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We study amulti-periodmean-variance portfolio selection problemwith an uncertain time horizon
and serial correlations. Firstly, we embed the nonseparablemulti-period optimization problem into
a separable quadratic optimization problemwith uncertain exit time by employing the embedding
technique of Li and Ng (2000). Then we convert the later into an optimization problem with
deterministic exit time. Finally, using the dynamic programming approach, we explicitly derive the
optimal strategy and the efficient frontier for the dynamic mean-variance optimization problem.
A numerical example with AR(1) return process is also presented, which shows that both the
uncertainty of exit time and the serial correlations of returns have significant impacts on the
optimal strategy and the efficient frontier.

1. Introduction

The portfolio selection problem, which is one of great importance from both theoretical and
practical perspectives, aims to find the best allocation of wealth among different assets in
financial market. The mean-variance analysis pioneered by Markowitz [1] is one of the most
widely used frameworks dealing with portfolio selection problems. In the past few decades,
the mean-variance model stimulates a great deal of extensions and applied researches under
single-period setting. Due to the nonseparability of multi-period mean-variance models, only
up to 2000, Li and Ng [2] develop the embedding technique and solve a multi-period mean-
variance portfolio selection problem analytically. In their work, the returns of risky assets are
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assumed to be independent and identically distributed, and this assumption is also adopted
by lots of the later literature, such as Guo and Hu [3].

A large number of empirical analyses of the assets price dynamics show that there
exist salient serial correlations in the returns of financial assets, and the correlation structure
is very complicated. The ARMA model is developed to study the feature of the financial
assets returning with serial correlations in the field of econometrics, and it is widely used in
the empirical research of financial market. Hakansson [4, 5] had already taken the impact
of serial correlations into account on his portfolio selection problems and had investigated
the myopic optimal portfolio strategies when there existed serial correlations of yields and
not. However, due to the complexity of multi-period portfolio selection problem with serial
correlations of returns, there are little relevant literature and results focused on the impact
of serial correlations on the optimal portfolio selection strategy. Balvers and Mitchell [6] first
derived an analytical solution for a dynamic portfolio selection problem with autocorrelation
assets returns, where the utility function was a negative exponential function, and the assets
returns were subject to the normal ARMA(1,1) process. Dokuchaev [7] analyzed a discrete-
time portfolio selection model with serial correlations and found the correlation structure
which ensured the optimal strategy being myopic for both the power and the log utility
functions. Çelikyurt and Özekici [8] studied such models with the assumption that the
market evolution followed a Markov chain and the states were observable, whose objective
functions depended on the mean and the variance of the terminal wealth. Çanakoğlu
and Özekici [9] considered the utility maximization problem with imperfect information
modulated by a hidden Markov chain, and obtained the explicit characterization of the
optimal strategy and the value function. Wei and Ye [10] extended the work of [8] to take
the risk control over bankruptcy into consideration. Xu and Li [11] investigated a multi-
period mean-variance portfolio selection problem with one risky asset whose returns were
serially correlated. By using the embedding technique of Li and Ng [2] and the dynamic
programming approach, they obtained the explicit optimal strategy and proposed a measure
of the risky asset value. To our knowledge, up to now, quite a few papers consider serial
correlations of returns under dynamic portfolio selection framework.

On the other hand, the literature mentioned above makes an important hypothesis,
implicitly or explicitly, that an investor knows her/his final exit time exactly at the moment
of entering the market and making investment decisions, that is, the investment horizon
is deterministic, either finite or infinite. In practice, however, the investor’s exit time may
be impacted by many exogenous and endogenous factors. An investor may exit from the
market when she/he faces an unexpected need of huge consumption, sudden death, job
loss, early retirement, investment target achieved, and so forth. Thus, it is more practical
to weaken the restrictive assumption that the investment horizon is deterministic. If the exit
time is uncertain, it is a random variable. As far as we know, study on the uncertain exit
time can be dated back to Yarri [12], who studied an optimal consumption problem with an
uncertain investment horizon. Hakansson [13] extended the work of [12] to a multi-period
setting with a risky asset and an uncertain time horizon. Merton [14] addressed a dynamic
optimal investment and consumption problem, and the uncertain retiring time was defined
as the first jump of an independent Poisson process. Karatzas and Wang [15] considered an
optimal investment problem in complete markets with the assumption that the exit time was
a stopping time of the asset price filtration. Martellini and Uros̆ević [16] extended the original
model of [1] to a static mean-variance model in which the exit time was dependent on asset
returns. Guo and Hu [3] analyzed a multi-period mean-variance investment problem with
uncertainty time of exiting. Huang et al. [17] dealt with the portfolio selection problem with
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uncertain time horizon by adopting the worst-case CVaRmethodology. Blanchet-Scalliet et al.
[18] extended the optimal investment problem of [14] to allow the investor’s time horizon to
be stochastic and correlate to the returns of risky assets. Yi et al. [19] considered amultiperiod
asset-liability management problem with an uncertain investment horizon under the mean-
variance framework.

To the best of our knowledge, there is no work that considers the multiperiod mean-
variance portfolio selection with an uncertain investment horizon and serially correlate
returns at the same time. In the present paper, we try to tackle such problem. We assume
that the distribution of the exit time is known, and the serial correlations of risky asset
returns are settled the same as Hakansson [5] and Xu and Li [11]. We first embed our
nonseparable problem, in the sense of dynamic programming, into a separable one by
employing the embedding technique of Li and Ng [2]; then transform the separable problem
with uncertain exit time into one with deterministic time horizon; finally solve the problem
with deterministic time horizon by using the dynamic programming approach.

The rest of the paper is organized as follows. Section 2 formulates our problem and
embeds it into a separable auxiliary problem. In Section 3, we solve the tractable auxiliary
problem. In Section 4, we derive the optimal strategy and the efficient frontier of the original
problem. Section 5 extends the results to the case of multiple risky assets. Section 6 gives a
numerical simulation to show the impacts of exit time and serial correlations on the mean-
variance efficient frontier. Finally, we conclude the paper in Section 7.

2. Modeling

We consider a financial market consisting of a risky asset and a riskless asset. The return
rates of the riskless asset and risky asset at period t + 1 (the time interval from time t to time
t + 1) are denoted by r0t and rt, respectively. It is assumed that r0t is a constant and rt is a
(t+ 1)-measurable random variable. The risky asset will not degenerate into the riskless asset
at any period, and its return rates {rt, t = 0, 1, . . .} are correlated, that is, the value of rt is
dependent on the values of rs, s < t, which are the realized returns of risky asset at the past
periods. Thus, at time t, the expectation of a random variable, denoted by Et, is a conditional
expectation based on all of the history information up to time t.

We assume that an investor, who joins the market at time 0 with the initial wealth x0,
may invest her/his wealth among the risky asset and the riskless asset within a time horizon
of T periods. At the beginning of each period t (t = 1, . . . , T), the investor may adjust the
amount invested in the risky and riskless assets by transaction. However, she/he may be
forced to leave the financial market at time τ before T by some uncontrollable reasons. The
uncertain exit time τ is supposed to be an exogenously random variable with the discrete
probability distribution p̃t = Pr{τ = t}, t = 1, 2, . . .. Therefore, the actual exit time of the
investor is T ∧ τ := min{T, τ}, and its probability distribution is

pt := Pr{T ∧ τ = t} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p̃t, t = 1, . . . , T − 1,

1 −
T−1
∑

t=1

p̃t, t = T.
(2.1)

Let ut be the amount invested in the risky asset at the beginning of period t + 1. The
investment series over T periods, u := {u0, u1, . . . , uT−1}, is called an investment strategy.
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Define the excess return of risky asset at period t + 1 (t = 0, 1, . . . , T − 1) as Rt = rt − r0t ,
which is assumed to be nondegenerated before time t + 1, that is, the risky asset will not
degenerate into the riskless asset at period t + 1. Let xt be the wealth of the investor at time
t (t = 0, 1, . . . , T). If the investment strategy u is used in a self-financing way, the wealth
dynamics can be described mathematically as

xt+1 = r0t xt + Rtut, t = 0, 1, . . . , T − 1. (2.2)

The multi-period mean-variance portfolio selection problem with uncertain exit time
and serially correlate returns now can be formulated as

P(ω)

⎧

⎨

⎩

max
u

E0(xT∧τ) −ωVar0(xT∧τ)

s.t. xt+1 = r0t xt + Rtut, t = 0, 1, . . . , T − 1,
(2.3)

where ω is a given positive constant, representing the degree of the investor’s risk aversion,
and Var0 is the variance conditional on the information available at time 0. There are some
other assumptions with respect to model P(ω), which are summarized as follows: (a) short
selling is permitted at any periods for the risky asset; (b) transaction costs and fees are
negligible; (c) the investor can borrow and lend the riskless asset at any periods without
limitation.

Recall that the mean-variance model P(ω) is difficult to solve due to its nonseparable
structure in the sense of dynamic programming, which is one of the most powerful and
universal methodologies for optimization problems with separable nature. Fortunately, Li
and Ng [2] propose an embedding technique, and this technique is also applicable to solve
the current problem with uncertain exit time and serially correlate returns. Instead of solving
problem P(ω) directly, we first consider the following auxiliary problem:

A(λ,ω)

⎧

⎨

⎩

max
u

E0
(

λxT∧τ −ωx2
T∧τ

)

s.t. xt+1 = r0t xt + Rtut, t = 0, 1, . . . , T − 1,
(2.4)

for a given constant λ > 0.
Let ΨA(λ,ω) and ΨP (ω) be the optimal solution sets of problem A(λ,ω) and P(ω),

respectively, namely,

ΨA(λ,ω) =
{

u | u is an optimal solution of A(λ,ω)
}

,

ΨP (ω) =
{

u | u is an optimal solution of P(ω)
}

.
(2.5)

The following two theorems can be proven by a similar method to that described in Li
and Ng [2], and so their proofs are omitted.

Theorem 2.1. For any optimal solution u∗ of ΨP (ω), u∗ is the optimal solution of ΨA(λ∗, ω) with
λ∗ = 1 + 2ωE0(xT∧τ)|u∗ .

Theorem 2.2. If u∗ ∈ ΨA(λ∗, ω), a necessary condition for u∗ ∈ ΨP (ω) is λ∗ = 1 + 2ωE0(xT∧τ)|u∗ .
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3. Analytical Solution of Auxiliary Problem A(λ,ω)

In this section, we translate the auxiliary problem A(λ,ω) into a portfolio selection problem
with certain exit time and then solve it by using the dynamic programming approach.

Since

E0

[

λxT∧τ −ωx2
T∧τ

]

=
T
∑

t=1

E0

[

λxT∧τ −ωx2
T∧τ | T ∧ τ = t

]

P(T ∧ τ = t)

= E0

[

T
∑

t=1

(

λxt −ωx2
t

)

pt

]

,

(3.1)

problem A(λ,ω) can be written equivalently as

A(λ,ω)

⎧

⎪

⎨

⎪

⎩

max
u

E0

[

T
∑

t=1

(

λxt −ωx2
t

)

pt

]

s.t. xt+1 = r0t xt + Rtut, t = 0, 1, . . . , T − 1.
(3.2)

Define the value function

f∗
t (xt) = max

ut

ft(xt)

= max
ut

Et

[

T
∑

s=t

(

λxs −ωx2
s

)

ps

] (3.3)

as the optimal expected utility using the optimal strategy conditional on the information
available at time t (t = 0, 1, . . . , T − 1), and the boundary condition is

f∗
T (xT ) =

(

λxT −ωx2
T

)

pT . (3.4)

According to the dynamic programming principle, we have the Bellman equation

f∗
t (xt) = max

ut

f t(xt)

= max
ut

Et

[(

λxt −ωx2
t

)

pt + f∗
t+1(xt+1)

]

,
(3.5)

for t = 0, 1, . . . , T − 1.
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First, we give the following notations:

θt =
E2
t (λt+1Rt)

Et

(

ωt+1R
2
t

) , t = 0, 1, . . . , T − 1, (3.6)

Ξt =Et

[

λ2

4ω

T−1
∑

s=t
θs

]

, t = 0, 1, . . . , T − 1, (3.7)

ωt =pt +
(

r0t

)2
[

Et(ωt+1) −
E2
t (ωt+1Rt)

Et

(

ωt+1R
2
t

)

]

, t = 0, 1, . . . , T − 1, ωT = pT , (3.8)

λt =pt + r0t

[

Et(λt+1) − Et(ωt+1Rt)Et(λt+1Rt)
Et

(

ωt+1R
2
t

)

]

, t = 0, 1, . . . , T − 1, λT = pT . (3.9)

For notational simplicity, we define
∑t

j=s(·)j = 0 and
∏t

j=s(·)j = 1 if s > t.
Note that Rt and Rt+1 are not independent of each other for t = 0, 1, . . . , T − 1, so both

ωt+1 and λt+1 are dependent on the risky asset return at period t+1,Rt. Then, for t = 0, 1, . . . , T−
1,

Et(ωt+1Rt)/=Et(ωt+1)Et(Rt), Et(λt+1Rt)/=Et(λt+1)Et(Rt). (3.10)

The following lemma comes from Xu and Li [11]. For the completeness, we provide
its proof here.

Lemma 3.1. Let x be a nondegenerated random variable, and let ξ be a positive random variable under
the information at time t, then Et(x2ξ)Et(ξ) > (Et(xξ))

2.

Proof. Since ξ is a positive random variable, we can define a new probability measure Q as

dQ � ξ

Et(ξ)
dP, (3.11)

where P is the original measure. Since x is a nondegenerated random variable, we have,
under measure Q,

VarQt (x) = E
Q
t

(

x2
)

−
(

E
Q
t (x)

)2
> 0. (3.12)

Transforming the above inequality to under measure P , we obtain

Et

(

x2 ξ

Et(ξ)

)

−
(

Et

(

x
ξ

Et(ξ)

))2

> 0. (3.13)

Multiplying both sides by (Et(ξ))
2 in the above inequality produces

Et

(

x2ξ
)

Et(ξ) > (Et(xξ))
2. (3.14)

This completes the proof.
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Theorem 3.2. For t = 0, 1, . . . , T − 1, ωt > 0, θt ≥ 0, and Ξt ≥ 0.

Proof. We use induction. For t = T − 1, since the return of the risky asset at period T , RT−1, is
a nondegenerated random variable, then

VarT−1(RT−1) = ET−1
(

R2
T−1

)

− (ET−1(RT−1))2 > 0, (3.15)

ET−1(R2
T−1) > 0. So

0 ≤ θT−1 =
E2
T−1

(

pTRT−1
)

ET−1
(

pTR
2
T−1

) = pT
E2
T−1(RT−1)

ET−1
(

R2
T−1

) < pT ,

ΞT−1 = ET−1

(

λ2

4ω
θT−1

)

≥ 0.

(3.16)

Therefore,

ωT−1 = pT−1 +
(

r0T−1
)2

(

pT − E2
T−1

(

pTRT−1
)

ET−1
(

pTR
2
T−1

)

)

> 0. (3.17)

Suppose that ωs > 0, θs ≥ 0, and Ξs ≥ 0 hold true for s = t + 1, . . . , T − 2, T − 1, then for
period t,

θt =
E2
t (λt+1Rt)

Et

(

ωt+1R
2
t

) ≥ 0. (3.18)

By Lemma 3.1, we can easily see that

Et(ωt+1) >
E2
t (ωt+1Rt)

Et

(

ωt+1R
2
t

) . (3.19)

Hence, we obtain

Ξt = Et

(

T−1
∑

s=t

λ2

4ω
θs

)

=
λ2

4ω
θt + Et(Ξt+1) ≥ 0,

ωt = pt +
(

r0t
)2
[

Et(ωt+1) −
E2
t (ωt+1Rt)

Et

(

ωt+1R
2
t

)

]

> 0. (3.20)

By induction, it shows that for t = 0, 1, . . . , T − 1, ωt > 0, θt ≥ 0, and Ξt ≥ 0.

The analytical optimal strategy and the value function of problem A(λ,ω) can be
derived by using dynamic programming approach, which are summarized in the following
theorem.
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Theorem 3.3. The optimal strategy and the value functions of problem A(λ,ω) are, respectively,
given by

u∗
t =

λ

2ω
Et(λt+1Rt)
Et

(

ωt+1R
2
t

) − Et(ωt+1Rt)
Et

(

ωt+1R
2
t

)r0t xt, t = 0, 1, . . . , T − 1, (3.21)

f∗
t (xt) = −ωωtx

2
t + λλtxt + Ξt, t = 0, 1, . . . , T − 1, (3.22)

where Ξt, ωt, and λt are given as defined in (3.7)–(3.9).

Proof. We will show that the above recursive formulas hold true by induction starting with
the boundary condition fT (xT ) = (λxT −ωx2

T )pT . Note that for t = T − 1,

f∗
T−1(xT−1) = max

uT−1
fT−1(xT−1)

= max
uT−1

ET−1
[(

λxT−1 −ωx2
T−1

)

pT−1 + f∗
T (xT )

]

= max
uT−1

ET−1
[(

λxT−1 −ωx2
T−1

)

pT−1 +
(

λxT −ωx2
T

)

pT
]

= max
uT−1

(

λxT−1 −ωx2
T−1

)

pT−1 + λ
[

r0T−1pTxT−1 +ET−1
(

pTRT−1
)

uT−1
]

−ω

[

(

r0T−1
)2
pTx

2
T−1 + 2r0T−1ET−1

(

pTRT−1
)

uT−1xT−1 + ET−1
(

pTR
2
T−1

)

u2
T−1

]

.

(3.23)

Since ET−1(R2
T−1) > 0 by assumption, the function fT−1(xT−1) is a concave function of uT−1. The

first-order condition gives

λET−1
(

pTRT−1
) − 2ω

[

r0T−1ET−1
(

pTRT−1
)

xT−1 + ET−1
(

pTR
2
T−1

)

uT−1
]

= 0, (3.24)

which yields the optimal solution u∗
T−1 as

u∗
T−1 =

λ

2ω
ET−1

(

pTRT−1
)

ET−1
(

pTR
2
T−1

) − ET−1
(

pTRT−1
)

ET−1
(

pTR
2
T−1

)r0T−1xT−1. (3.25)
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Substituting u∗
T−1 back into fT−1(xT−1), it follows that

f∗
T−1(xT−1) =

(

λxT−1 −ωx2
T−1

)

pT−1

+ λ

[

r0T−1pTxT−1 + ET−1
(

pTRT−1
)

(

λ

2ω
ET−1

(

pTRT−1
)

ET−1
(

pTR
2
T−1

) − ET−1
(

pTRT−1
)

ET−1
(

pTR
2
T−1

)r0T−1xT−1

)]

−ω

⎡

⎣

(

r0T−1
)2
pTx

2
T−1 + 2r0T−1ET−1

(

pTRT−1
)

×
(

λ

2ω
ET−1

(

pTRT−1
)

ET−1
(

pTR
2
T−1

) − ET−1
(

pTRT−1
)

ET−1
(

pTR
2
T−1

)r0T−1xT−1

)

xT−1

+ET−1
(

pTR
2
T−1

)

(

λ

2ω
ET−1

(

pTRT−1
)

ET−1
(

pTR
2
T−1

) − ET−1
(

pTRT−1
)

ET−1
(

pTR
2
T−1

)r0T−1xT−1

)2
⎤

⎦

= −ω
[

pT−1 +
(

r0T−1
)2

(

pT − E2
T−1

(

pTRT−1
)

ET−1
(

pTR
2
T−1

)

)]

x2
T−1

+ λ

[

pT−1 + r0T−1

(

pT − E2
T−1

(

pTRT−1
)

ET−1
(

pTR
2
T−1

)

)]

xT−1 +
λ2

4ω
E2
T−1

(

pTRT−1
)

ET−1
(

pTR
2
T−1

)

= −ωωT−1x2
T−1 + λλT−1xT−1 +

λ2

4ω
θT−1

= −ωωT−1x2
T−1 + λλT−1xT−1 + ΞT−1.

(3.26)

Hence, the conclusion holds true for t = T − 1.
Now we assume that the conclusion holds true for time t + 1, in other words,

f∗
t+1(xt+1) = −ωωt+1x

2
t+1 + λλt+1xt+1 + Ξt+1,

u∗
t+1 =

λ

2ω
Et+1(λt+2Rt+1)
Et+1

(

ωt+2R
2
t+1

) − Et+1(ωt+2Rt+1)
Et+1

(

ωt+2R
2
t+1

)r0t+1xt+1,
(3.27)

then the optimization problem at time t for given state xt is

f∗
t (xt) = max

ut

f t(xt)

= max
ut

Et

[(

λxt −ωx2
t

)

pt + f∗
t+1(xt+1)

]

= max
ut

Et

[(

λxt −ωx2
t

)

pt −ωωt+1x
2
t+1 + λλt+1xt+1 + Ξt+1

]
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= max
ut

{

(

λxt −ωx2
t

)

pt −ω

[

(

r0t

)2
x2
t Et(ωt+1) + 2r0t Et(ωt+1Rt)utxt + Et

(

ωt+1R
2
t

)

u2
t

]

+λ
(

r0t xtEt(λt+1) + Et(λt+1Rt)ut

)

+ Et(Ξt+1)
}

(3.28)

Noting that Et(ωt+1R
2
t ) > 0 by Theorem 3.2, the function ft(xt) is also a concave function of

ut. The first-order condition yields

u∗
t =

λ

2ω
Et(λt+1Rt)
Et

(

ωt+1R
2
t

) − Et(ωt+1Rt)
Et

(

ωt+1R
2
t

)r0t xt. (3.29)

Therefore, for the above given u∗
t ,

f∗
t (xt) =

(

λxt −ωx2
t

)

pt

+ λ

[

r0t xtEt(λt+1) + Et(λt+1Rt)

(

λ

2ω
Et(λt+1Rt)
Et

(

ωt+1R
2
t

) − Et(ωt+1Rt)
Et

(

ωt+1R
2
t

)r0t xt

)]

−ω

⎡

⎣

(

r0t

)2
x2
t Et(ωt+1) + 2r0t Et(ωt+1Rt)

(

λ

2ω
Et(λt+1Rt)
Et

(

ωt+1R
2
t

) − Et(ωt+1Rt)
Et

(

ωt+1R
2
t

)r0t xt

)

xt

+Et

(

ωt+1R
2
t

)

(

λ

2ω
Et(λt+1Rt)
Et

(

ωt+1R
2
t

) − Et(ωt+1Rt)
Et

(

ωt+1R
2
t

)r0t xt

)2
⎤

⎦ + Et(Ξt+1)

= −ω
[

pt +
(

r0t

)2
(

Et(ωt+1) −
E2
t (ωt+1Rt)

Et

(

ωt+1R
2
t

)

)]

x2
t

+ λ

[

pt + r0t

(

Et(λt+1) − Et(ωt+1Rt)Et(λt+1Rt)
Et

(

ωt+1R
2
t

)

)]

xt +
λ2

4ω
θt + Et(Ξt+1)

= −ωωtx
2
t + λλtxt + Ξt.

(3.30)

Hence, the conclusion is true for t. By induction, the theorem is true.

4. Optimal Strategy and the Efficient Frontier of
the Original Problem P(ω)

If we insert the optimal strategy given in Theorem 3.3 into the dynamic process of wealth, xT

and x2
T can be expressed as

xT = r0T−1xT−1 + RT−1u∗
T−1

=

[

1 − RT−1ET−1(ωTRT−1)
ET−1

(

ωTR
2
T−1

)

]

r0T−1xT−1 +
λ

2ω
RT−1ET−1(λTRT−1)
ET−1

(

ωTR
2
T−1

) ,
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x2
T =

[

1 − 2RT−1ET−1(ωTRT−1)
ET−1

(

ωTR
2
T−1

) +
R2

T−1E
2
T−1(ωTRT−1)

E2
T−1

(

ωTR
2
T−1

)

]

(

r0T−1
)2
x2
T−1

+
λ

ω

[

RT−1ET−1(λTRT−1)
ET−1

(

ωTR
2
T−1

) − R2
T−1ET−1(ωTRT−1)ET−1(λTRT−1)

E2
T−1

(

ωTR
2
T−1

)

]

r0T−1xT−1

+
λ2

4ω2

R2
T−1E

2
T−1(λTRT−1)

E2
T−1

(

ωTR
2
T−1

) ,

(4.1)

λTxT =

[

λT − λTRT−1ET−1(ωTRT−1)
ET−1

(

ωTR
2
T−1

)

]

r0T−1xT−1 +
λ

2ω
λTRT−1ET−1(λTRT−1)

ET−1
(

ωTR
2
T−1

) ,

ωTx
2
T =

[

ωT − 2ωTRT−1ET−1(ωTRT−1)
ET−1

(

ωTR
2
T−1

) +
ωTR

2
T−1E

2
T−1(ωTRT−1)

E2
T−1

(

ωTR
2
T−1

)

]

(

r0T−1
)2
x2
T−1

+
λ

ω

[

ωTRT−1ET−1(λTRT−1)
ET−1

(

ωTR
2
T−1

) − ωTR
2
T−1ET−1(ωTRT−1)ET−1(λTRT−1)

E2
T−1

(

ωTR
2
T−1

)

]

r0T−1xT−1

+
λ2

4ω2

ωTR
2
T−1E

2
T−1(λTRT−1)

E2
T−1

(

ωTR
2
T−1

) .

(4.2)

Taking expectations on both sides of (4.2) based on the information available at time T − 1,
we conclude that

ET−1(λTxT ) = λT−1xT−1 − pT−1xT−1 +
λ

2ω
θT−1, (4.3)

ET−1
(

ωTx
2
T

)

= ωT−1x2
T−1 − pT−1x2

T−1 +
λ2

4ω2
θT−1, (4.4)

where

θT−1 =
E2
T−1(λTRT−1)

ET−1
(

ωTR
2
T−1

) . (4.5)

The above equations are recursive equations, and by taking expectations on both sides
of (4.3) and (4.4) at time T − 2, . . . , 1, 0 repeatedly, we obtain

E0(xT∧τ) =
T
∑

t=1

ptE0(xt) = λ0x0 +
λ

2ω

T
∑

t=1

E0(θt−1) = λ0x0 +
λ

2ω
Θ, (4.6)

E0

(

x2
T∧τ

)

=
T
∑

t=1

ptE0

(

x2
t

)

= ω0x
2
0 +

λ2

4ω2

T
∑

t=1

E0(θt−1) = ω0x
2
0 +

λ2

4ω2
Θ, (4.7)
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where

θt =
E2
t (λt+1Rt)

Et

(

ωt+1R
2
t

) , Θ =
T
∑

t=1

E0(θt−1). (4.8)

With the results (4.6) and (4.7), the variance of the terminal wealth xT∧τ under the
optimal strategy (3.21) can be written as

Var0(xT∧τ) = E0

(

x2
T∧τ

)

− [E0(xT∧τ)]2

= E0

(

T
∑

t=1

ptx
2
t

)

−
[

E0

(

T
∑

t=1

ptxt

)]2

= ω0x
2
0 +

λ2

4ω2
Θ −

[

λ0x0 +
λ

2ω
Θ
]2

=
λ2

4ω2

(

Θ −Θ2
)

− λ

ω
λ0Θx0 +

(

ω0 − λ20

)

x2
0.

(4.9)

Lemma 4.1. 0 < Θ < 1, ω0 − λ20/(1 −Θ) > 0.

Proof. First of all, we claim that Var0(xT∧τ) > 0, since it measures the risk of investor at the
time of exitingmarket, and the risky asset cannot degenerate into the riskless asset. Especially,
when x0 = 0, Var0(xT∧τ) can be reduced to

Var0(xT∧τ) =
λ2

4ω2

(

Θ −Θ2
)

> 0, (4.10)

and it is easy to show that 0 < Θ < 1.
The expression of Var0(xT∧τ) can be further converted into

Var0(xT∧τ) =
(

Θ −Θ2
)

[

λ

2ω
− λ0
1 −Θ

x0

]2

+

(

ω0 −
λ20

1 −Θ

)

x2
0 > 0. (4.11)

Since we know that 0 < Θ < 1, the above inequality implies ω0 −λ20/(1−Θ) > 0, and we finish
the proof of Lemma 4.1.

According to Theorem 2.2, a necessary condition for the optimal solution of auxiliary
problem A(λ∗, ω) to attain the optimality of problem P(ω) at the same time is

λ∗ = 1 + 2ωE0(xT∧τ) |u∗ = 1 + 2ω
(

λ0x0 +
λ∗

2ω
Θ
)

. (4.12)

We can easily obtain

λ∗ =
1 + 2ωλ0x0

1 −Θ
. (4.13)
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Finally, substituting (4.13) back into (3.21) yields the analytically optimal strategy of the
original problem P(ω), which is summarized in the following theorem.

Theorem 4.2. For the mean-variance problem P(ω), the optimal strategy is given by

u∗
t =

1 + 2ωλ0x0

2ω(1 −Θ)
Et(λt+1Rt)
Et

(

ωt+1R
2
t

) − Et(ωt+1Rt)
Et

(

ωt+1R
2
t

)r0t xt, t = 0, 1, . . . , T − 1, (4.14)

where Θ, λ0, ωt+1, and λt+1 are given as defined.

Referring to (4.6),

λ∗

2ω
=

E0(xT∧τ) − λ0x0

Θ
. (4.15)

Substituting (4.15) back into (4.11), the relationship between Var0(xT∧τ) and E0(xT∧τ) can be
shown as follows:

Var0(xT∧τ) =
(1 −Θ)

Θ

[

E0(xT∧τ) − λ0x0

1 −Θ

]2

+

(

ω0 −
λ20

1 −Θ

)

x2
0. (4.16)

Therefore, the efficient frontier of the original problem P(ω) is given by (4.16) for

E0(xT∧τ) ∈
[

λ0x0

1 −Θ
,+∞

)

. (4.17)

From the efficient frontier (4.16) of the optimal dynamic mean-variance portfolio
selection problem with an uncertain exit time, when returns are serially correlated, we can
obtain the trade-off between the return and the risk when investor exits from market. Since
all of the parameters Θ, λ0, and ω0 are functions of pt and Rt for t = 0, 1, . . . , T − 1, both
the exiting time and the correlations of the risky asset returns have impacts on the optimal
strategy and the efficient frontier, and this is quite different from the cases with deterministic
terminal time, and the risky asset returns at different periods are independent.

Remark 4.3. In Xu and Li [11], a multi-period portfolio selection problem with serial
correlation and a certain exit time is studied. If p1 = p2 = · · · = pT−1 = 0, pT = 1, and
r0t = r, t = 0, 1, . . . , T − 1 in our model, our result is exactly the same as the one of Xu and Li
[11]. So we generalize the model and results of Xu and Li [11] to the case with an uncertain
investment horizon.

5. Extension to the Situation with Multiple Risky Assets

The results in the previous sections can be extended to the general situation with multiple
risky assets. Suppose that there are n risky assets and one riskless asset with period-t + 1
returns rit (i = 1, 2, . . . , n) and r0t , respectively. Define eit = rit − r0t , et = (e1t , e

2
t , . . . , e

n
t )

′ and
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Ut = (u1
t , u

2
t , . . . , u

n
t )

′ for i = 1, 2, . . . , n and t = 0, 1, . . . , T − 1, where ui
t is the amount invested

in the ith risky asset at time t. In this case, the wealth dynamics is described by

xt+1 = r0t xt + e′tUt, t = 0, 1, . . . , T − 1. (5.1)

Accordingly, the multi-period mean-variance portfolio selection problem with an
uncertain exit time and serial correlations can be formulated as

̂P(ω)

⎧

⎨

⎩

max
U

E0(xT∧τ) −ωVar0(xT∧τ)

s.t. xt+1 = r0t xt + e′tUt, t = 0, 1, . . . , T − 1,
(5.2)

where ω ≥ 0 is a pregiven parameter, representing the degree of the investor’s risk aversion.
With the same method as in the previous section, we can show the following theorem.

Theorem 5.1. For problem ̂P(ω), the optimal investment strategy is given by

U∗
t =

1 + 2ω˜λ0x0

2ω
(

1 − ˜Θ
)E−1

t

(

ω̃t+1ete
′
t

)

Et

(

˜λt+1et
)

− E−1
t

(

ω̃t+1ete
′
t
)

Et(ω̃t+1et)r0t xt, (5.3)

for t = 0, 1, . . . , T − 1, and the efficient frontier is given by

Var0(xT∧τ) =

(

1 − ˜Θ
)

˜Θ

[

E0(xT∧τ) −
˜λ0x0

1 − ˜Θ

]2

+

(

ω̃0 −
˜λ20

1 − ˜Θ

)

x2
0,

(5.4)

where

˜θt = Et

(

˜λt+1e
′
t

)

E−1
t

(

ω̃t+1ete
′
t

)

Et

(

˜λt+1et
)

, ˜Θ =
T
∑

t=1

E0

(

˜θt−1
)

,

ω̃t = pt +
(

r0t

)2[
Et(ω̃t+1) − Et

(

ω̃t+1e
′
t

)

E−1
t

(

ω̃t+1ete
′
t

)

Et(ω̃t+1et)
]

, ω̃T = pT ,

˜λt = pt + r0t

[

Et

(

˜λt+1
)

− Et

(

˜λt+1e
′
t

)

E−1
t

(

ω̃t+1ete
′
t

)

Et(ω̃t+1et)
]

, ˜λT = pT ,

(5.5)

for t = 0, 1, . . . , T − 1.

Remark 5.2. When the returns rates of the n risky assets are statistically independent, our
results reduce to the results of Guo and Hu [3]. That is, we extend the model and results of
Guo and Hu [3] to the case with serially correlate returns.

6. Numerical Example

In the previous sections, we derive the optimal strategies and the mean-variance efficient
frontiers of two optimal portfolio selection problems with serial correlations and uncertain
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Figure 1: Efficient frontiers with different probability distributions of exit time.

exit time. In this section, we provide a numerical example to demonstrate the impacts of the
uncertainty of exit time and the serial correlations of returns on the efficient frontier. In the
example, we only consider one risky asset for simplicity and assume that its return rate is
subject to AR(1) progress

rt = μ + ρ
(

rt−1 − μ
)

+
√

1 − ρ2σyt, (6.1)

where μ is the unconditional expectation of rt, ρ ∈ (−1, 1) is the first-order autocorrelation
coefficient, σ is the unconditional standard deviation of rt, yt is a random variable with
standard normal distribution, and yt is independent of ys (s < t).

To examine the impact of the uncertainty of exit time on the efficient frontier clearly,
we compare the efficient frontiers under three different probability distributions of uncertain
exit time t = T ∧ τ : P1 = (p0, p1, p2, p3) = (0, 0.09, 0.2, 0.71), P2 = (p0, p1, p2, p3) = (0, 0, 0.5, 0.5),
and P3 = (p0, p1, p2, p3) = (0, 0.2, 0.1, 0.7). The remaining parameters are set as μ = 0.03, b = 0.5,
σ = 0.02, x0 = 1, and T = 3. Figure 1 implies when the investor exits from market later, the
investor enjoys more expected wealth returns at the same level of risk than the one terminates
the investment earlier.

Furthermore, to test the impact of the correlation coefficient on the efficient frontier,
we compare the efficient frontiers under three different settings of correlation coefficient ρ:
ρ1 = 0.1, ρ2 = 0.4, and ρ3 = 0.7. The other parameters are given as μ = 0.02, σ = 0.02,
x0 = 1, and T = 3. It is obvious from Figure 2 that the investor who takes the risky asset with
larger correlation coefficient will suffer less risk than the one with less correlate risky asset to
achieve the same expected wealth return.
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Figure 2: Efficient frontiers with different values of correlation coefficient.

7. Conclusion

In this paper, we consider an optimal portfolio selection problem under multi-period setting
and mean-variance framework for an investor, who does not know with certainty when
she/he will exit the market in which the capital returns are serially correlated. The problem
is much more complicated than the case with deterministic exit time and/or with serially
noncorrelate assets returns. By applying the dynamic programming approach and the
embedding technique of Li and Ng [2], both the optimal strategy and the efficient frontier
of the problem are derived explicitly. Our results include, as special cases, the ones of Li and
Ng [2], Guo and Hu [3], and Xu and Li [11]. In addition, a numerical example with AR (1)
return process is presented. It shows that both the serial correlations of assets returns and
the uncertainty of exit time have significant impacts on the optimal strategy and the efficient
frontier.
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