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The problem of the output feedback stochastic stabilization is investigated for a class of stochastic
nonlinear systems with linearly bounded unmeasurable states. Under the condition that the
inverse dynamics is stochastic input-to-state stable and the nonlinear functions satisfy the linear
growth conditions with unknown growth rate, an adaptive output feedback controller is proposed
to make the closed-loop system globally stable in probability and the states of the closed-loop
system converge to zero almost surely. A simulation example is provided to show the effectiveness
of the theoretical results.

1. Introduction

The output feedback control for stochastic nonlinear systems is a challenging research subject
in control theory. Since the design of output feedback control is more difficult and more
practical in engineering than that of full-state feedback control, many output feedback
controller design schemes for stochastic nonlinear systems have been proposed [1–8]. For
the deterministic nonlinear systems, some counterexamples were given in [9] to indicate that
the global output feedback stabilization of the nonlinear systems is usually impossible unless
some growth conditions on the unmeasurable states of the systems are introduced. From
then on, the problems of global output feedback stabilization for nonlinear systems with
various growth conditions were studied [10–15]. Recently, some output feedback controllers
were designed for the stochastic nonlinear systems in which nonlinear terms depend on the
output and unmeasurable inverse dynamics or unmodeled dynamics [3, 16–19]; moreover,
an output feedback controller was proposed for the stochastic nonlinear systems with the
nonlinear terms dependent on the unmeasurable states and unmeasurable inverse dynamics
[20]. However [20] considers only the case that the parameters in the bounding functions



2 Mathematical Problems in Engineering

are known; when they are unknown constants, the global output feedback control of the
stochastic system becomes much more difficult due to the lack of effective observer design
techniques [21]. Recently, the output feedback stabilization for a class of stochastic nonlinear
systems with stochastic iISS inverse dynamics was studied in [22–27].

In this paper, we focus on the output feedback stabilization for a class of stochastic
nonlinear systems in which the drift and diffusion terms are dependent on unmeasurable
states besides the output and unmeasurable inverse dynamics and without knowing the
growth rate. Under the assumption that the inverse dynamics are SISS (stochastic input-to-
state stable), an adaptive output feedback controller with a high-gain observer is constructed
to make the closed-loop system globally stable in probability and the states of the closed-
loop converge to zero almost surely. The contribution of this paper consists of two aspects.
(i) By adopting the universal adaptive output feedback controller presented in [21], the
output feedback control problem of stochastic nonlinear system with the nonlinear functions
being bounded with unknown constants is investigated. (ii) The two assumptions in [20] are
relaxed (see Remark 3.3).

The remained of this paper is organized as follows. Section 2 provides some prelimi-
naries and Section 3 gives the problem to be studied. An adaptive output feedback controller
is proposed in Section 4. Themain results of this paper and the stability analysis of the closed-
loop system are presented in Section 5. Section 6 gives a simulation example to demonstrate
the correctness of the theoretical results and some concluding remarks are contained in
Section 7.

2. Preliminaries

Consider the following stochastic nonlinear systems:

dx = f(x, t)dt + g(x, t)dw, (2.1)

where x ∈ Rn is the state, w is an m-dimensional standard Wiener process defined on the
complete probability space (Ω,F, P) with Ω being a sample space, F being a σ-field, and P
being the probability measure, and f : Rn × R+ → Rn and g : Rn × R+ → Rm are locally
Lipschitz continuous functions in x uniformly in t and satisfy the linear growth condition.
Meanwhile, we assume that f(0, t) = 0 and g(0, t) = 0.

Throughout this paper, we define the differential operator L as follows:

LV =
∂V

∂t
+
∂V

∂x
f(x, t) +

1
2
Tr

(
gT ∂

2V

∂x2
g

)
, (2.2)

where V (x, t) ∈ C2,1(Rn × R+, R+). We also denote by D(R+;R+) the family of all functions
γ : R+ → R+ such that

∫+∞
0 γ(t)dt < ∞.

The following lemma provides a sufficient condition to ensure the existence and
uniqueness of global solution for the system (2.1).



Mathematical Problems in Engineering 3

Lemma 2.1. For system (2.1), assume that both terms f(x, t) and g(x, t) are locally Lipschitz, and
f(0, t) and g(0, t) are bounded uniformly in t. If there exists a function V (x, t) ∈ C2,1(Rn × R+, R+)
such that for a constant K > 0 and any t ≥ 0,

LV (x, t) ≤ K(1 + V (x, t)),

lim
|x|→∞

inf
t≥0

V (x, t) = ∞, (2.3)

then, there exists a unique solution on [0,∞) for any initial value x(0) = x0 ∈ Rn.

Proof. This is a special form of Theorem 1 in [28].

Lemma 2.2. For system (2.1), assume that there exist functions V (x, t) ∈ C2,1(Rn × R+, R+), μ1 ∈
K, μ2 ∈ K, μ3 ∈ K, and γ(t) ∈ D(R+;R+) such that

μ1(x) ≤ V (x, t) ≤ μ2(x),

LV (x, t) ≤ γ(t) − μ3(x),
(2.4)

for all (x, t) ∈ (Rn, R+). Then, for any initial value x(0) = x0 ∈ Rn, the solution of system (2.1) is
bounded almost surely and has the properties that

lim
t→∞

‖x(t;x0)‖ = 0 a.s.,∫+∞

0

(
γ(t) − LV (x, t)

)
dt < +∞ a.s.

(2.5)

Proof. This Lemma can be proved by using Theorem 2.6 in [29] and Corollary 4.2 in [30].

3. Problem Statement

Consider the following stochastic system:

dη = f0
(
η, y, t

)
dt + g0

(
η, y, t

)
dw

dx1 =
(
x2 + f1

(
x, η, t

))
dt + g1

(
x, η, t

)
dw

...

dxn−1 =
(
xn + fn−1

(
x, η, t

))
dt + gn−1

(
x, η, t

)
dw

dxn =
(
u + fn

(
x, η, t

))
dt + gn

(
x, η, t

)
dw

y = x1,

(3.1)

where η ∈ Rm is the state of the unmeasurable inverse dynamics, x = (x1, . . . , xn) is the state,
u ∈ R is the control input, y ∈ R is the measured output, f0 ∈ Rm, g0 ∈ Rm×s, fi ∈ R, and
gT
i ∈ Rs, i = 1, . . . , n are uncertain locally Lipschitz in the first two arguments uniformly in t.

Moreover fi(0, 0, t) = 0, gi(0, 0, t) = 0, i = 0, . . . , n, and w is m-dimensional standard Wiener
process as defined in Section 2. For system (2.1), we give the following assumptions.



4 Mathematical Problems in Engineering

Assumption 3.1. There exist unknown positive constants θ1, θ2, θ3, and θ4 such that

∣∣fi(x, η, t)∣∣ ≤ θ1(|x1| + · · · + |xi|) + θ2
∥∥η∥∥, i = 1, . . . , n,∥∥gi(x, η, t)∥∥ ≤ θ3(|x1| + · · · + |xi|) + θ4
∥∥η∥∥, i = 1, . . . , n.

(3.2)

Assumption 3.2. There exist unknown positive constants α and r and a positive definite
function Vη(η, t)which is radially unbounded in η uniformly in t, such that

LVη ≤ −α∥∥η∥∥2 + r
∣∣y∣∣2. (3.3)

Remark 3.3. In [20] (B2 and B3), the positive constants θ1, θ2, θ3, θ4, α, and r are known, but
they are unknown in this paper. Thus, it is more difficult and meaningful to design an output
feedback stabilizing control law for system (3.1).

The control problem in this paper is precisely formulated as follows.
For system (3.1), under Assumptions 3.1 and 3.2, the control objective is to design a

smooth dynamic output feedback controller:

χ̇ = 	
(
χ, y
)
,

u = μ
(
χ, y
)
,

(3.4)

such that the solution of closed-loop system (3.1) and (3.4) is bounded a.s., limt→∞‖x(t)‖ =
0 a.s., and limt→∞‖η(t)‖ = 0 a.s.

4. Adaptive Output Feedback Controller Design

First, we design a state observer for system (3.1):

˙̂x1 = x̂2 + La1
(
y − x̂1

)
...

˙̂xn−1 = x̂n + Ln−1an−1
(
y − x̂1

)
˙̂xn = u + Lnan

(
y − x̂1

)
L̇ =
(
y − x̂1

)2
, L(0) = 1,

(4.1)

where ai > 0, i = 1, . . . , n are the coefficients of the Hurwitz polynomial p(s) = sn + a1s
n−1 +

· · · + an.
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Let ei = (xi − x̂i)/Li−1, i = 1, . . . , n, and e = (e1, . . . , en)
T . Then we can obtain the

following error dynamic system:

de1 =
(
Le2 − La1e1 + f1

)
dt + g1dw

...

den−1 =
(
Len − Lan−1e1 +

fn−1
Ln−2 − (n − 2)

L̇

L
en−1

)
dt +

gn−1
Ln−2dw

den =
(
−Lane1 +

fn

Ln−1 − (n − 1)
L̇

L
en

)
dt +

gn

Ln−1dw.

(4.2)

It can be written as the following compact form:

de =
(
LAe + F − L̇

L
De

)
dt +Gdw, (4.3)

where

A=

⎛
⎜⎜⎜⎝

−a1 1 0
...

. . .
−an−1 0 · · · 1
−an 0 · · · 0

⎞
⎟⎟⎟⎠, D=diag{0, 1, · · · , n − 1}, F=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
L
...
fn

Ln−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g1
g2
L
...
gn

Ln−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.4)

Since the polynomial p(s) = sn + a1s
n−1 + · · · + an is Hurwitz, there exists a positive definite

matrix P such that

ATP + PA = −I, DTP + PD ≥ 0. (4.5)

Let zi = x̂i/L
i−1, i = 1, . . . , n, v = u/Ln, and z = (z1, . . . , zn)

T . Then we can obtain

dz1 = (Lz2 + La1e1)dt
...

dzn−1 =
(
Lzn + Lan−1e1 − (n − 2)

L̇

L
zn−1

)
dt

dzn =
(
Lv + Lane1 − (n − 1)

L̇

L
zn

)
dt.

(4.6)

Design the controller

u = Lnv = −Ln(b1z1 + · · · + bnzn) = −
(
Lnb1x̂1 + Ln−1b2x̂2 + · · · + Lbnx̂n

)
, (4.7)
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where bi > 0, i = 1, . . . , n, are the coefficients of the Hurwitz polynomial h(s) = sn + bns
n−1 +

· · · + b1. Substituting (4.7) into (4.6), we have

dz =
(
LBz + Lae1 − L̇

L
Dz

)
dt, (4.8)

where

B =

⎛
⎜⎜⎜⎝

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−b1 −b2 · · · −bn

⎞
⎟⎟⎟⎠, a = (a1, . . . , an)T . (4.9)

For the polynomial h(s) = sn + bns
n−1 + · · · + b1 being Hurwitz, there exists a positive definite

matrix Q such that

BTQ +QB = −2I, DTQ +QD ≥ 0. (4.10)

Then the closed-loop system can be represented in the following compact form:

dη = f0
(
η, y, t

)
dt + g0

(
η, y, t

)
dw,

de =
(
LAe + F − L̇

L
De

)
dt +Gdw,

dz =
(
LBz + Lae1 − L̇

L
Dz

)
dt,

L̇ =
(
y − x̂1

)2 = e21.

(4.11)

5. Stability Analysis of the Closed-Loop System

By Assumption 3.1 and L ≥ 1, we have the following estimates:

‖F‖2 ≤
n∑
i=1

∣∣∣∣ fi

Li−1

∣∣∣∣
2

≤
n∑
i=1

[
1

Li−1 θ1(|x1| + · · · + |xi|) + θ2
∥∥η∥∥]2

≤ 2
n∑
i=1

[
1

Li−1 θ1(|x1| + · · · + |xi|)
]2

+ 2nθ2
2

∥∥η∥∥2

≤ 2nθ2
1

[(
|x1| + |x2|

L
+ · · · + |xn|

Ln−1

)]2
+ 2nθ2

2

∥∥η∥∥2
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≤ 2nθ2
1

[(
|e1| + |x̂1| + |e2| + |x̂2|

L
+ · · · + |en| + |x̂n|

Ln−1

)]2
+ 2nθ2

2

∥∥η∥∥2

= 2nθ2
1[(|e1| + · · · + |en| + |z1| + · · · + |zn|)]2 + 2nθ2

2

∥∥η∥∥2
≤ 4n2θ2

1

(
‖e‖2 + ‖z‖2

)
+ 2nθ2

2

∥∥η∥∥2,
‖G‖2 ≤

n∑
i=1

∣∣∣∣ gi

Li−1

∣∣∣∣
2

≤
n∑
i=1

[
1

Li−1 θ3(|x1| + · · · + |xi|) + θ4
∥∥η∥∥]2

≤ 2
n∑
i=1

[
1

Li−1 θ3(|x1| + · · · + |xi|)
]2

+ 2nθ2
4

∥∥η∥∥2

≤ 2nθ2
3

[
(|x1| + |x2|

L
+ · · · + |xn|

Ln−1 )
]2

+ 2nθ2
4

∥∥η∥∥2
≤ 4n2θ2

3

(
‖e‖2 + ‖z‖2

)
+ 2nθ2

4

∥∥η∥∥2.
(5.1)

Select V1 = δeTPe, where δ > 0 is a parameter to be specified later. Then, by (2.2), (4.5),
(4.11), and (5.1) we have

LV1 = δeTL
(
ATP + PA

)
e + 2δeTPF − δeT (DP + PD)e

L̇

L
+ δtr

(
GTPG

)

≤ −δL‖e‖2 + δ
∥∥∥eTP∥∥∥2 + δ‖F‖2 − δeT (DP + PD)e

L̇

L
+ δλmax(P)‖G‖2

≤ −δ
(
L − ‖P‖2

)
‖e‖2 + δ

(
4n2θ2

1

(
‖e‖2 + ‖z‖2

)
+ 2nθ2

2

∥∥η∥∥2) − δeT (DP + PD)e
L̇

L

+ δλmax(P)
(
4n2θ2

3

(
‖e‖2 + ‖z‖2

)
+ 2nθ2

4

∥∥η∥∥2)
≤ −
[
δ
(
L − ‖P‖2 − c1

)]
‖e‖2 + c1δ‖z‖2 + c2δ

∥∥η∥∥2,

(5.2)

where c1 = 4n2(θ2
1 + λmax(P)θ2

3), and c2 = 2n(θ2
2 + λmax(P)θ2

4).
Select V2 = zTQz; then

V̇2 = zTL
(
BTQ +QB

)
z + 2LzTQae1 − zT (DQ +QD)z

L̇

L
. (5.3)

Notice that

2LzTQae1 ≤ L‖z‖2 + L‖Qa‖2e21. (5.4)

By (4.10), we get

V̇2 ≤ −L‖z‖2 + L‖Qa‖2e21. (5.5)



8 Mathematical Problems in Engineering

Select V = ((δc2 + τ)/α)Vη + V1 + V2, where τ > 0; then from (3.3), (5.2), and (5.5), we can
obtain that

LV ≤ −τ∥∥η∥∥2 + δc2 + τ

α
ry2 −

[
δ
(
L − ‖P‖2 − c1

)
− L‖Qa‖2

]
‖e‖2 − (L − δc1)‖z‖2

≤ −τ∥∥η∥∥2+2δc2 + τ

α
re21+2

δc2 + τ

α
rz21−

[
δ
(
L − ‖P‖2 − c1

)
−L‖Qa‖2

]
‖e‖2−(L − δc1)‖z‖2

= −τ∥∥η∥∥2 − [δ(L − ‖P‖2 − c1
)
− L‖Qa‖2 − 2

δc2 + τ

α
r

]
‖e‖2 −

(
L − δc1 − 2

δc2 + τ

α
r

)
‖z‖2.
(5.6)

Let δ = ‖Qa‖2 + 1, c3 = δ‖P‖2 + δc1 + 2((δc2 + τ)/α)r; then

LV ≤ −τ∥∥η∥∥2 − (L − c3)
(
‖e‖2 + ‖z‖2

)
. (5.7)

The main result of the paper is summarized in the following theorem.

Theorem 5.1. Suppose that the system (3.1) satisfies Assumptions 3.1 and 3.2; then under the control
law (4.7) and the observer (4.1), the closed-loop system has a unique solution on [0,∞) and the
solution process is bounded almost surely; moreover, limt→∞‖x(t)‖ = 0 a.s., and limt→∞‖η(t)‖ =
0 a.s.

Proof. The proof process can be divided three parts.
First, we prove that L(t) is bounded on [0,∞). This can be done by a contradiction

argument. Suppose limt→∞L(t) = ∞. Since L̇(t) = e21 ≥ 0, L(t) is a monotone nondecreasing
function. Thus, there exists a finite time t· < ∞, such that

L(t) ≥ c3 + 1, ∀t ∈ [t·,∞). (5.8)

From (5.7), it follows that

LV ≤ −τ∥∥η∥∥2 − ‖e‖2 − ‖z‖2, ∀t ∈ [t·,∞). (5.9)

With Lemma 2.2, we can obtain that

∫∞

t·
e21dt ≤

∫∞

t·
‖e‖2dt < +∞ a.s. (5.10)

By this and the definition of L̇(t), we have

+∞ = L(∞) − L(t·) =
∫∞

t·
L̇(t)dt =

∫∞

t·
e21dt < +∞ a.s., (5.11)

which leads to a contradiction. Thus, the dynamic gain L(t) is well defined and bounded on
[0,∞). Moreover, from L̇(t) = e21, it is concluded that

∫∞
0 e21dt < ∞.
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From (5.7) and the boundedness of L(t), it can be proved that LV ≤ βV for a positive
constant β and for ∀t ∈ [0,∞). From Lemma 2.1, we can show the existence and uniqueness
of global solution for the system (4.11).

Next, we claim that z is well defined and bounded on the interval [0,+∞).
From (5.5) and L̇(t) = e21, one can obtain that

V̇2 ≤ −L‖z‖2 + L‖Qa‖2e21 ≤ −‖z‖2 + ‖Qa‖2LL̇. (5.12)

Then, for ∀t ∈ [0,∞), integrate two sides of the above inequality:

λmin(Q)‖z‖2 − zT (0)Qz(0) ≤ V2(t) − V2(0)

≤ −
∫ t

0
‖z‖2dt +

∫ t

0
‖Qa‖2LL̇dt = −

∫ t

0
‖z‖2dt + 1

2
‖Qa‖2

(
L2(t) − 1

)
.

(5.13)

From (5.13) we can obtain that, for ∀t ∈ [0,∞),

‖z‖2 ≤ 1
λmin(Q)

(
zT (0)Qz(0) +

1
2
‖Qa‖2

(
L2(t) − 1

))
,

∫ t

0
‖z‖2dt ≤ zT (0)Qz(0) +

1
2
‖Qa‖2

(
L2(t) − 1

)
.

(5.14)

Since L(t) is bounded on [0,+∞), the previous inequalities imply the boundedness of z and∫∞
0 ‖z‖2dt.

Finally, we prove the boundedness of e and η on [0,+∞).
Let

ξi =
xi − x̂i

L
i−1 , i = 1, . . . , n, ξ = (ξ1, . . . , ξn)

T , (5.15)

where L is a constant satisfying

L = max
{
3 + ‖P‖2 + c1, L(+∞)

}
. (5.16)

Then

dξ =
(
LAξ + Laξ1 − LΓaξ1 + F

)
dt +Gdw, (5.17)

where

F =

(
f1

f2

L
· · · fn

L
n−1

)T

, G =
(
g1

g2

L
· · · gn

L
n−1

)T

, Γ = diag

(
1

L

L
· · · Ln−1

L
n−1

)
.

(5.18)
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Similar to (5.1), we have

∥∥∥F∥∥∥2 ≤ n∑
i=1

∣∣∣∣∣ fi

L
i−1

∣∣∣∣∣
2

≤ 4n2θ2
1

(
‖ξ‖2 + ‖z‖2

)
+ 2nθ2

2

∥∥η∥∥2,
∥∥∥G∥∥∥2 ≤ n∑

i=1

∣∣∣∣∣ gi

L
i−1

∣∣∣∣∣
2

≤ 4n2θ2
3

(
‖ξ‖2 + ‖z‖2

)
+ 2nθ2

4

∥∥η∥∥2.
(5.19)

Now we consider the Lyapunov function V3 = ξTPξ + ((c2 + τ)/α)Vη. A straightforward
calculation shows that along the trajectories of (4.11), we can obtain

LV3 ≤ −L‖ξ‖2 + 2ξ1LaTPξ − 2ξ1LaTΓPξ + 2F
T
Pξ + tr

(
G

T
PG
)
− (c2 + τ)

∥∥η∥∥2 + c2 + τ

α
ry2.

(5.20)

Noticing that

2ξ1LaTPξ ≤ L
2∥∥∥aTP

∥∥∥2ξ21 + ‖ξ‖2,

− 2ξ1LaTΓPξ ≤ L2
∥∥∥aTΓP

∥∥∥2ξ21 + ‖ξ‖2,

2F
T
Pξ ≤ ‖P‖2‖ξ‖2 +

∥∥∥F∥∥∥2 ≤ (‖P‖2 + 4n2θ2
1

)
‖ξ‖2 + 4n2θ2

1‖z‖2 + 2nθ2
2

∥∥η∥∥2,
tr
(
G

T
PG
)
≤ λmax(P)

∥∥∥G∥∥∥2 ≤ 4n2λmax(P)θ2
3

(
‖ξ‖2 + ‖z‖2

)
+ 2nλmax(P)θ2

4

∥∥η∥∥2,

(5.21)

we have

LV3 ≤ −
(
L − 2 − ‖P‖2 − c1

)
‖ξ‖2 − (c2 + τ)

∥∥η∥∥2 +(L2∥∥∥aTP
∥∥∥2 + L2

∥∥∥aTΓP
∥∥∥2)ξ21

+ c1‖z‖2 + c2 + τ

α
ry2 + c2

∥∥η∥∥2
≤ −‖ξ‖2 − τ

∥∥η∥∥2 + c1‖z‖2 + 2
c2 + τ

α
r
(
e21 + z21

)
+ L

2
(∥∥∥aTP

∥∥∥2 + ∥∥∥aTΓP
∥∥∥2)e21.

(5.22)

Since
∫∞
0 ‖z‖2dt and ∫∞0 e21dt are bounded, from Lemma 2.2, we can obtain that ‖η(t)‖ and

‖ξ(t)‖ are bounded almost surely, limt→∞‖ξ(t)‖ = 0 a.s., and limt→∞‖η(t)‖ = 0 a.s. From the
definition of e and ξ, we have that ‖e(t)‖ is bounded almost surely and limt→∞‖e(t)‖ = 0 a.s.
Moreover, limt→∞‖z(t)‖ = 0 a.s. is followed from (5.5); then it leads to limt→∞‖x(t)‖ = 0 a.s..



Mathematical Problems in Engineering 11

0 5 10 15 20

0

5

10

−5

−10

−15

−20

x
1
an

d
x
2

t

x1

x2

Figure 1: System states x1 and x2.

Thus, we obtain that limt→∞‖η(t)‖ = 0 a.s., and limt→∞‖x(t)‖ = 0 a.s. Up to now, the proof is
completed.

6. Simulation

Considering the following stochastic nonlinear system:

dη =
(−η + λ1y

)
dt + λ2y sinydw,

dx1 =
(
x2 + η + λ3y

)
dt +

λ4x
2
1

1 + x2
1

ηdw,

dx2 =
(
u + η + λ5x2

)
dt,

y = x1,

(6.1)

where w is an m-dimensional standard Wiener process, and λi, i = 1, . . . , 5 are unknown
parameters.

By Theorem 5.1, we can design the output feedback controller as follows:

dx̂1 =
(
x̂2 + La1

(
y − x̂1

))
dt,

dx̂2 =
(
u + L2a2

(
y − x̂1

))
dt,

L̇ =
(
y − x̂1

)2
,

u = −
(
L2b1x̂1 + Lb2x̂2

)
.

(6.2)
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Figure 2: Observer states x̂1 and x̂2.
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Figure 3: System states η.

The initial values of the states are η(0) = 1, x(0) = (0.5, 0.5)T , x̂(0) = (0, 0)T , and λ1 = 1,
λ2 = 0.5, λ3 = 0.6, λ4 = 0.6, and λ5 = 0.5. Choosing the design parameters a1 = 2, a2 = 1,
b1 = 1, and b2 = 2, we can obtain Figures 1, 2, 3, 4, and 5. From the figures, we can see that L
is bounded and η, x, and x̂ converge to zero almost surely.

7. Conclusion

In this paper, the adaptive output feedback control has been considered for a class of stochas-
tic nonlinear systems with stochastic inverse dynamic and linearly bounded unmeasurable
states. Like [20], a quadratic Lyapunov function is adopted instead of a quartic function



Mathematical Problems in Engineering 13

0 5 10 15 20

L

1

1.5

2

2.5

3

3.5

4

4.5

5

t

Figure 4: Dynamic gain L.

0 5 10 15 20

0

20

40

60

80

u

−60

−40

−20

t

Figure 5: Control u.

and this makes the design process simple. Under some weak conditions, an adaptive high-
gain observer has been designed and the closed-loop system is globally stable in probability.
Moreover, the states of the closed-loop system converge to zero almost surely.
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