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The effect of nanofluids on chaotic convection in a fluid layer heated from below was studied in
this paper for low Prandtl number based on the theory of dynamical systems. A low-dimensional,
Lorenz-like model was obtained using Galerkin-truncated approximations. The fourth-order
Runge-Kutta method was employed to solve the nonlinear system. The results show that inhibition
of chaotic convection can be observed when using nanofluids.

1. Introduction

Chaotic convection has attracted interest due to its wide applications in many natural
systems, such as the time evolution of the magnetic field of celestial bodies, molecular
vibrations, the dynamics of satellite in the solar system, the weather, ecology, and neurons.
The transition from steady convection to chaos for low Prandtl number as studied by Vadasz
and Olek [1] is sudden and occurs by a subcritical Hopf bifurcation producing a solitary limit
cycle, which may be associated with a homoclinic explosion. This finding can be recovered
from a truncated Galerkin expansion [2] which yields a system identical to the familiar
Lorenz equations [3, 4]. The work of Vadasz [5] suggests an explanation for the appearance of
this solitary limit cycle via local analytical results. For the corresponding convection problem
in a pure fluid, a similar approach was used by Vadasz [6, 7] to demonstrate similar results.
Vadasz and Olek [8] showed that the route to chaos occurs by a period doubling sequence
of bifurcations when the Prandtl number is moderate. Sheu [9] studied thermal convection
in a fluid-saturated porous medium using a thermal nonequilibrium model to take account



2 Mathematical Problems in Engineering

of the interphase heat transfer between the fluid and the solid. He found that the route to
chaos was altered by interphase heat transfer and the nonequilibrium effect tends to stabilize
steady convection. He also predicted an abrupt transition to chaos when interphase heat
transfer is moderate and the porosity-modified conductivity ratio is small or moderate, while
a period-doubling route to chaos was predicted with weak interphase heat transfer and a
small-porosity-modified conductivity ratio. Jawdat abd Hashim [10] showed that the onset
of chaotic convection in a porous medium for low Prandtl number can be enhanced by a
uniform internal heat generation. The effects of a magnetic field on chaotic convection in
porous media for low Prandtl number were investigated by Idris and Hashim [11]. They
observed that the magnetic field could delay the convective motion in a saturated porous
medium fluid layer. Mahmud and Hashim [12] studied the chaotic convection in a fluid layer
heated from below when a constant, vertical magnetic field was applied. They showed that
the chaotic convection can be suppressed or enhanced by the magnetic field.

Nanofluids, term proposed by Choi [13], are mixtures of base fluid such as water or
ethylene-glycol with a very small amount of nanoparticles, having dimensions from 1 to
100nm [14]. The onset of convection in a horizontal layer of a porous medium saturated
by a nanofluid using linear instability theory, employing a model used for the nanofluid
that incorporates the effects of Brownian motion and thermophoresis, was investigated
analytically by Nield and Kuznetsov [15]. They showed that for a typical nanofluid (for
which the Lewis number is large) the primary contribution of the nanoparticles was via
a buoyancy effect coupled with the conservation of nanoparticles, with the contribution
of nanoparticles to the thermal energy equation being a second-order effect. Alloui et al.
[16] considered natural convection in a horizontal layer of a nanofluid with the horizontal
boundaries heated and cooled by constant heat fluxes. They founded that the presence
of nanoparticles in a fluid reduced the strength of flow field, this behaviour being more
pronounced at low Rayleigh number. Also the temperatures on the solid boundaries were
reduced by the presence of the nanoparticles when the strength of convection is high and
enhanced when the strength of convection is low. The linear and nonlinear thermal instability
in a rotating porous medium saturated by nanofluid, using Horton-Roger-Lapwood problem
based on the Brinkman’s Model, was studied by Bhadauria and Agarwal [14]. They observed
that, for linear stability, the critical mode of onset of convection in most of the graphs was
the oscillatory mode of convection. Also, they found that an exchange of stabilities from
oscillatory convection to stationary convection holds as the value of wave number increased.

The aim of the present work is to study the influence of nanofluids on chaotic
convection in a fluid layer heated from below extending the works of Vadasz [7] for
low Prandtl number. The truncated Galerkin approximation was applied to the governing
equations to deduce an autonomous system with three ordinary differential equations. This
system was used to investigate the dynamic behaviour of thermal convection in the fluid
layer and to elucidate the effects of nanofluids on the transition to chaos.

2. Problem Formulation

Consider an infinite horizontal fluid layer subject to gravity and heated from below with
influence of nanofluids. A Cartesian coordinate system is used such that the vertical axis z is
collinear with gravity, that is, e, = —e..

The thermophysical properties of the nanofluids, considered in this study, given in
Table 1, are assumed constant except for the density variation, which is determined based
on the Boussinesq approximation and effected only for the gravity term in the momentum
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Table 1: Thermophysical properties of water and nanoparticles [16].
p (kgm) C, (kg 'K™) k (Wm™K™1) Bx10° (K™)
HO 997.1 4179 0.613 21
Ag 10500 235 429 1.89
Cu 8933 385 401 1.167
Al O3 3970 765 40 0.85
TiO, 4250 686.2 8.9538 0.9
equation. Also, it is assumed that the base fluid and the nanoparticles are in thermal
equilibrium and no slip occurs between them.
Subject to these conditions, the governing equations can be written as
V-V,=0, (2.1)
oV, -1 (PP)
— 4V, vv*] = —Vp. + v V2V, - nf 3(T.-T.), (22)
ot Pnf Pnf
oT 5
oL + Vi VT = s V7T, (2.3)
where V, is the velocity, T is temperature, and p, is pressure.
The effective density of the nanofluid, p,y, is given as
puf = (1= @)ps + Ppup, (2.4)
and ¢ is the solid volume fraction of nanoparticles.
The thermal diffusivity of the nanofluid is
o = 25)
nf = TN .
(p CP ) nf
where the heat capacitance of nanofluid is given by
(PCp) iy = (1=9)(pCp) ; + ¢(pCp),,- (2.6)
The thermal expansion coefficient of nanofluid can be determined by

The effective dynamic viscosity of the nanofluid is given by

Hf

Hnf = 1-¢)= (2.8)
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The thermal conductivity of the nanofluid can be determined by

@ _ knp + (n—=1)ks — (n = 1) (ks — kyp)

, 29
ks knp + (n—1)ks + ¢ (kg —knp) @9)

where n is an empirical shape factor for the nanoparticle. In particular, n = 3/2 for cylindrical
particles and n = 3 for spherical ones (see [16]). In the present work, n is set equal to 3 such
that the results are restricted to spherical nanoparticles.

The following transformations will nondimensionalize (2.1)—(2.3)

H, H?2 o«
V="V, p==-fp, [f=-Lt, TAT.=T.-T,
afg ay H;
(2.10)
X Y _ Za
x_H*’ y_H*/ Z_H*/
where t is the time, (T, — T.) is the temperature variations, and AT, = (Ty — T¢) is the

characteristic temperature difference.

The fluid layer with stress-free horizontal boundaries is considered. Hence, the
solution must follow the impermeability conditions V - &, = 0 and the stress-free condition
0u/0z = 0v/0z = d*w/0z% = 0 on these boundaries, where &, is a unit vector normal to the
boundary. The temperature boundary conditionsare T =latz=0and T =0atz = 1.

The governing equations can be represented in terms of a stream function defined
by u = -0¢/0z and w = Oy /0x, as for convective rolls having axes parallel to the shorter
dimension (i.e., y) when v = 0. Applying the curl (Vx) operator on (2.2) yields the following
system of partial differential equations from (2.1)—(2.3):

1/0 oOp 0o Oy o —2| /o2 \ 3 oT
(G ot avae) 77| () =ra(5).

(2.11)
a_T_a_(Pa_T_Fa_(Fa_T—E az_T+az_T
of 0z 0x O0xo0z  \0x2 0z2)
where
AT g.H]
pr=? RaoPrATesH: (2.12)
af agvy
are the Prandtl number, the Rayleigh number, respectively, and
v p:(pﬁ)"f, = (2.13)
Vs pufPs s

and the boundary conditions for the stream function are ¢ = 0 on all solid boundaries. The

values of v, f, and a for nanoparticles are given in Table 2.
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Table 2: Values of ¥, 8, and a for nanoparticles.

v B a
Ag 0.770 0.675 1.181
Cu 0.813 0.697 1.167
Al O3 0.989 0.834 1.166
TiO, 0.977 0.825 1.145

The set of partial differential equations, (2.11), form a nonlinear coupled system
and together with the corresponding boundary conditions will accept a basic motionless
conduction solution.

3. Reduced Set of Equations

In order to obtain the solution to the nonlinear coupled system of partial differential equations
in (2.11), we represent the stream function and temperature in the following form:

¢ = Ay sin(xx) sin(orz),
(3.1)
T =1-z+ By cos(kx) sin(orz) + By sin(2rz).

This representation is equivalent to a Galerkin expansion of the solution in both the x- and
z-directions. Unlike in the works of Vadasz [7], we rescale the time and amplitudes with
respect to their convective fixed points of the following form:

X = An ,
\/(Far/s) (R-a5/5)
Bll
Y= —7—= — (3.2)
(E/ﬂ)\/ (Bar/») (R-wv/p)

~B

Z=——2 _
(R-av/p)

We have the following system of ordinary differential equations:

X = Pry(Y - X),

- n(D)car- () (-2 .

Z=a\MXY - 2Z),
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where

2 2\3
roRa g (w8 -
; (3.4)
|G/ +2]

and the dot (') denotes time derivatives d()/dr. Whenv = f = a =1, (i.e, ¢ = 0), system
(3.3) reduces to the Vadasz system [7] ((2.11)-(2.12)). System (3.3) is equivalent to the Lorenz
equations [3, 4], although with different coefficients. Using the wavenumber corresponding
to the convection threshold, that is, ko = /+/2, in the definitions of A and Ra, (3.4), yields
A =8/3and Ra, = 277*/4.

4. Stability Analysis

Stability analysis of the stationary solutions was performed in order to determine the nature
of the dynamics about the fixed points. The nonlinear dynamics of a Lorenz-like system (3.3)
has been analyzed and solved for Pr = 10 and A = 8/3. This rescaled system has three fixed
points.

The first fixed point is X; = Y7 = Z; = 0, corresponding to the motionless solution.
The second and third fixed points corresponding to the convection solution are X,3 = Y3 =
+1, Zz,g =1.

The stability of the first fixed point, X1 = Y1 = Z; = 0, is controlled by the zeros of the
following characteristic polynomial equation for the eigenvalues o; (i = 1,2, 3):

@ [02+ @+ Pr17)o+Pr<T)E—Rﬁ>] = 0. (4.1)

The first eigenvalue, oy = —a), is negative since A = 8/3 and a > 0. The other two eigenvalues
are always real and given by

Oy = % [—(a +Prv) + \/(m Pr)’ + 4 Pr(Rp - 17&)]. (4.2)

03 is also negative and o, provides the stability condition for the motionless solution in the

formo, <0 R<va/ B Therefore, the critical value of R, where the motionless solution
loses stability and the convection solution (expressed by the other two fixed points) takes
over, is obtained as

va
R =Reg=—, (43)
p

which corresponds to Ra., = (27*/4)(va/ B).
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Table 3: Values of R where 0,, 03 become equal and complex conjugates and when the loss of stability
occurred.

R (02, 03 equal) R
(complex conjugate) (loss of stability occurred)
Vadasz 1.35 24.737
Ag 1.825 37.503
Cu 1.845 36.305
ALO3 1.87 34.490
TiO, 1.83 33.800

The following cubic equation for the eigenvalues, o; (i = 1,2,3), controls the stability
of the second and third fixed points of the rescaled system

ABR _
o+ (@+a\+Prv)o? + <Prvm+ “5 >o+2Pm<aﬁR—vaZ> - 0. (4.4)

Equation (4.4) yields three eigenvalues, and the smallest eigenvalue o is always real and
negative over the whole range of parameter values. The other two are real and negative at
slightly supercritical values of R, such that the convection fixed points are stable, that is,
simple nodes. These two roots move on the real axis towards the origin as the value of R
increases. For Pr = 10, A = 8/3, and ¢ = 0.05, these roots become equal when R = 1.825 for
Ag, R = 1.845 for Cu, R = 1.87 for A,O3, and R = 1.83 for TiO, compared with R = 1.35 for
Vadasz case. It is exactly at this point that these two roots become a complex conjugate. In any
case, they still have negative real parts, and so the convection fixed points are stable, that is,
spiral nodes. Both the imaginary and real parts of these two complex conjugate eigenvalues
increase and extend over the imaginary axis as the value of R increases. The real part becomes
nonnegative at a value of R given by

_ vPr(3a+al+vPr)

RC2 e
B Pr—al-a)

(4.5)

Relation (4.5) is an extension of Ry in [7] to the nanofluid case. At this point, the convection
fixed points lose their stability and other (periodic or chaotic) solutions take over. The loss
of stability of the convection fixed points for Pr = 10, A = 8/3, and ¢ = 0.05 using (4.5)
is evaluated to be R, = 37.503 for Ag, R, = 36.305 for Cu, R, = 34.490 for Al,O3, and
Reo = 33.800 for TiO, compared with Ry = 24.737 for Vadasz loss of stability of the convection
fixed points when ¢ = 0. For Pr = 10, A = 8/3, and ¢ = 0.05, the evolutions of the complex
eigenvalues are presented in Figure 1. The value of R where 0, 03 become equal and complex
conjugate and when the loss of stability occurred are presented in Table 3.

5. Results and Discussion

In this section, some numerical simulations of the system (3.3) are presented for the time
domain 0 < t < 210. All calculations were done using MATLAB's built-in ODE45 based
on the fourth-order Runge-Kutta method on double precision with stepsize 0.001, fixing the
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Table 4: Comparison between Vadasz case (¢ = 0) and the nanofluid case for ¢ = 0.05 with Pr = 10,
A =8/3 for R a solitary limit cycle signifying the loss of stability of the steady convection fixed points and
the critical value of R at which the chaotic behaviour solution occurs.

R R
(limit cycle) (critical value, chaotic behaviour)
Vadasz 23.474 24.737
(¢=0)
Ag 36.918 37.503
Cu 35.769 36.305
Al,O5 34.032 34.490
TiO, 33.352 33.800
30
20 A
10 A
o
g0
—-10 A4
-20 A
=30
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Re (o)
~~~~~~ Vadasz --- Cu
- Ag --- TiO,

Figure 1: Evolution of the complex eigenvalues with increasing Rayleigh number, for Pr = 10, A = 8/3,
and ¢ = 0.05.

values Pr = 10, A = 8/3, ¢ = 0.05, and taking the initial conditions X(0) = Y (0) = 0.8 and
Z(0) = 0.92195.

Comparing to Vadasz case [7], the critical value of R in each case is greater than the
critical value in Vadasz case. Thus the onset of chaotic convection is delayed. A comparison
between Vadasz case and the case under study is mentioned in Table 4 for R being a solitary
limit cycle signifying the loss of stability of the steady convection fixed points and the critical
value of R at which the chaotic behaviour solution occurs.

In the case of Ag, we found that at R.; = 1.346 obtained from (4.3), the motionless
solution loses stability and the convection solution take over. Also the values of the
eigenvalues 0, and o3 from (4.4) become equal and complex conjugate when R = 1.825.
At the value of R = 36.918, we obtain a solitary limit cycle signifying the loss of stability of
the steady convection fixed points. When R = 37.503, the convection fixed points lose their
stability and a chaotic solution takes over. The evolution of trajectories over time in the state
space for two values of Rayleigh number (R where the solution is limit cycle and the critical
value of R) is presented in Figure 2(a).

In the case of Cu, we found that at R,y = 1.361 obtained from (4.3), the motionless
solution loses stability and the convection solution takes over. Also the values of the
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Figure 2: Computational results for the evolution of trajectories over time in the state space for two values
of Rayleigh number (R where the solution is limit cycle and the critical value of R). The graphs represent
the projection of the solution data points onto X-Y-Z plane for Pr = 10, 1 =8/3, and ¢ = 0.05.
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Figure 3: Bifurcation diagrams of Z versus R representing maxima and minima of the posttransient
solution of Z(t) with Pr = 10 and A = 8/3 for Vadasz case and Ag case with ¢ = 0.05.

eigenvalues 0, and o3 from (4.4) become equal and complex conjugate when R = 1.845.
When R = 35.769, we obtain a solitary limit cycle signifying the loss of stability of the steady
convection fixed points. At the value of R = 36.305, the convection fixed points lose their
stability and a chaotic solution takes over. The evolution of trajectories over time in the state
space for two values of Rayleigh number (R where the solution is limit cycle and the critical
value of R) is presented in Figure 2(b).

In the case of Al,O3, we found that at R,y = 1.384 obtained from (4.3), the motionless
solution loses stability, and the convection solution takes over. Also the values of the
eigenvalues 0, and o3 from (4.4) become equal and complex conjugate when R = 1.87. We
obtain a solitary limit cycle signifying the loss of stability of the steady convection fixed points
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Figure 4: Computational results for the evolution of trajectories over time in the state space for different
values of Rayleigh number R. The graphs represent the projection of the solution data points onto X-Y-Z
plane when Pr = 10 and A = 8/3 for Vadasz case and Ag case with ¢ = 0.05.
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at the value of R = 34.032. When R = 34.490, the convection fixed points lose their stability
and a chaotic solution takes over. The evolution of trajectories over time in the state space for
two values of Rayleigh number (R where the solution is limit cycle and the critical value of
R) is presented in Figure 2(c).

In the case of TiO,, we found that at R.;; = 1.358 obtained from (4.3), the motionless
solution loses stability and the convection solution takes over. Also the values of the
eigenvalues 0, and o3 from (4.4) become equal and complex conjugate when R = 1.83. At
the value of R = 33.352, we obtain a solitary limit cycle signifying the loss of stability of the
steady convection fixed points. We can observe that the convection fixed points lose their
stability and a chaotic solution takes over at R = 33.800. The evolution of trajectories over
time in the state space for two values of Rayleigh number (R where the solution is limit cycle
and the critical value of R) is presented in Figure 2(d).

From Figure2, we observe that Ag and Cu nanoparticles have similar chaotic
behaviour, while Al,O3 and TiO, have similar chaotic behaviour also but with different shape.
Thus the oxide- or dioxide-free nanoparticles have different chaotic behaviour than oxide or
dioxide one.

For a close look, we choose Ag nanoparticles and present the bifurcation diagrams, in
Figure 3, in terms of maxima and minima in the posttransient values of Z versus R for Vadasz
case and Ag case with 15 < R < 350 and a resolution of AR = 0.5.

From Figure 3, we observe that the chaotic behaviour is delayed with decreasing the
chaotic region when using the Ag nanoparticles. Also, we see the difference in the behaviour
for them. For R = 24.737, the critical value in Vadasz case, the trajectories approach the fixed
point on a spiral behaviour for Ag, while it be chaotic one in Vadasz case as in Figure 4(a).
In addition, when R = 150, it is periodic in Vadasz case compared with chaotic for Ag
(Figure 4(b)). The converse behaviour is true for R = 175 as shown in Figure 4(c). Finally,
although the behaviour is periodic for both cases when R = 250 as in Figure 4(d), it appears
in different shapes.

6. Conclusions

In this paper, we have studied chaotic behaviour in a fluid layer subject to gravity and heated
from below under the effect of nanofluids for low Prandtl number. Comparing with Vadasz
case, we notice that the onset of chaotic convection can be delayed under the influence of
nanofluids. This means that the stability region can be increased using nanofluids. As a
conclusion, the transition from steady convection to chaos depends on the properties of the
nanoparticles.
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