

Also, replace X by ξj in (2.14) and use (2.21), we have

h�
i

(
X, ξj

)
= g

(
X,A∗

ξi
ξj
)
, A∗

ξi
ξj +A∗

ξj
ξi = 0, A∗

ξi
ξi = 0. (2.22)

For an r-lightlike submanifold, replace Y by ξi in (2.16), we have

hs
α(X, ξi) = −εαφαi(X), ∀X ∈ Γ(TM). (2.23)
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From (2.6), (2.10), and (2.23), for all X ∈ Γ(TM), we have

∇Xξi = −A∗
ξi
X −

r∑
j=1

τji(X)ξj −
n∑

α=r+1

εαφαi(X)Eα +
r∑

j=1

h�
j (X, ξi)Nj. (2.24)

Definition 2.1. A lightlike submanifoldM of a semi-Riemannian manifold (M,g) is said to be
irrotational if ∇Xξi ∈ Γ(TM) for any X ∈ Γ(TM) and ξi ∈ Γ(Rad(TM)) for all i.

Note 1. For an r-lightlike M, the above definition is equivalent to

h�
j (X, ξi) = 0, hs

α(X, ξi) = φαi(X) = 0, ∀X ∈ Γ(TM). (2.25)

Denote by R and R the curvature tensors of ∇ and ∇, respectively. Using the local
Gauss-Weingarten formulas for M, we obtain

R(X, Y)Z = R(X, Y)Z

+
r∑
i=1

{
h�
i (X,Z)ANiY − h�

i (Y,Z)ANiX
}

+
n∑

α=r1

{hs
α(X,Z)AEαY − hs

α(Y,Z)AEαX}

+
r∑
i=1

{(
∇Xh

�
i

)
(Y,Z) −

(
∇Yh

�
i

)
(X,Z)

+
r∑

j=1

[
τji(X)h�

j (Y,Z) − τji(Y)h�
j (X,Z)

]

+
n∑

α=r+1

[
φαi(X)hs

α(Y,Z) − φαi(Y)hs
α(X, Z)

]
}
Ni

+
n∑

α=r+1

{
(∇Xh

s
α)(Y,Z) − (∇Yh

s
α)(X,Z)

+
r∑
i=1

[
ρiα(X)h�

i (Y,Z) − ρiα(Y)hs
α(X,Z)

]

+
n∑

β=r+1

[
σβα(X)hs

β(Y,Z) − σβα(Y)hs
β(X,Z)

]
⎫
⎬
⎭Eα,

(2.26)
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for all X, Y, Z ∈ Γ(TM). Assume that M is irrotational. Replace Z by ξk in (2.26) and use
(2.10), (2.15), (2.17), and (2.25), then we have

R(X, Y)ξk = R(X, Y)ξk

+
r∑
i=1

{
g
(
A∗

ξi
Y, A∗

ξk
X
)
− g

(
A∗

ξi
X,A∗

ξk
Y
)}

Ni

+
n∑

α=r+1

εα
{
g
(
AEαY,A

∗
ξk
X
)
− g

(
AEαX,A∗

ξk
Y
)}

Eα.

(2.27)

Using (2.27) and the fact R(X, Y)Z ∈ Γ(TM) for X, Y, Z ∈ Γ(TM), we get

g
(
R(X, Y)Z, ξk

)
= −g

(
R(X, Y)ξk, Z

)

= −g(R(X, Y)ξk, Z) +
r∑
i=1

{
g
(
A∗

ξi
X,A∗

ξk
Y
)
− g

(
A∗

ξi
Y, A∗

ξk
X
)}

ηi(Z)

= g(R(X, Y)Z, ξk) +
r∑
i=1

{
g
(
A∗

ξi
X,A∗

ξk
Y
)
− g

(
A∗

ξi
Y, A∗

ξk
X
)}

ηi(Z)

=
r∑
i=1

{
g
(
A∗

ξi
X,A∗

ξk
Y
)
− g

(
A∗

ξi
Y, A∗

ξk
X
)}

ηi(Z), ∀X, Y, Z ∈ Γ(TM).

(2.28)

3. Indefinite Cosymplectic Manifolds

An odd dimensional smooth manifold (M,g) is called a contact metric manifold [5, 6] if there
exists a (1, 1)-type tensor field J , a vector field ζ, called the characteristic vector field, and its
1-form θ satisfying

J2X = −X + θ(X)ζ, Jζ = 0, θ ◦ J = 0, θ(ζ) = 1,

g(ζ, ζ) = ε, g(JX, JY) = g(X, Y) − εθ(X)θ(Y),

θ(X) = εg(ζ, X), dθ(X, Y) = g(JX, Y), ε = ±1,
(3.1)

for any vector fields X, Y onM. Then the set (J, θ, ζ, g) is called a contact metric structure on
M. Note that we may assume that ε = 1 without loss of generality [7]. We say that M has a
normal contact structure [5, 8] if NJ + dθ ⊗ ζ = 0, where NJ is the Nijenhuis tensor field of J .
A normal contact metric manifold is called a cosymplectic [9, 10] for which we have

∇Xθ = 0, ∇XJ = 0, (3.2)

for any vector fieldX onM. A cosymplectic manifoldM = (M,J, ζ, θ, g) is called an indefinite
cosymplectic manifold [3, 4] if (M,g) is a semi-Riemannian manifold of index μ (> 0). For any
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indefinite cosymplectic manifold, apply ∇X to Jζ = 0 for any vector field X on M and use
(3.2), then we have J(∇Xζ) = 0. Apply J to this and use (3.1) and θ(∇Xζ) = 0, we get

∇Xζ = 0. (3.3)

An indefinite cosymplectic manifold M is called an indefinite cosymplectic space form,
denoted byM(c), if it has the constant J-sectional curvature c [3, 9, 10]. The curvature tensor
R of this space formM(c) is given by

R(X, Y)Z =
c

4
{
g(Y,Z)X − g(X,Z)Y + θ(X)θ(Z)Y

− θ(Y)θ(Z)X + g(X,Z)θ(Y)ζ − g(Y,Z)θ(X)ζ

+g(JY, Z)JX + g(JZ,X)JY − 2g(JX, Y)JZ
}
,

(3.4)

for any vector fields X, Y , and Z inM.
Let M be an m-dimensional r-lightlike submanifold of an (m + n)-dimensional

indefinite cosymplectic manifold M and P the projection morphism of Γ(TM) on Γ(S(TM))
with respect to (2.4). The characteristic vector field ζ of M from (2.4) is decomposed by

ζ = Pζ +
r∑
i=1

aiξi +
r∑
i=1

biNi +
n∑

α=r+1

eαEα, (3.5)

where ai = θ(Ni), bi = θ(ξi) and eα = εαθ(Eα) are smooth functions on M.

Note 2. Although S(TM) is not unique, it is canonically isomorphic to the factor vector bun-
dle S(TM)∗ = TM/Rad(TM) considered by Kupeli [2]. Thus all screen distributions S(TM)
are mutually isomorphic. For this reason, the following definition is well defined.

Definition 3.1 (see [6]). One says that M is generic lightlike submanifold of M if there exists a
screen distribution S(TM) of M such that

J
(
S(TM)⊥

)
⊂ S(TM). (3.6)

Proposition 3.2 (see [3]). Let M be a lightlike hypersurface of an indefinite cosymplectic manifold
M. Then M is a generic lightlike submanifold ofM.

Proposition 3.3 (see [4]). Let M be a 1-lightlike submanifold of codimension 2 of an indefinite
cosymplectic manifold M such that the coscreen distribution S(TM⊥) is spacelike. Then M is a ge-
neric lightlike submanifold ofM.

Theorem 3.4. Let M be an irrotational generic r-lightlike submanifold of an indefinite cosymplectic
space form M(c). Then one has c = 0.
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Proof. Assume that bk /= 0 in (3.5). Note that (3.1) implies g(JX, ξk) = −g(X, Jξk) for all X ∈
Γ(TM). Then, taking the scalar product with ξk to (3.4), and using (2.28), we get

4
r∑
i=1

{
g
(
A∗

ξi
X,A∗

ξk
Y
)
− g

(
A∗

ξi
Y, A∗

ξk
X
)}

ηi(Z)

= c
{
bkg(X,Z)θ(Y) − bkg(Y,Z)θ(X) − g(JY, Z)g(X, Jξk)

−g(JZ,X)g(Y, Jξk) + 2g(JX, Y)g(Z, Jξk)
}
, ∀X, Y, Z ∈ Γ(TM).

(3.7)

Replace Z by Jξk and Y by ξk in the equation and use (3.1), then we have

b2kcg(X, Jξk) = 0, ∀X ∈ Γ(TM), (3.8)

because ηi(Jξk) = 0 by (3.6). Replacing X by Jξk in this equation, we obtain b4
k
c = 0. Since

bk /= 0, we have c = 0.
Assume that bk = 0. Then, taking the scalar product with ξk to both sides of (3.4) and

using (2.28) and (3.1), we obtain

4
r∑
i=1

{
g
(
A∗

ξi
X,A∗

ξk
Y
)
− g

(
A∗

ξi
Y, A∗

ξk
X
)}

ηi(Z)

= c
{−g(JY, Z)g(X, Jξk) − g(JZ,X)g(Y, Jξk)

+ 2g(JX, Y)g(Z, Jξk)
}
, ∀X, Y, Z ∈ Γ(TM).

(3.9)

Replace Z by JNk and Y by ξk in this equation and use (3.1), then we have

cg(X, Jξk) = 0, ∀X ∈ Γ(TM), (3.10)

because ηi(JNk) = 0 by (3.6) and g(Jξk, JNk) = 1. Replace X by JNk in this equation, we get
c = 0.

Corollary 3.5. There exist no irrotational generic r-lightlike submanifoldsM of an indefinite cosym-
plectic space form M(c) with c /= 0.

Proposition 3.6. LetM be an r-lightlike submanifold of an indefinite cosymplectic manifoldM. Then
the characteristic vector field ζ does not belong to Rad(TM) and ltr(TM).

Proof. Assume that ζ belongs to Rad(TM) (or ltr(TM)). Then (3.1) deduces to ζ =
∑r

i=1 aiξi
[or ζ =

∑r
i=1 biNi]. From this, we have

1 = g(ζ, ζ) =
r∑

i,j=1

aiajg
(
ξi, ξj

)
= 0

⎡
⎣or 1 = g(ζ, ζ) =

r∑
i,j=1

bibjg
(
Ni,Nj

)
= 0

⎤
⎦. (3.11)

It is a contradiction. Thus ζ does not belong to Rad(TM) and ltr(TM).
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4. Generic Lightlike Submanifolds

If the characteristic vector field ζ is tangent to M, then, by Proposition 3.6, ζ does not belong
to Rad(TM). This enables one to choose a screen distribution S(TM) which contains ζ. This
implies that if ζ is tangent to M, then it belongs to S(TM). Călin also proved this result in his
book [11] which Kang et al. [12] and Duggal and Sahin [5, 8] assumed in their papers. We
also assumed this result in this paper. In this case, all of the functions ai, bi, and eα on M,
defined by (3.5), vanish identically.

Theorem 4.1. Let M be a generic r-lightlike submanifold of an indefinite cosymplectic manifold M.
Then ζ is a parallel vector field on M and S(TM). Furthermore ζ is conjugate to any vector field on
M with respect to h and h∗

i . In particular, ζ is an asymptotic vector field on M.

Proof. Replace Y by ζ to (2.6) and use (3.3) and ζ ∈ Γ(TM), we get

∇Xζ +
r∑

j=1

h�
j (X, ζ)Nj +

n∑
β=r+1

hs
β(X, ζ)Eβ = 0, ∀X ∈ Γ(TM). (4.1)

Taking the scalar product with ξi and Eα in this equation by turns, we have

∇Xζ = 0, h�
i (X, ζ) = 0, hs

α(X, ζ) = 0. (4.2)

Thus ζ is parallel onM and conjugate to any vector field onM with respect to h. Replace PY
by ζ to (2.9) and use (4.2) and ζ ∈ Γ(S(TM)), we have

∇∗
Xζ +

r∑
j=1

h∗
j (X, ζ)ξj = 0, ∀X ∈ Γ(TM). (4.3)

Taking the scalar product with Ni to this equation we have

∇∗
Xζ = 0, h∗

i (X, ζ) = 0, ∀X ∈ Γ(TM). (4.4)

Thus ζ is also parallel on S(TM) and conjugate to any vector field on M with respect to h∗.
Thus we have our assertions.

Definition 4.2. An r-lightlike submanifold M of M is said to be totally umbilical [13] if there
is a smooth vector fieldH ∈ Γ(tr(TM)) such that

h(X, Y) = Hg(X, Y), ∀X, Y ∈ Γ(TM). (4.5)

In caseH = 0, we say that M is totally geodesic.
It is easy to see that M is totally umbilical if and only if, on each coordinate neighbor-

hood U, there exist smooth functions Ai and Bα such that

h�
i (X, Y) = Aig(X, Y), hs

α(X, Y) = Bαg(X, Y), ∀X, Y ∈ Γ(TM). (4.6)
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Theorem 4.3. Let M be a totally umbilical generic r-lightlike submanifold of an indefinite cosym-
plectic manifoldM. Then M is totally geodesic.

Proof. From (4.2) and (4.6), we obtain

Aig(X, ζ) = 0, Bαg(X, ζ) = 0. (4.7)

Replace X by ζ to this equations and use g(ζ, ζ) = 1, we haveAi = 0 for all i and Bα = 0 for all
α. Thus M is totally geodesic.

Definition 4.4. A screen distribution S(TM) ofM is said to be totally umbilical [13] inM if, for
each locally second fundamental form h∗

i , there exist smooth functions Ci on any coordinate
neighborhood U inM such that

h∗
i (X, PY) = Cig(X, Y), ∀X, Y ∈ Γ(TM). (4.8)

In case Ci = 0 for all i, we say that S(TM) is totally geodesic inM.
Due to (2.18) and (4.8), we know that S(TM) is totally umbilical in M if and only if

each shape operators ANi of S(TM) satisfies

g(ANiX, PY) = Cig(X, PY), ∀X, Y ∈ Γ(TM), (4.9)

for some smooth functions Ci on U ⊆ M.

Theorem 4.5. Let M be a generic r-lightlike submanifold of an indefinite cosymplectic manifold M
such that S(TM) is totally umbilical inM. Then S(TM) is totally geodesic inM.

Proof. As S(TM) is totally umbilical in M. Replace Y by ζ to (4.8) and use (4.4), we have
Ci g(X, ζ) = 0 for all X ∈ Γ(TM). Replace X by ζ to this equation and use the fact g(ζ, ζ) = 1,
we obtain Ci = 0 for all i.

From (3.6), the screen distribution S(TM) splits as follows:

S(TM) = {J(Rad(TM)) ⊕ J(ltr(TM))}⊕orthJ
(
S
(
TM⊥

))
⊕orthHo, (4.10)

whereHo is a non-degenerate almost complex distributionHo onMwith respect to J , that is,
J(Ho) = Ho. Thus the general decompositions of TM and TM in (2.1) and (2.4) reduce, re-
spectively, to

TM = H ⊕H ′, TM = H ⊕H ′ ⊕ tr(TM), (4.11)

where H and H ′ are 2r- and r-lightlike distributions onM such that

H = Rad(TM)⊕orthJ(Rad(TM))⊕orthHo,

H ′ = J(ltr(TM))⊕orthJ
(
S
(
TM⊥

))
.

(4.12)
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In this case, H is an almost complex distribution of M with respect to J . Consider the local
null vector fieldsUi andVi on S(TM) and the local nonnull vector fieldWα on S(TM) defined
respectively by

Ui = −JNi, Vi = −Jξi, Wα = −JEα. (4.13)

Denote by S the projection morphism of TM on H with respect to the decomposition (4.11).
Then any vector field X on M is expressed as follows:

X = SX +
r∑
i=1

ui(X)Ui +
m∑

α=r+1

wα(X)Wα,

JX = FX +
r∑
i=1

ui(X)Ni +
m∑

α=r+1

wα(X)Eα,

(4.14)

where ui, vi, andwα are 1-forms locally defined on M by

ui(X) = g(X,Vi), vi(X) = g(X,Ui), wi(X) = εαg(X,Eα), (4.15)

and F is a tensor field of (1,1)-type globally defined on M by

FX = JSX, ∀X ∈ Γ(TM). (4.16)

Apply J to (2.6), (2.7), (2.8), and (2.24) and use (4.13) and (4.14), we have

h�
j (X,Ui) = h∗

i

(
X,Vj

)
, h∗

i (X,Wα) = εαh
s
α(X,Ui), (4.17)

h�
j (X,Vi) = h�

i

(
X,Vj

)
, h�

i (X,Wα) = εαh
s
α(X,Vi), (4.18)

h�
i (X,Wα) = εαh

s
α(X,Vi), εβh

s
β(X,Wα) = εαh

s
α

(
X,Wβ

)
, (4.19)

∇XUi = F(ANiX) +
r∑

j=1

τij(X)Uj +
r∑

α=r+1

ρiα(X)Wα, (4.20)

∇XVi = F
(
A∗

ξi
X
)
−

r∑
j=1

τji(X)Vj −
r∑

α=r+1

εαφαi(X)Wα +
r∑

j=1

h�
j (X, ξi)Uj, (4.21)

∇XWα = F(AEαX) +
r∑
i=1

φαi(X)Ui +
n∑

β=r+1

σαβ(X)Wβ, (4.22)

(∇XF)(Y) =
r∑
i=1

ui(Y)ANiX +
n∑

α=r+1

wα(Y)AEαX −
r∑
i=1

h�
i (X, Y)Ui −

n∑
α=r+1

hs
α(X, Y)Wα.

(4.23)
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Theorem 4.6. Let M be a generic r-lightlike submanifold of an indefinite cosymplectic manifold M.
Then H is integrable if and only if

h(X, FY) = h(FX, Y), ∀X, Y ∈ Γ(H). (4.24)

Moreover, if M is totally umbilical, then H is a parallel distribution on M.

Proof. TakeX, Y ∈ Γ(H). Then we have FY = JY ∈ Γ(H). Apply∇X to FY = JY and use (2.6),
(3.2), (4.13), and (4.14), we have

h�
i (X, FY) = g(∇XY, Vi), hs

α(X, FY) = εαg(∇XY,Wα), (4.25)

(∇XF)(Y) = −
r∑
i=1

h�
i (X, Y)Ui −

m∑
α=r+1

hs
α(X, Y)Wα. (4.26)

By directed calculations from two equations of (4.25), we have

h(X, FY) − h(FX, Y) =
r∑
i=1

g([X, Y], Vi)Ni +
m∑

α=r+1

εαg([X, Y],Wα)Eα. (4.27)

If H is an integrable distribution on M, then we have [X, Y] ∈ Γ(H) for any X, Y ∈ Γ(H).
This implies g([X, Y], Vi) = g([X, Y],Wα) = 0 for all i and α. Therefore we obtain h(X, FY) =
h(FX, Y) for all X, Y ∈ Γ(H). Conversely if h(X, FY) = h(FX, Y) for all X, Y ∈ Γ(H), then
we have g([X, Y], Vi) = g([X, Y],Wα) = 0 for all i and α. This implies [X, Y] ∈ Γ(H) for all
X, Y ∈ Γ(H). Thus H is an integrable distribution of M.

IfM is totally umbilical, from Theorem 4.3 and (4.25), we have

g(∇XY, Vi) = g(∇XY,Wα) = 0, ∀i, α. (4.28)

This implies ∇XY ∈ Γ(H) for all X, Y ∈ Γ(H). Thus H is a parallel distribution onM.

Theorem 4.7. Let M be a generic r-lightlike submanifold of an indefinite cosymplectic manifold M.
Then F is parallel on H with respect to ∇ if and only if H is a parallel distribution onM.

Proof. Assume that F is parallel on H with respect to ∇. For any X, Y ∈ Γ(H), we have
(∇XF)Y = 0. Taking the scalar product with Vk and Wβ to (4.26) with (∇XF)Y = 0, we have
h�
k
(X, Y) = 0 and hs

β
(X, Y) = 0 for all X, Y ∈ Γ(H) and for each k and β, respectively. From

(4.25), we have g(∇XY, Vi) = 0 and g(∇XY,Wα) = 0. This implies ∇XY ∈ Γ(H) for all X, Y ∈
Γ(H). Thus H is a parallel distribution onM.

Conversely, if H is parallel on M, from (4.25)we have

h�
i (X, FY) = 0, hs

α(X, FY) = 0, ∀X, Y ∈ Γ(H). (4.29)

For any Y ∈ Γ(H), we show that F2Y = J2Y = −Y + θ(Y)ζ. Replace Y by FY to the equations
and use (4.2), we have h�

i (X, Y) = 0 and hs
α(X, Y) = 0 for any X, Y ∈ Γ(H). Thus F is parallel

on H with respect to ∇ by (4.25).
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Theorem 4.8. Let M be a generic r-lightlike submanifold of an indefinite cosymplectic manifold M.
If F is parallel on TM with respect to ∇, then H is a parallel distribution on M and M is locally
a product manifold Mr × Mn−r × Mm−n, where Mr , Mn−r , and Mm−n are leafs of J(ltr(TM)),
J(S(TM⊥)) andH , respectively.

Proof. Assume that F is parallel on TMwith respect to∇. Then F is parallel onH with respect
to ∇. By Theorem 4.7, H is a parallel distribution on M. Apply the operator F to (4.23) with
(∇XF)Y = 0, we have

r∑
i=1

ui(Y)F(ANiX) +
n∑

α=r+1

eα(Y)F(AEαX) = 0, ∀X, Y ∈ Γ(TM), (4.30)

due to FUi = FWα = 0 for all i and α. Replace Y by Uk and Wβ to this equation by turns and
use (4.15), we have F(ANiX) = 0 and F(AEαX) = 0. Taking the scalar product with Wβ and
Nk to (4.23) with (∇XF)Y = 0 by turns, we have

hs
α(X, Y) =

r∑
i=1

ui(Y)wα(ANiX) +
m∑

β=r+1

wβ(Y)wα

(
AEβX

)
, (4.31)

r∑
i=1

ui(Y)g(ANiX,Nk) +
m∑

α=r+1

wα(Y)g(AEαX,Nk) = 0, (4.32)

for all X, Y ∈ Γ(TM). Replace Y by ξj to (4.31), we get φαj(X) = 0 due to (2.23). Also replace
Y by Wβ to (4.32), we have ρkβ(X) = 0 due to (2.17). From this results, (4.11) and (4.14), we
get

∇XUi =
r∑

j=1

τij(X)Uj, ∇XWα =
m∑

β=r+1

σαβ(X)Wβ, ∀X ∈ Γ(TM). (4.33)

Thus J(ltr(TM)) and J(S(TM⊥)) are also parallel distributions on M. By the decomposition
theorem of de Rham [14], we show thatM = Mr×Mn−r×Mm−n, whereMr, Mn−r , andMm−n

are some leafs of J(ltr(TM)), J(S(TM⊥)) andH , respectively.

Theorem 4.9. Let M be a generic r-lightlike submanifold of an indefinite cosymplectic manifold M.
One has the following assertions.

(i) If each Vi is parallel with respect to ∇, then τij = φαi = h�(X, ξi) = 0. In this case M is
irrotational. Moreover, one has

A∗
ξi
X =

r∑
j=1

uj

(
A∗

ξi
X
)
Uj +

m∑
α=r+1

wα

(
A∗

ξi
X
)
Wα, ∀X ∈ Γ(TM). (4.34)

(ii) If eachUi is parallel with respect to ∇, then τij = ρiα = 0 and

ANiX =
r∑

j=1

uj(ANiX)Uj +
m∑

α=r+1

wα(ANiX)Wα, ∀X ∈ Γ(TM). (4.35)
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(iii) If eachWα is parallel with respect to ∇, then φαi = 0 and

AEαX =
r∑
i=1

ui(AEαX)Ui +
m∑

β=r+1

wβ(AEαX)Wβ, ∀X ∈ Γ(TM). (4.36)

Moreover, if all of Vi,Ui, andWα are parallel on TMwith respect to∇, then S(TM) is totally geodesic
in M and τij = φαi = ρiα = 0 on Γ(TM). In this case, each null transversal vector fieldsNi ofM is a
constant onM.

Proof. If Vi is parallel with respect to ∇, then, taking the scalar product with Uk, Wβ, and Vk

to (4.21) by turns, we have τki(X) = 0, φβi(X) = 0 and h�
k(X, ξi) = 0, respectively. Thus M is

irrotational. We have F(A∗
ξi
X) = 0 for all X ∈ Γ(TM). From this result and (4.14), we obtain

J
(
A∗

ξi
X
)
=

r∑
j=1

uj

(
A∗

ξi
X
)
Nj +

m∑
α=r+1

wα

(
A∗

ξi
X
)
Eα. (4.37)

Apply J to this equation and use θ(A∗
ξ
Xi) = 0, we obtain (i). In a similar way, by using (4.13),

(4.14), (4.20), and (4.22), we have (ii) and (iii).
Assume that all of V , U and W are parallel on TM with respect to ∇. Substituting the

equation of (i) into (4.17)-1, we have

uj(ANiX) = vi

(
A∗

ξj
X
)
= g

(
A∗

ξj
X,Ui

)
= 0, ∀X ∈ Γ(TM). (4.38)

Also, substituting the equation of (iii) into (4.17)-2, we have

wα(ANiX) = εαvi(AEαX) = g(AEαX,Ui) = 0, ∀X ∈ Γ(TM). (4.39)

From the last two equations and the equation of (ii), we see thatANiX = 0 for allX ∈ Γ(TM).
From this and (2.18) we see that S(TM) is totally geodesic in M and all 1-forms τij , φαi, and
ρiα, defined by (2.7) and (2.8), vanish identically. Using the results and (2.7), we show thatN
is a constant on M.

Theorem 4.10. Let M be a totally umbilical generic r-lightlike submanifold of an indefinite
cosymplectic manifoldM such that S(TM) is totally umbilical. Then M is locally a product manifold
Mr ×Ms ×Mt, whereMr , Ms, and Mt are some leafs of Rad(TM), H⊥

o = Span{Vi,Ui,Wα} and
Ho, respectively, and s = n + r, t = m − n − 2r.

Proof. By Theorem 4.6, H is a parallel distribution M. Thus, for all X, Y ∈ Γ(Ho), we have
∇XY ∈ Γ(H). From (2.9) and (4.26), we have

h∗
i (X, FY) = g(∇XFY,Ni) = g((∇XF)Y + F(∇XY),Ni)

= g(F(∇XY),Ni) = −g(∇XY, JNi) = g(∇XY,Ui),
(4.40)
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due to FY ∈ Γ(Ho). If S(TM) is totally umbilical in M, then we have h∗
i = 0 due to

Theorem 4.5. By (2.9) and (4.40), we get

g(∇XY,Ni) = 0, g(∇XY,Ui) = 0, ∀X ∈ Γ(TM), ∀Y ∈ Γ(Ho). (4.41)

These results and (4.25) imply ∇XY ∈ Γ(Ho) for allX, Y ∈ Γ(Ho). ThusHo is a parallel distri-
bution on S(TM) and TM = Ho⊕orthH⊥

o , where H⊥
o = Span{ξi, Vi, Ui,Wα}. By Theorems 4.3

and 4.5, we have h�
i = hs

α = ANi = φαi = 0 and AEαX =
∑r

i=1 ρiα(X)ξi. Thus (2.10) and
(4.20)∼(4.22) deduce, respectively, to

∇XUi =
r∑

j=1

τij(X)Uj +
m∑

α=r+1

ρiα(X)Wα,

∇XVi = −
r∑

j=1

τji(X)Vj +
r∑

j=1

h�
j (X, ξi)Uj,

∇XWα = −
r∑
i=1

ρiα(X)Vj +
m∑

β=r+1

σαβ(X)Wβ,

∇Xξ = −
r∑

j=1

τji(X)ξj , ∀X ∈ Γ
(
H⊥

o

)
.

(4.42)

Thus H⊥
o is also a parallel distribution on M. Thus we have M = Mr ×Ms ×Mt, where Mr ,

Ms, and Mt are some leafs of Rad(TM), H⊥
o = Span{Vi,Ui,Wα} and Ho, respectively, and

s = n + r, t = m − n − 2r.
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