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The generalized synchronization between two complex networks with nonlinear coupling and
time-varying delay is investigated in this paper. The novel adaptive schemes of constructing
controller response network are proposed to realize generalized synchronization with the drive
network to a given mapping. Two specific examples show and verify the effectiveness of the
proposed method.

1. Introduction

Over the past decade, complex networks have gained a lot of attention in various fields,
such as sociology, biology, physical sciences, mathematics, and engineering [1–5]. A complex
network is a large number of interconnected nodes, in which each node represents a
unit (or element) with certain dynamical system and edge represents the relationship or
connection between two units (or elements). Synchronization is one of the most important
dynamical properties of dynamical systems, there are different kinds of methods to realize
synchronization such as active control [6], feedback control [7], adaptive control [8],
impulsive control [9], passive method [10], and so forth. Synchronization of complex
networks includes complete synchronization (CS) [11, 12], projective synchronization (PS)
[13, 14], phase synchronization [15, 16], generalized synchronization (GS) [17, 18], and so on.

As a sort of synchronous behavior, GS is an extension of CS and PS, so GS is more
widespread than CS and PS in nature and in technical applications. GS of chaos system
has been widely researched. However, most of theoretical results about synchronization of
complex networks focus on CS and PS. Especially, due to the complexity of GS, the theoretical
results for GS are lacking, but GS of complex networks is attracting special attention; in [17],
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the author gives a novel definition of GS on networks and a numerical simulation example.
Reference [18] applies the auxiliary-system approach to study paths to globally generalized
synchronization in scale-free networks of identical chaotic oscillators.

Recently, GS of drive-response chaos systems is investigated by the nonlinear control
theory in [19]. In this letter, we extend this method to investigate GS between two complex
networks, and some criterions for GS are deduced.

This letter is organized as follows. In Section 2, the definition of GS between the
drive-response complex networks is given and some preliminary knowledge, including three
assumptions and one lemma is also introduced. By employing the Lyapunov theory and
Barbǎlat lemma, some schemes are designed to construct response networks to realize GS
with respect to the given nonlinear smooth mapping. In Section 3, two numerical examples
are given to demonstrate the effectiveness of the proposed method in Section 2. Finally,
conclusions are given in Section 4.

2. GS Theorems between Two Complex Networks
with Nonlinear Coupling

2.1. Definition and Assumptions

Definition 2.1. Suppose xi = (xi1, xi2, . . . , xin)
T ∈ Rn, yi = (yi1, yi2, . . . , yin)

T ∈ Rn, i =
1, 2, . . . ,N are the state variables of the drive network and the response network, respectively.
Given the smooth vector function Φ : Rn → Rn, the drive network and response network are
said to achieve GS with respect to Φ. If

lim
t→∞

‖ei(t)‖ = 0, i = 1, 2, . . . ,N, (2.1)

where ei(t) = xi(t) − Φ(yi(t)), i = 1, 2, . . . ,N, the norm || · || of a vector x is defined as ||x|| =
(xTx)1/2.

Remark 2.2. If Φ(yi) = yi, then GS is CS in [20]. If Φ(yi) = λyi, then GS is PS in [13, 14].

In this paper, we consider a general complex dynamical network with time-varying
nonlinear coupling and consisting of N nonidentical nodes:

ẋi(t) = fi(xi(t)) +
N∑

j=1

cijh
(
xj(t − τ(t))

)
, i = 1, 2, . . . ,N, (2.2)

where xi = (xi1, xi2, . . . , xin)
T ∈ Rn, i = 1, 2, . . . ,N are the state variables of the drive network,

fi : Rn → Rn, h : Rn → Rn are smooth nonlinear vector functions, and τ(t) is time-varying
delay. C = (cij)N×N is unknown or uncertain coupling matrix; if there is a connection between
node i and node j (j /= i), then cij /= 0, otherwise cij = 0 (i /= j), and the diagonal elements of C
are defined by

cii = −
N∑

j=1
j /= i

cij . (2.3)

It should be noted that the complex dynamical network model (2.2) is quite general.
If fi = f , i = 1, 2, . . . , l; gi = g, i = l + 1, l + 2, . . . ,N, then we can get the following complex
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dynamical network:

ẋi(t) = f(xi(t)) +
N∑

j=1

cijh
(
xj(t − τ(t))

)
, i = 1, . . . , l,

ẋi(t) = g(xi(t)) +
N∑

j=1

cijh
(
xj(t − τ(t))

)
, i = l + 1, . . . ,N.

(2.4)

On the other hand, if h(xi) = Axi, withA = (aij)N×N being an inner-coupling constant matrix
of the network, then the complex network model (2.2) degenerates into the model of linearly
and diffusively coupled network with coupling delays:

ẋi(t) = fi(xi(t)) +
N∑

j=1

cijAxj(t − τ(t)), i = 1, 2, . . . ,N. (2.5)

Let

DΦ
(
yi

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂φ1
(
yi

)

∂yi1

∂φ1
(
yi

)

∂yi2
· · · ∂φ1

(
yi

)

∂yin

∂φ2
(
yi

)

∂yi1

∂φ2
(
yi

)

∂yi2
· · · ∂φ2

(
yi

)

∂yin

· · · · · · · · · · · ·
∂φn

(
yi

)

∂yi1

∂φn

(
yi

)

∂yi2
· · · ∂φn

(
yi

)

∂yin

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.6)

be the Jacobian matrix of the mapping Φ(yi) = (φ1(yi), φ2(yi), . . . , φn(yi))
T , φj(yi) ∈ R, i =

1, 2, . . . ,N, j = 1, 2, . . . , n. When matrix DΦ(yi(t)) is reversible, we can give the following
controller response network:

ẏi(t) = DΦ
(
yi(t)

)−1
⎡

⎣fi
(
Φ
(
yi(t)

))
+

N∑

j=1

ĉijh
(
Φ
(
yj(t − τ(t))

))
⎤

⎦ + ui, i = 1, 2, . . . ,N, (2.7)

where yi = (yi1, yi2, . . . , yin)
T ∈ Rn, i = 1, 2, . . . ,N are the state variables of the response

network, ui ∈ Rn, i = 1, 2, . . . ,N are nonlinear controllers to be designed, and Ĉ = (ĉij)N×N is
the estimate of the unknown coupling matrix C = (cij)N×N .

Let ei(t) = xi(t) −Φ(yi(t)), with the aid of (2.2) and (2.7), the following error network
can be obtained:

ėi(t)= ẋi(t)−
[
DΦ

(
yi(t)

)]
ẏi(t)

=fi(xi(t))−fi
(
Φ
(
yi(t)

))
+

N∑

j=1

cijh
(
xj(t−τ(t))

)−
N∑

j=1

ĉijh
(
Φ
(
yj(t−τ(t))

))−DΦ
(
yi(t)

)
ui

=fi(xi(t))−fi
(
Φ
(
yi(t)

))
+

N∑

j=1

cijH
(
ej(t−τ(t))

)−
N∑

j=1

c̃ijh
(
Φ
(
yj(t−τ(t))

))−DΦ
(
yi(t)

)
ui,

(2.8)
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where

H
(
ej(t)

)
= h
(
xj(t)

) − h
(
Φ
(
yj(t)

))
, (2.9)

c̃ij = ĉij − cij . (2.10)

The following conditions are needed for the solutions of (2.8) to achieve the objective
(2.1).

Assumption 1. (A1) Time delay τ(t) is a differential function with 0 ≤ τ(t) ≤ h, τ̇(t) ≤ μ < 1,
where h and μ are positive constants. Obviously, this assumption holds for constant τ(t).

Assumption 2. (A2) Suppose that fi(·) is bounded and there exists a nonnegative constant α
such that

∥∥fi(xi(t)) − fi
(
Φ
(
yi(t)

))∥∥ ≤ α‖ei(t)‖, i = 1, 2, . . . ,N. (2.11)

Assumption 3. (A3) Suppose that h(·) is bounded and there exists a nonnegative constant β
such that

∥∥h(xi(t)) − h
(
Φ
(
yi(t)

))∥∥ ≤ β‖ei(t)‖, i = 1, 2, . . . ,N. (2.12)

Remark 2.3. The condition (2.12) is reasonable due to [21, 22]. For example, the Hopfield
neural network [23] is described by

dxi(t)
dt

= −xi(t)
Ri

+
N∑

j=1

wijfj
(
xj

(
t − τij(t)

))
+ Ii, i = 1, 2, . . . ,N. (2.13)

Take fj(xj) = (π/2) arctan((π/2)λxj), where λ is positive constant. It is obvious that fj(·)
satisfies Assumption 3.

Lemma 2.4. For any vectors X,Y ∈ Rn, the following inequality holds

2XTY ≤ XTX + YTY. (2.14)

Next section, we will give some sufficient conditions of complex dynamical networks
(2.2) and (2.7) obtaining GS.

2.2. Main Results

Theorem 2.5. Suppose that (A1)–(A3) hold. Using the following controller:

ui = DΦ
(
yi(t)

)−1
diei(t) (2.15)
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and the update laws

ḋi = kie
T
i (t)ei(t), (2.16)

˙̂cij = δije
T
i (t)h

(
Φ
(
yj(t − τ(t))

))
, (2.17)

where i, j = 1, 2, . . . ,N, di is feedback strength, and δij > 0, ki > 0 are arbitrary constants, then the
complex dynamical networks (2.2) and (2.7) will achieve GS with respect to Φ.

Proof. Select a Lyapunov-Krasovskii functional candidate as

V (t, e(t)) =
N∑

i=1

eTi (t)ei(t) +
N∑

i=1

N∑

j=1

1
δij

c̃ 2
ij +

N∑

i=1

1
ki
(di − d)2

+
Nβ2

1 − μ

∫ t

t−τ(t)

N∑

i=1

eTi (ξ)ei(ξ)dξ,

(2.18)

where e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N(t))T and d is a positive constant to be determined.

The time derivative of V along the solution of the error system (2.8) is

dV
dt

=
N∑

i=1

2eTi (t)ėi(t) +
N∑

i=1

N∑

j=1

2
δij

c̃ij ˙̂cij +
N∑

i=1

2
ki
(di − d)ḋi +

Nβ2

1 − μ

N∑

i=1

eTi (t)ei(t)

− 1 − τ̇(t)
1 − μ

Nβ2
N∑

i=1

eTi (t − τ(t))ei(t − τ(t))

=
N∑

i=1

2eTi (t)

⎡

⎣fi(xi(t)) − fi
(
Φ
(
yi(t)

))
+

N∑

j=1

cijH
(
ej(t − τ(t))

)

−
N∑

j=1

c̃ijh
(
Φ
(
yj(t − τ(t))

)) −DΦ
(
yi(t)

)
ui(t)

⎤

⎦

+
N∑

i=1

N∑

j=1

2
δij

c̃ij ˙̂cij +
N∑

i=1

2
ki
(di − d)ḋi

+
Nβ2

1 − μ

N∑

i=1

eTi (t)ei(t) −
1 − τ̇(t)
1 − μ

Nβ2
N∑

i=1

eTi (t − τ(t))ei(t − τ(t)).

(2.19)

Substituting the controller (2.15) and update laws (2.16)-(2.17) into (2.19) and considering
Assumption 2, we obtain

dV
dt

≤
N∑

i=1

(
2α − 2d +

Nβ2

1 − μ

)
eTi (t)ei(t) + 2

N∑

i=1

N∑

j=1

eTi (t)cijH
(
ej(t − τ(t))

)

− 1 − τ̇(t)
1 − μ

Nβ2
N∑

i=1

eTi (t − τ(t))ei(t − τ(t)).

(2.20)
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By Lemma 2.4 and considering Assumptions 1 and 3, we have

1 − τ̇(t)
1 − μ

≥ 1,

2
N∑

i=1

N∑

j=1

eTi (t)cijH
(
ej(t − τ(t))

)

≤
N∑

i=1

N∑

j=1

c2ije
T
i (t)ei(t) +

N∑

i=1

N∑

j=1

HT(ej(t − τ(t))
)
H
(
ej(t − τ(t))

)

≤ N max
1≤i,j≤N

{
c2ij

} N∑

i=1

eTi (t)ei(t) +Nβ2
N∑

j=1

eTj (t − τ(t))ej(t − τ(t)),

(2.21)

then

dV
dt

≤
N∑

i=1

(
2α − 2d +

Nβ2

1 − μ
+N max

1≤i,j≤N

{
c2ij

})
eTi (t)ei(t)

= −
(
2d − 2α − Nβ2

1 − μ
−N max

1≤i,j≤N

{
c2ij

})
eT (t)e(t).

(2.22)

Note that we can choose constant d to make dV/dt ≤ −eT(t)e(t) ≤ 0, thus V
is nonincreasing in t ≥ 0. One has V is bounded since 0 ≤ V (t, e(t)) ≤ V (0, e(0)), so
limt→+∞V (t, e(t)) exists and

lim
t→+∞

∫ t

0
eT(s)e(s)ds ≤ − lim

t→+∞

∫ t

0

dV
ds

ds = V (0, e(0)) − lim
t→+∞

V (t, e(t)). (2.23)

From (2.18), we have 0 ≤ eT(t)e(t) ≤ V (t, e(t)), so eT (t)e(t) is bounded. According to error
system (2.8), (d/dt)eT (t)e(t) = 2eT (t)ė(t) is bounded for t ≥ 0 due to the boundedness of fi(·)
and h(·). From the above, we can see that e(t) ∈ L2 ∩ L∞ and ė(t) ∈ L∞. By using another
form of Barbǎlat lemma [24], one has limt→+∞eT (t)e(t) = 0, so limt→+∞e(t) = 0 and the
complex dynamical networks (2.2) and (2.7) can obtain generalized synchronization under
the controller (2.15) and update laws (2.16)-(2.17). This completes the proof.

Remark 2.6. If limt→+∞ė(t) exists,then we can obtain limt→+∞ė(t) = 0 for limt→+∞e(t) = 0.
According to error system (2.8), we have limt→+∞

∑N
j=1 c̃ijh(Φ(yj(t − τ(t)))) = 0. When

{h(Φ(yj(t − τ(t)))}N
j=1 are linearly independent on the orbit {yj(t − τ(t))}N

j=1 of synchroniza-
tion manifold, limt→+∞c̃ij = 0. We can get limt→+∞ĉij = cij , i, j = 1, 2, . . . ,N; that is, the
uncertain coupling matrix C can be successfully estimated using the update laws (2.17).

In a special case Φ(yi) = λ yi (λ is nonzero constant), based on Theorem 2.5, we can
construct the following response network

ẏi(t) =
1
λ

⎡

⎣fi
(
λyi(t)

)
+

N∑

j=1

ĉijh
(
λyj(t − τ(t))

)
⎤

⎦ + ui, i = 1, 2, . . . ,N. (2.24)
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Corollary 2.7. Suppose that (A1)–(A3) hold. Using the controller

ui =
1
λ
diei(t) (2.25)

and the update laws

ḋi = kie
T
i (t)ei(t),

˙̂cij = δije
T
i (t)h

(
λyj(t − τ(t))

)
,

(2.26)

where i, j = 1, 2, . . . ,N, di is feedback strength, and δij > 0, ki > 0 are arbitrary constants, then the
complex dynamical networks (2.2) and (2.24) will obtain PS.

To networks (2.4), according to Theorem 2.5, one can construct the following response
network:

ẏi(t) = DΦ
(
yi(t)

)−1
⎡

⎣f
(
Φ
(
yi(t)

))
+

N∑

j=1

ĉijh
(
Φ
(
yj(t − τ(t))

))
⎤

⎦ + ui, i = 1, . . . , l,

ẏi(t) = DΦ
(
yi(t)

)−1
⎡

⎣g
(
Φ
(
yi(t)

))
+

N∑

j=1

ĉijh
(
Φ
(
yj(t − τ(t))

))
⎤

⎦ + ui, i = l + 1, . . . ,N

(2.27)

and get the following corollary:

Corollary 2.8. Suppose that (A1)–(A3) hold. Using the controller

ui = DΦ
(
yi(t)

)−1
diei(t) (2.28)

and the update laws

ḋi = kie
T
i (t)ei(t),

˙̂cij = δije
T
i (t)h

(
Φ
(
yj(t − τ(t))

))
,

(2.29)

where i, j = 1, 2, . . . ,N, di is feedback strength, δij > 0, ki > 0 are arbitrary constants, then the
complex dynamical network networks (2.4) and (2.27) will achieve GS with respect to Φ.

If coupling function h(xi) = Axi; that is, the network is linearly coupled, then the
complex network (2.2) degenerates into (2.5). Note that ‖Aei(t)‖ ≤ ‖A‖·‖ei(t)‖, i = 1, 2, . . . ,N
hold. We construct the following response network:

ẏi(t) = DΦ
(
yi(t)

)−1
⎡

⎣fi
(
Φ
(
yi(t)

))
+

N∑

j=1

ĉijAΦ
(
yj(t − τ(t))

)
⎤

⎦ + ui, i = 1, 2, . . . ,N. (2.30)
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Corollary 2.9. Suppose that (A1) and (A2) hold. Using the controller

ui = DΦ
(
yi(t)

)−1
diei(t) (2.31)

and the update laws

ḋi = kie
T
i (t)ei(t),

˙̂cij = δije
T
i (t)AΦ

(
yj(t − τ(t))

)
,

(2.32)

where i, j = 1, 2, . . . ,N, di is feedback strength, and δij > 0, ki > 0 are arbitrary constants, then the
complex dynamical networks (2.5) and (2.30) will obtain GS.

Using different control, we can obtain the following theorem.

Theorem 2.10. Suppose that (A1) and (A3) hold. Using the following controller:

ui = DΦ
(
yi(t)

)−1[
diei(t) + fi(xi(t)) − fi

(
Φ
(
yi(t)

))]
, (2.33)

and the update laws

ḋi = kie
T
i (t)ei(t), (2.34)

˙̂cij = δije
T
i (t)h

(
Φ
(
yj(t − τ(t))

))
, (2.35)

where i, j = 1, 2, . . . ,N, di is feedback strength, and δij > 0, ki > 0 are arbitrary constants, then the
complex dynamical networks (2.2) and (2.7) will achieve GS with respect to Φ.

Proof. Select the same Lyapunov-Krasovskii function as Theorem 2.5, then

dV
dt

= 2
N∑

i=1

eTi (t)

⎡

⎣fi(xi(t))−fi
(
Φ
(
yi(t)

))
+

N∑

j=1

cijH
(
ej(t − τ(t))

) −
N∑

j=1

c̃ijh
(
Φ
(
yj(t − τ(t))

))

−DΦ
(
yi(t)

)
ui(t)

⎤

⎦ +
N∑

i=1

N∑

j=1

2
δij

c̃ij ˙̂cij +
N∑

i=1

2
ki
(di − d)ḋi

+
Nβ2

1 − μ

N∑

i=1

eTi (t)ei(t) − 1 − τ̇(t)
1 − μ

Nβ2
N∑

i=1

eTi (t − τ(t))ei(t − τ(t))

≤
N∑

i=1

(
−2d +

Nβ2

1 − μ

)
eTi (t)ei(t)

+
N∑

i=1

N∑

j=1

eTi (t)cijH
(
ej(t − τ(t))

) − 1 − τ̇(t)
1 − μ

Nβ2
N∑

i=1

eTi (t − τ(t))ei(t − τ(t)).

(2.36)

The rest of the proof is similar to Theorem 2.5 and omitted here. This completes the proof.
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Remark 2.11. According to Remark 2.6, when {h(Φ(yj(t − τ(t))))}N
j=1 are linearly independent

on the orbit {yj(t − τ(t))}N
j=1 of synchronization manifold, we can get limt→+∞ĉij = cij , i, j =

1, 2, . . . ,N; that is, the uncertain coupling matrix C can be successfully estimated using the
updating laws (2.35).

Remark 2.12. Based on Theorem 2.10, we can get corollaries corresponding to Corollaries 2.7–
2.9.

3. Illustrative Numerical Examples

In this section, two groups of drive and response networks are concretely presented to
demonstrate the effectiveness of the proposed method in the previous section.

It is well known that the unified chaotic system [25] is described by

⎛
⎜⎜⎝

ẋ1

ẋ2

ẋ3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(25β + 10
)
(x1 − x2)

−x1x3 +
(
28 − 35β

)
x1 +

(
29β − 1

)
x2

x1x2 −
(
β + 8

)

3
x3

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.1)

=

⎛
⎜⎜⎜⎜⎜⎝

−10(x1 − x2)

−x1x3 + 28x1 − x2

x1x2 − 8
3
x3

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

−25(x1 − x2)

−35x1 + 29x2

−1
3
x3

⎞
⎟⎟⎟⎟⎟⎠

β = F(x) +G(x)β, (3.2)

which is chaotic if β ∈ [0, 1]. Obviously, system (3.2) is the original Lorenz system for β = 0
while system (3.2) belongs to the original Chen system for β = 1. In fact, system (3.2) bridges
the gap between the Lorenz system and Chen system.

The unified new chaotic system [26] can be described as

⎛
⎜⎜⎝

ẋ1

ẋ2

ẋ3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

ax1 − x2x3

bx2 + x1x3

cx3 +
1
3
x1x2

⎞
⎟⎟⎟⎟⎟⎠

= g(x). (3.3)

It is chaotic when a = 5.0, b = −10.0, and c = −3.8.
In the following, we will take these two chaotic systems as node dynamics to validate

the effectiveness of Theorems 2.5 and 2.10. To do that, we first verify that function f(x) =
F(x) +G(x)β (β ∈ [0, 1]) satisfies Assumption 2.
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Since the attractor is confined to a bounded region, there exists a constant M > 0,
satisfying for all y = (y1, y2, y3), z = (z1, z2, z3) ∈ R3, ||y|| ≤ M, ||z|| ≤ M; therefore,

∥∥f
(
y
) − f(z)

∥∥2 =
(
25β + 10

)2[(
y2 − y1

) − (z2 − z1)
]2 +

[
z1z3 − y1y3 +

(
28 − 35β

)(
y1 − z1

)

+
(
29β − 1

)(
y2 − z2

)]2 +
[
y1y2 − z1z2 −

(
β + 8

)

3
(
y3 − z3

)
]2

=
(
25β + 10

)2[(
y2 − z2

) − (y1 − z1
)]2

+
[
z1
(
z3 − y3

)
+
(−y3 + 28 − 35β

)(
y1 − z1

)
+
(
29β − 1

)(
y2 − z2

)]2

+

[
y1
(
y2 − z2

)
+ z2

(
y1 − z1

) −
(
β + 8

)

3
(
y3 − z3

)
]2

≤ 352
[
2
(
y2 − z2

)2 + 2
(
y1 − z1

)2] + 3M2(y3 − z3
)2 + 6

(
282 +M2

)(
y1 − z1

)2

+ 3 × 282
(
y2 − z2

)2 + 3M2(y2 − z2
)2 + 3M2(y1 − z1

)2 + 9
(
y3 − z3

)2

≤
(
2 × 352 + 6 × 282 + 9M2

)∥∥y − z
∥∥2.

(3.4)

Thus, function f(x) = F(x) + G(x)β(β ∈ [0, 1]) satisfies Assumption 2. By the same process,
we can obtain that function g(x) satisfies Assumption 2, too.

Example 3.1. In this subsection, we consider a weighted complex dynamical network with
coupling delay consisting of 3 Lorenz systems and 2 new chaotic systems (3.3). The entire
networked system is given as

ẋi(t) = F(xi(t)) +
5∑

j=1

cijh
(
xj(t − τ(t))

)
, i = 1, 2, 3,

ẋi(t) = g(xi(t)) +
5∑

j=1

cijh
(
xj(t − τ(t))

)
, i = 4, 5,

(3.5)

where xi(t) = (xi1(t), xi2(t), xi3(t))
T , i = 1, 2, . . . , 5. τ(t) = 0.1, the weight configuration matrix

C =
(
cij
)
5×5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5 1 3 1 0

1 −2 1 0 0

3 1 −4 0 0

1 0 0 −2 1

0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.6)

The coupling functions are h(xj(t))=(sin(xj1(t)), arctan(xj2(t)), arctan(xj3(t)))
T , j =1, 2, . . . , 5.
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Figure 1: GS errors of model (3.5) and (3.7) with respect to Φ(y) = (y1 + y2, 2y2, 2y3)
T .

Let Φ(yi) = (yi1 + yi2, 2yi2, 2yi3)
T , then DΦ(yi) =

( 1 1 0
0 2 0
0 0 2

)
, i = 1, 2, . . . , 5.

Since (A1)–(A3) hold, therefore, according to Theorem 2.5, we can use the following
response network:

ẏi(t) = DΦ
(
yi(t)

)−1
⎡

⎣F
(
Φ
(
yi(t)

))
+

N∑

j=1

ĉijh
(
Φ
(
yj(t − τ(t))

))
⎤

⎦ + ui, i = 1, 2, 3,

ẏi(t) = DΦ
(
yi(t)

)−1
⎡

⎣g
(
Φ
(
yi(t)

))
+

N∑

j=1

ĉijh
(
Φ
(
yj(t − τ(t))

))
⎤

⎦ + ui, i = 4, 5.

(3.7)

The controller and update laws are given by (2.15)–(2.17). The initial values are given
as follows: ĉij(0)=3, δij =1, di(0)=1, ki=1, xi(0)=(12+i×0.1, 15+i×0.1, 30+i×0.15)T , x̂i(0) =
(5 + i × 0.1, 7.5 + i × 0.1, 15 + i × 0.1), i, j = 1, 2, . . . , 5. Figure 1 shows GS errors ‖ei(t)‖,
i = 1, 2, . . . , 5. One can see that all nodes’ errors converge to zero. Some elements of matrix Ĉ
are displayed in Figure 2. The numerical results show that this adaptive scheme is effective
and we can get limt→∞ĉij = cij , i, j = 1, 2, . . . , 5.
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Figure 2: Estimation of topology of model (3.5).

Example 3.2. In the following simulation, we choose a weighted complex dynamical network
with coupling delay consisting of 5 unified chaotic systems. The entire networked system is
given as

ẋi(t) = fi(xi(t)) +
5∑

j=1

cijh
(
xj(t − τ(t))

)
, i = 1, 2, . . . , 5, (3.8)

where xi(t) = (xi1(t), xi2(t), xi3(t))
T , fi(x) = F(x)βi +G(x), βi = 0.1× (i− 1), i = 1, 2, . . . , 5. We

assume τ(t) = 0.3, h(xj(t)) = (arctan(xj1(t)), arctan(xj2(t)), arctan(xj3(t)))
T , j = 1, 2, . . . , 5. C

is the same as that in model (3.5).

Let Φ(yi) = (yi1 + yi2, 2yi2, y
3
i3 + yi3)

T
, DΦ(yi) =

(
1 1 0
0 2 0
0 0 3y2

i3+1

)
, i = 1, 2, . . . , 5.

According to Theorem 2.10, the response network is given by

ẏi(t) = DΦ
(
yi(t)

)−1
⎡

⎣fi
(
Φ
(
yi(t)

))
+

N∑

j=1

ĉijh
(
Φ
(
yj(t − τ(t))

))
⎤

⎦ + ui, i = 1, 2, . . . , 5. (3.9)

The controller and update laws are given by (2.33)–(2.35). The initial values are given as
follows: ĉij(0) = 6, δij = 1, di(0) = 1, ki = 1, xi(0) = (12, 15, 30)T , x̂i(0) = (5, 7.5, 3)T , i, j =
1, 2, . . . , 5. Figures 3 and 4 show the GS errors ‖ei(t)‖, i = 1, 2, . . . , 5 and some elements of
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Figure 3: GS errors of model (3.8) and (3.9) with respect to Φ(y) = (y1 + y2, 2y2, y
3
3 + y3)

T .
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Figure 4: Estimation of topology of model (3.8).
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matrix Ĉ, respectively. The results illustrate that this scheme is effective and we can get
limt→+∞ĉij = cij , i, j = 1, 2, . . . , 5.

4. Conclusion

In this paper, we have investigated GS between two complex networks with different node
dynamics and proposed some new GS schemes via nonlinear control using Lyapunov theory
and Barbǎlat lemma. Our results generalize CS of complex dynamical network with linear
coupling and without delay in [20] to GS of complex dynamical network with nonidentical
nodes and time-varying delay nonlinear coupling. Numerical examples are provided to
verify the effectiveness of the theoretical results. This work extends the study of GS.
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