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This paper studies the robustH∞ filtering problem of nonlinear stochastic systems with time delay
appearing in state equation, measurement, and controlled output, where the state is governed
by a stochastic Itô-type equation. Based on a nonlinear stochastic bounded real lemma and an
exponential estimate formula, an exponential (asymptotic) mean square H∞ filtering design of
nonlinear stochastic time-delay systems is presented via solving a Hamilton-Jacobi inequality.
As one corollary, for linear stochastic time-delay systems, a Luenberger-type filter is obtained by
solving a linear matrix inequality. Two simulation examples are finally given to show the effective-
ness of our results.

1. Introduction

Robust H∞ filtering has been studied extensively for more than two decades, which is
very useful in signal processing and engineering applications; see [1–7] and the references
therein. Compared with classical Kalman filter, one does not need to know the exact statistic
information about the external disturbance in the H∞ filtering design. H∞ filtering requires
one to design a filter such that the L2-gain from the external disturbance to the estimation
error is below a prescribed level γ > 0. Stochastic Itô modelling has become more and more
important in both theory and practical applications such as in mathematical finance and
population models [8]. In recent years, the study of stochastic H∞ filtering for the systems
governed by stochastic Itô-type equations has attracted a great deal of attention, for example,
[2, 5, 9]. References [2, 5] presented approaches to linear stochastic delay-free and time
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delayed H∞ filtering design via linear matrix inequalities (LMIs), respectively. Reference [9]
first solved the nonlinear stochastic delay-freeH∞ filtering problem by means of a stochastic
bounded real lemma derived in [10]. References [11, 12], respectively, solve the H∞ filtering
and control of nonlinear stochastic time delayed systems, where time delay only happens in
the state equation.

It is well known that time delay phenomena are often encountered in many
engineering applications such as network control and communication, and a study of time
delay systems has been a popular research topic for a long time [13]. Stochastic time
delay systems are ideal models in mathematical finance and population growth theory [8].
Recently, [14, 15] investigated the Kalman filter problem of linear stochastic time delay
systems. Reference [5] presented an approach to stochastic H∞ filtering design for linear
uncertain time delay systems via LMIs. Reference [11] first studied theH∞ design issue for a
class of nonlinear stochastic time delayed systems under a stronger assumption (assumption
2.1 of [11]), for which only the state equation contains a time delay. Because, in practice,
time delay often exists not only in a state equation but also in a measurement equation and a
controlled output, it is necessary to study such a nonlinear stochastic H∞ filtering design.

To our best knowledge, few works on H∞ filtering have been reported for general
nonlinear stochastic time delay systems. The aim of this paper is to study the robust H∞
filtering design for nonlinear stochastic state-delayed systems, where the time delay appears
in the state equation, measurement equation, and controlled output. Similar to Proposition 1
of [9], a nonlinear stochastic bounded real lemma for time delay systems is obtained, and then
an exponential estimate formula is also presented. Finally, based on our developed nonlinear
stochastic bounded real lemma and exponential estimate formula, we present a sufficient
condition for exponential and asymptotic mean square H∞ filtering synthesis of nonlinear
stochastic time delay systems via solving a constrained Hamilton-Jacobi inequality (HJI),
respectively. Compared with the delay-freeH∞ filtering [9], the current HJI depends on more
variables due to the appearance of time delays. A key procedure to derive an exponential
mean squareH∞ filtering is to develop an exponential estimate formula (Lemma 2.3), which
is very useful in its own right. In particular, in the case of linear time-invariant-delayed
systems, if a quadratic Lyapunov function is chosen, then the HJI reduces to an LMI, which
may be easily solved by the existing Matlab control toolbox [16].

For convenience, we adopt the following traditional notations: A′: transpose of the
matrix A; A ≥ 0 (A > 0): A is a positive semidefinite (positive definite) matrix; I: identity
matrix. ‖x‖: Euclidean 2-norm of n-dimensional real vector x; L2

F(R+,Rl): the space of
nonanticipative stochastic processes y(t) with respect to filtration Ft satisfying ‖y(t)‖2L2

:=
E
∫∞
0 ‖y(t)‖2dt < ∞; C2,1(U, T): class of functions V (x, t) twice continuously differentiable

with respect to x ∈ U and once continuously differentiable with respect to t ∈ T except
possibly at x = 0; Vt(x, t) := (∂V (x, t))/∂t; Vx(x, t) := (∂V (x, t)/∂xi)n×1; Vxx(x, t) :=
(∂2V (x, t)/∂xi∂xj)n×n; C([−τ, 0],Rn): a vector space of all continuous Rn-valued functions
defined on [−τ, 0].

2. Preliminaries

Consider the following nonlinear stochastic time delay system:

dx(t) =
(
f(x(t), x(t − τ), t) + g(x(t), x(t − τ), t)v(t)

)
dt

+ (h(x(t), x(t − τ), t) + s(x(t), x(t − τ), t)v(t))dW(t),
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y(t) = l(x(t), x(t − τ), t) + k(x(t), x(t − τ), t)v(t),

z(t) = m(x(t), x(t − τ), t),

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn),

(2.1)

where x(t) ∈ Rn is called the system state, y(t) ∈ Rr is the measurement, W(·) is a standard
one-dimensional Wiener process defined on a complete filtered space (Ω,F, {Ft}t∈R+

,P)with
a filtration {Ft}t∈R+

satisfying usual conditions, z(t) ∈ Rm is the state combination to be
estimated, v ∈ L2

F(R+,Rnv) stands for the exogenous disturbance signal, which is a square
integrable, Ft-adapted stochastic process, and Cb

F0
([−τ, 0];Rn) denotes all F0-measurable

bounded C([−τ, 0], Rn)-valued random variable ξ(s) with s ∈ [−τ, 0]. We assume that f, h :
Rn×Rn×R+ �→ Rn, g, s : Rn×Rn×R+ �→ Rn×nv , l : Rn×Rn×R+ �→ Rr , k : Rn×Rn×R+ �→ Rr×nv ,
and m : Rn × Rn × R+ �→ Rnz satisfy the local Lipschitz condition and the linear growth
condition, which guarantee that the system (2.1) admits a unique strong solution; see [8]. In
addition, suppose that f(0, 0, t) = h(0, 0, t) = l(0, 0, t) ≡ 0, so x ≡ 0 is an equilibrium point of
(2.1).

Since this paper deals with the infinite horizon stochastic H∞ filtering problem, it is
inevitably related to stochastic stability. Hence, we first present the following definition.

Definition 2.1. The nonlinear stochastic time delayed system

dx(t) = f(x(t), x(t − τ), t)dt + h(x(t), x(t − τ), t)dW(t),

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn),

(2.2)

is called exponentially mean square stable if there are positive constants A and α such that

E‖x(t)‖2 ≤ A
∥∥φ

∥
∥2

e−αt, (2.3)

where ‖φ‖2 = Emax−τ≤t≤0‖φ(t)‖2.
Associated with (2.1) and V : Rn × R+ �→ R+, we define an operator L1V : Rn × Rn ×

R+ �→ R as follows:

L1V
(
x, y, t

)
= Vt(x, t) + V ′

x(x, t)
[
f
(
x, y, t

)
+ g

(
x, y, t

)
v(t)

]

+
1
2
[
h
(
x, y, t

)
+ s

(
x, y, t

)
v(t)

]′Vxx(x, t)
[
h
(
x, y, t

)
+ s

(
x, y, t

)
v(t)

]
.

(2.4)

The following lemma is a generalized version of Proposition 1 in [9], which may be
viewed as a nonlinear stochastic bounded real lemma for time delayed systems.
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Lemma 2.2. Consider the following input-output system:

dx(t) =
(
f(x(t), x(t − τ), t) + g(x(t), x(t − τ), t)v(t)

)
dt

+ (h(x(t), x(t − τ), t) + s(x(t), x(t − τ), t)v(t))dW(t)

z(t) = m(x(t), x(t − τ), t), x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn).

, (2.5)

If there exists a positive definite Lyapunov function V (x, t) ∈ C2,1(Rn,R+) solving the following HJI:

Γ
(
x, y, t

)
:= Vt(x, t) + V ′

x(x, t)f
(
x, y, t

)

+
1
2
(
V ′
x(x, t)g

(
x, y, t

)
+ h′(x, y, t

)
Vxx(x, t)s

(
x, y, t

))

×(γ2I − s′
(
x, y, t

)
Vxx(x, t)s

(
x, y, t

))−1

×(g ′(x, y, t
)
Vx(x, t) + s′

(
x, y, t

)
Vxx(x, t)h

(
x, y, t

))

+
1
2
‖z(t)‖2 + 1

2
h′(x, y, t

)
Vxx(x, t)h

(
x, y, t

)
< 0

γ2I − s′
(
x, y, t

)
Vxx(x, t)s

(
x, y, t

)
> 0, ∀(x, y, t) ∈ Rn × Rn × R+,

V (0, 0) = 0

(2.6)

for some γ > 0, then the following inequality:

‖z(t)‖2L2
≤ γ2‖v(t)‖2L2

, ∀v ∈ L2
F(R+,Rnv), v /= 0, (2.7)

holds with initial state x(s) = 0, a.s., for all, s ∈ [−τ, 0].

Proof. See Appendix A.

Lemma 2.3. Consider the unforced system

dx(t) = f(x(t), x(t − τ), t)dt + h(x(t), x(t − τ), t)dW(t),

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn).

(2.8)

If there exists a positive definite Lyapunov function V (x, t) ∈ C2,1(Rn, [−τ,∞)), c1, c2, c3, c4 > 0with
c1c3 > c2c4 satisfying the following conditions:

(i) c1‖x‖2 ≤ V (x, t) ≤ c2‖x‖2, for all (x, t) ∈ Rn × [−τ,∞),

(ii) L1V (x, y, t)|v=0 ≤ −c3‖x‖2 + c4‖y‖2, for all t > 0,

then

E‖x(t)‖2 ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(c4c2/c1)τ + c2
c1

∥∥φ
∥∥2

e−(c3/c2)t, 0 ≤ t ≤ τ,

(c4c2/c1)τ + c2
c1

‖φ‖2e−((c3/c2)−(c4/c1))t, t > τ,

(2.9)

that is, (2.8) is exponentially mean square stable.

Proof. See Appendix B.
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In what follows, we construct the following filtering equation for the estimation of
z(t):

dx̂(t) = f̂(x̂(t), x̂(t − τ), t)dt + Ĝ(x̂(t), x̂(t − τ), t)y(t)dt

ẑ(t) = m̂(x̂(t), x̂(t − τ), t), x̂(0) = 0,
(2.10)

where f̂ , Ĝ, and m̂ that are to be determined are matrices of appropriate dimensions. One
may find that (2.10) is more general, which includes the following Luenberger-type filtering
as a special form:

dx̂(t) = f(x̂(t), x̂(t − τ), t)dt +G(x̂(t), x̂(t − τ), t)
(
y(t) − l(x̂(t), x̂(t − τ), t)

)
dt,

ẑ(t) = m(x̂(t), x̂(t − τ), t), x̂(0) = 0.
(2.11)

Set η(t) = [x′(t)x̂′(t)]′, and let

z̃(t) = z(t) − ẑ(t) = m(x(t), x(t − τ), t) − m̂(x̂(t), x̂(t − τ), t) (2.12)

denote the estimation error; then we get the following augmented system:

dη(t) =
(
fe
(
η(t)

)
+ ge

(
η(t)

)
v(t)

)
dt +

(
he

(
η(t)

)
+ se

(
η(t)

)
v(t)

)
dW(t),

z̃(t) = z(t) − ẑ(t) = m(x(t), x(t − τ), t) − m̂(x̂(t), x̂(t − τ), t),

η(t) =

[
φ(t)

0

]

, φ(t) ∈ Cb
F0
([−τ, 0];Rn), ∀t ∈ [−τ, 0],

(2.13)

where

fe
(
η(t)

)
=

[
f(x(t), x(t − τ), t)

f̂(x̂(t), x̂(t − τ), t) + Ĝ(x̂(t), x̂(t − τ), t)l(x(t), x(t − τ), t)

]

,

ge
(
η(t)

)
=

[
g(x(t), x(t − τ), t)

Ĝ(x̂(t), x̂(t − τ), t)k(x(t), x(t − τ), t)

]

,

he

(
η(t)

)
=

[
h(x(t), x(t − τ), t)

0

]

, se
(
η(t)

)
=

[
s(x(t), x(t − τ), t)

0

]

.

(2.14)

In Section 3, we let Lη denote the infinitesimal operator of system (2.13). According to
different requirements for internal stability, we are in a position to define various ofH∞ filters
as follows.

Definition 2.4 (exponential mean squareH∞ filtering). Find the matrices f̂ , Ĝ, and m̂ in (2.10),
such that
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(i) the equilibrium point η ≡ 0 of the augmented system (2.13) is exponentially mean
square stable in the case v = 0,

(ii) for a given disturbance attenuation level γ > 0, the following H∞ performance
holds for x(t) ≡ 0 on t ∈ [−τ, 0]:

‖z̃‖2L2
≤ γ2‖v‖2L2

, ∀v ∈ L2
F(R+,Rnv), v /= 0. (2.15)

Definition 2.5 (asymptotic mean squareH∞ filtering). If in (i) of Definition 2.4 the equilibrium
point η ≡ 0 of the augmented system (2.13) is asymptotically mean square stable, that is,

lim
t→∞

E
∥
∥η(t)

∥
∥2 = 0 (2.16)

and (2.15) holds, then (2.10) is called an asymptotic mean square H∞ filter.

3. Main Results

Our first main result is about exponential mean square H∞ filter.

Theorem 3.1. Suppose that there exists a positive Lyapunov function V (η, t) = V (x, x̂, t) ∈
C2,1(R2n × [−τ,∞)), c1, c2, c3, c4 > 0 with c1c3 > c2c4, such that

c1
(
‖x‖2 + ‖x̂‖2

)
≤ V (x, x̂, t) ≤ c2

(
‖x‖2 + ‖x̂‖2

)
, ∀(x, x̂, t) ∈ R2n × [−τ,∞),

−1
2
∥∥m(x, y, t) − m̂(x̂, ŷ, t)

∥∥2 ≤ −c3
(
‖x‖2 + ‖x̂‖2

)
+ c4

(∥∥y
∥∥2 +

∥∥ŷ
∥∥2

)
, ∀t > 0.

(3.1)

For given disturbance attenuation level γ > 0, if V (η, t) solves the following HJI:

Γ
(
x, y, x̂, ŷ

)
:= Vt + V ′

xf
(
x, y, t

)
+ V ′

x̂

(
f̂
(
x̂, ŷ, t

)
+ Ĝ

(
x̂, ŷ, t

)
l
(
x, y, t

))

+
1
2
Θ′(x, x̂, y, ŷ, t

)(
γ2I − s′

(
x, y, t

)
Vxxs

(
x, y, t

))−1Θ
(
x, x̂, y, ŷ, t

)

+
1
2
∥∥m

(
x, y, t

) − m̂
(
x̂, ŷ, t

)∥∥2 +
1
2
h′(x, y, t

)
Vxxh

(
x, y, t

)
< 0,

γ2I − s′
(
x, y, t

)
Vxxs

(
x, y, t

)
> 0, ∀(x, y, x̂, ŷ, t) ∈ Rn × Rn × Rn × Rn × R+,

V (0, 0) = 0

(3.2)

for some matrices f̂ , Ĝ, and m̂ of suitable dimensions, then the exponential mean square H∞ filtering
is obtained by (2.10), where

Θ′(x, x̂, y, ŷ, t
)
= V ′

xg
(
x, y, t

)
+ V ′

x̂Ĝ
(
x̂, ŷ, t

)
k
(
x, y, t

)
+ h′(x, y, t

)
Vxxs

(
x, y, t

)
. (3.3)
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Proof of Theorem 3.1. In Lemma 2.2, we substitute V (x, x̂, t), z̃ = m(x, y, t) − m̂(x̂, ŷ, t),

fe =

[
f
(
x, y, t

)

f̂
(
x̂, ŷ, t

)
+ Ĝ

(
x̂, ŷ, t

)
l
(
x, y, t

)

]

, ge =

[
g
(
x, y, t

)

Ĝ
(
x̂, ŷ, t

)
k
(
x, y, t

)

]

,

he =

[
h
(
x, y, t

)

0

]

, se =

[
s
(
x, y, t

)

0

]

,

(3.4)

for V (x, t), z, f, g, h, and s, respectively; then, by a series of simple computations, (2.15) is
obtained.

Next, we show the augmented system (2.13) to be exponential mean square stable for
v ≡ 0. Set

Lv=0
η V (x, x̂, t) := Vt + V ′

ηfe +
1
2
h′
eVηηhe. (3.5)

By (3.2),

Lv=0
η V (x, x̂, t) < − 1

2
∥∥m(x, y, t) − m̂(x̂, ŷ, t)

∥∥2

− 1
2
Θ′(x, x̂, y, ŷ, t

)(
γ2I − s′

(
x, y, t

)
Vxxs

(
x, y, t

))−1
Θ
(
x, x̂, y, ŷ, t

)

≤ −1
2
∥∥m(x, y, t) − m̂(x̂, ŷ, t)

∥∥2

≤ − c3
(
‖x‖2 + ‖x̂‖2

)
+ c4

(∥∥y
∥∥2 +

∥∥ŷ
∥∥2

)
.

(3.6)

Applying Lemma 2.3, we know that (2.13) is internally stable in exponential mean square
sense. The proof of Theorem 3.1 is ended.

Inequality (3.2) is a constrained HJI, which is not easily tested in practice. However,
if in (2.1), s ≡ 0, that is, only the state depends on noise, then the constraint condition γ2I −
s′(x, y, t)Vxxs(x, y, t) > 0 holds automatically, and HJI (3.2) becomes an unconstrained one.

The following theorem is about asymptotic mean square H∞ filter, which is weaker
than the exponential mean square H∞ filter.

Theorem 3.2. Assume that V (η, t) ∈ C2,1(R2n,R+) has an infinitesimal upper limit, that is,

lim
‖η‖→∞

inf
t>0

V
(
η, t

)
= ∞. (3.7)

Additionally, one assume that V (η, t) > c‖η‖2 for some c > 0. If V (η, t) solves HJI (3.2), then (2.10)
is an asymptotic mean square H∞ filter.

Proof. Obviously, it only needs to show that (2.13) is asymptotically mean square stable while
v = 0. From (3.6), Lv=0

η V (x, x̂, t) < 0, so (2.13) is globally asymptotically stable in probability
1 according to the result of [17].
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By Itô’s formula and the property of stochastic integration, we have

EV
(
η(t), t

)
= EV

(
η(0), 0

)
+ E

∫ t

0
LηV

(
η(s), s

)|v=0ds + E

∫ t

0
h′
e

(
η(s), s

)
Vη

(
η(s), s

)
dW(s)

= EV
(
η(0), 0

)
+ E

∫ t

0
LηV

(
η(s), s

)|v=0 ds

≤ EV
(
η(0), 0

) − 1
2
E

∫ t

0
‖m(x(s), x(s − τ), s) − m̂(x̂(s), x̂(s − τ), s)‖2ds

≤ EV
(
η(0), 0

)
< ∞.

(3.8)

Set F̃t = Ft ∪ σ(y(s), 0 ≤ s ≤ t); then (3.8) yields

E
[
V
(
η(t), t

) | F̃s

]
≤ V

(
η(s), s

)
a.s., (3.9)

which says that {V (η(t), t), F̃t, 0 ≤ s ≤ t} is a nonnegative supermartingale with respect
to {F̃t}t≥0. By Doob’s convergence theorem [18] and the fact that limt→∞η(t) = 0 a.s., it
immediately yields V (η(∞),∞) = limt→∞V (η(t), t) = 0 a.s. Moreover, limt→∞EV (η(t), t) =
EV (η(∞),∞) = EV (0,∞) = 0. Because V (η, t) ≥ c‖η‖2 for some c > 0, it follows that
limt→∞E‖η(t)‖2 = 0. This theorem is proved.

As one application of Theorem 3.2, we concentrate our attention on linear stochastic
time delay H∞ filtering design. Consider the following linear time-invariant stochastic time
delay system:

dx(t) = (A0x(t) +A1x(t − τ) + Bv(t))dt + (C0x(t) + C1x(t − τ) +Dv(t))dW(t),

y(t) = l0x(t) + l1x(t − τ) +Kv(t),

z(t) = m0x(t) +m1x(t − τ),

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn),

(3.10)

where, in (3.10), all coefficient matrices are assumed to be constant. Consider the following
Luenberger-type filtering equation:

dx̂(t) = A0x̂(t) +A1x̂(t − τ)dt +G
(
y(t) − l0x̂(t) − l1x̂(t − τ)

)
dt,

ẑ(t) = m0x̂(t) +m1x̂(t − τ), x̂(0) = 0,
(3.11)

with G a constant matrix to be determined later. In this case,

f̂(x̂(t), x̂(t − τ), t) = A0x̂(t) +A1x̂(t − τ) −G(l0x̂(t) + l1x̂(t − τ)), Ĝ = G. (3.12)
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Set

V (x, x̂, t) = x′(t)Px(t) +
∫ t

t−τ
x′(θ)P1x(θ)dθ + x̂′(t)Qx̂(t) +

∫ t

t−τ
x̂′(θ)Q1x̂(θ)dθ, (3.13)

where P > 0, P1 > 0,Q > 0, andQ1 > 0 are to be determined. Then by a series of computations,
we have from HJI (3.2) that

Vt = x′(t)P1x(t) − x′(t − τ)P1x(t − τ) + x̂′(t)Q1x̂(t) − x̂′(t − τ)Q1x̂(t − τ),

V ′
xf

(
x, y, t

)
=
[
x′ y′ x̂′ ŷ′]

⎡

⎢
⎢
⎢
⎢⎢
⎣

PA0 +A′
0P � 0 0

A′
1P 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢
⎢⎢
⎣

x

y

x̂

ŷ

⎤

⎥
⎥
⎥
⎥⎥
⎦
,

V ′
x̂Gl

(
x, y, t

)
=
[
x′ y′ x̂′ ŷ′]

⎡

⎢⎢⎢⎢⎢
⎣

0 0 � 0

0 0 � 0

QGl0 QGl1 0 0

0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

x

y

x̂

ŷ

⎤

⎥⎥⎥⎥⎥
⎦
,

V ′
x̂
f̂
(
x̂, ŷ, t

)
=
[
x′ y′ x̂′ ŷ′]

⎡

⎢⎢⎢⎢⎢
⎣

0 0 0 0

0 0 0 0

0 0 Q(A0 −Gl0) +
(
A0 − l′0G

′)Q �

0 0 (A1 −Gl1)′Q 0

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

x

y

x̂

ŷ

⎤

⎥⎥⎥⎥⎥
⎦
,

1
2
h′(x, y, t

)
V ′
xxh

(
x, y, t

)
=
[
x′ y′ x̂′ ŷ′]

⎡

⎢⎢⎢⎢⎢
⎣

C′
0PC0 � 0 0

C′
1PC0 C′

1PC1 0 0

0 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

x

y

x̂

ŷ

⎤

⎥⎥⎥⎥⎥
⎦
,

1
2
∥∥m(x, y, t) −m(x̂, ŷ, t)

∥∥2 =
[
x′ y′ x̂′ ŷ′]1

2

⎡

⎢⎢⎢⎢⎢
⎣

m′
0m0 � � �

m′
1m0 m′

1m1 � �

−m′
0m0 −m′

0m1 m′
0m0 �

−m′
1m0 −m′

1m1 m′
1m0 m′

1m1

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

x

y

x̂

ŷ

⎤

⎥⎥⎥⎥⎥
⎦
,

1
2
Θ′(x, x̂, y, ŷ, t

)(
γ2I − s′

(
x, y, t

)
Vxxs

(
x, y, t

))−1Θ
(
x, x̂, y, ŷ, t

)

=
[
x′ y′ x̂′ ŷ′]

⎡

⎢⎢⎢⎢⎢
⎣

C′
0PD + 2PB

C′
1PD

2QGK

0

⎤

⎥⎥⎥⎥⎥
⎦

1
2
[
γ2I − 2D′PD

]−1

⎡

⎢⎢⎢⎢⎢
⎣

C′
0PD + 2PB

C′
1PD

2QGK

0

⎤

⎥⎥⎥⎥⎥
⎦

′⎡

⎢⎢⎢⎢⎢
⎣

x

y

x̂

ŷ

⎤

⎥⎥⎥⎥⎥
⎦
,

(3.14)
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where � is derived by symmetry. Hence, HJI (3.2) is equivalent to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 � � �

A21 A22 � �

QGl0 − 1
2
m′

0m0 QGl1 − 1
2
m′

0m1 A33 �

−1
2
m′

1m0 −1
2
m′

1m1 (A1 −Gl1)
′Q +

1
2
m′

1m0
1
2
m′

1m1 −Q1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢⎢
⎢
⎢
⎢
⎣

C′
0PD + 2PB

C′
1PD

2QGK

0

⎤

⎥⎥
⎥
⎥
⎥
⎦

1
2
[
γ2I − 2D′PD

]−1

⎡

⎢⎢
⎢
⎢
⎢
⎣

C′
0PD + 2PB

C′
1PD

2QGK

0

⎤

⎥⎥
⎥
⎥
⎥
⎦

′

< 0,

γ2I − 2D′PD > 0

(3.15)

with

A11 = PA0 +A′
0P + C′

0PC0 + P1 +
1
2
m′

0m0,

A21 = A′
1P + C′

1PC0 +
1
2
m′

1m0, A22 = −P1 + C′
1PC1 +

1
2
m′

1m1,

A33 = Q(A0 −Gl0) + (A0 −Gl0)′Q +Q1 +
1
2
m′

0m0.

(3.16)

By Schur’s complement, (3.15) are equivalent to

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

A11 � � � �

A21 A22 � � �

G1l0 − 1
2
m′

0m0 G1l1 − 1
2
m′

0m1 A33 � �

−1
2
m′

1m0 −1
2
m′

1m1 A1Q − l′1G
′
1 +

1
2
m′

1m0
1
2
m′

1m1 −Q1 0

2B′P +D′PC0 D′PC1 2K′G′
1 0 −2γ2I + 4D′PD

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0

(3.17)

with QG = G1. Obviously, (3.17) is an LMI on P, P1, Q,Q1, G1. By Theorem 3.2, we immedi-
ately obtain the following corollary.

Corollary 3.3. If (3.17) is feasible with solutions P > 0, P1 > 0, Q > 0, Q1 > 0, and G1, then (3.11)
is an asymptotic mean square H∞ filter with the filtering gain G = Q−1G1.
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Figure 1: Simulation results for Example 4.1.

4. Illustrative Examples

Below, we give two examples to illustrate the validity of our developed theory in the above
section.

Example 4.1 (one-dimensional exponential mean square H∞ filtering). Suppose that a
stochastic signal z is generated by the following nonlinear stochastic system driven by a
standard Wiener process and corrupted by a stochastic external disturbance v, where the
power of v is 0.05. We construct an H∞ filter to estimate z from the measurement signal y:

dx(t) =
[(

−10x(t) − x(t)x2(t − τ)
)
+ x(t − τ)v(t)

]
dt + x(t)dW(t)

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];R),

y(t) = −25
2
x(t) − 2x(t)x(t − τ) + v(t),

z(t) = 5x(t).

(4.1)

For given disturbance attenuation level γ = 1, according to Theorem 3.1, in order to determine
the filtering parameters f̂ , Ĝ, and m̂, we must solve HJI (3.2). Set V (x, x̂) = x2 + x̂2, m̂ = −5x̂;
then (3.1) hold obviously. In addition, we can easily test that Γ(x, y, x̂, ŷ) = −6.5x2−13.5x̂2 < 0
when we take f̂ = −14x̂, Ĝ = 1, m̂ = 5x̂. So the exponential mean square H∞ filter is given as

dx̂(t) = −14x̂(t)dt + y(t)dt, ẑ(t) = −5x̂(t). (4.2)

Because there may be more than one triple (f̂ , Ĝ, m̂) solving HJI (3.2), H∞ filtering is in
general not unique. The simulation result can be seen in Figures 1(a) and 1(b).
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Figure 2: Simulation results for Example 4.2.

Example 4.2 (linear mean square H∞ filtering). In (3.10), we take the power of v to be 0.01,
and

A0 =

[−2.6 −0.2
0.4 −1.8

]

, A1 =

[−1.8 0.2

−0.7 −0.9

]

, B =

[
0.7

0.94

]

,

C0 =

[−0.8 0

0 −0.9

]

, C1 =

[−0.3 0.4

0.21 −1.05

]

, D =

[
0.2

0.3

]

,

l0 =
[
1.3 0.8

]
, l1 =

[
1.2 3

]
, K = 0.5,

m0 =
[−0.11 0.3

]
, m1 =

[
0.28 0.63

]
.

(4.3)

Obviously, substituting the above data into (3.17)with γ = 2 and solving LMI (3.17), we have

P =

[
1.6095 −0.0293
−0.0293 0.7909

]

> 0, P1 =

[
3.8622 −0.5054
−0.5054 1.6277

]

> 0,

Q =

[
1.0009 0.0275

0.0275 1.3260

]

> 0, Q1 =

[
3.6487 0.1333

0.1333 3.6199

]

> 0,

G1 =

[−0.0772
0.0235

]

, G = Q−1G1 =

[−0.0777
0.0194

]

.

(4.4)

The simulation result can be found in Figures 2(a) and 2(b).
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5. Conclusions

This paper presents an approach to the design ofH∞ filtering for general nonlinear stochastic
time delay systems via solving HJI (3.2). Although it is difficult to solve the general HJI (3.2),
under some special cases such as linear time delay systems, HJI (3.2) reduces to LMIs, which
can be easily solved. How to solve HJI (3.2) is a very valuable research topic, which deserves
further study. In addition, in order to avoid solving HJI (3.2), a possible scheme is to adopt a
fuzzy linearized method for the original system (2.1) as done in [19].

Appendices

A. Proof of Lemma 2.2

As done in [9], applying the completing squares technique and considering (2.6), it is easy to
obtain

L1V
(
x, y, t

) ≤ 1
2
γ2v′(t)v(t) − 1

2
z′(t)z(t). (A.1)

In addition, by Itô’s formula, for any T > 0, we have

EV (x(T), T) = EV (x(0), 0) + E

∫T

0
dV (x(s), s)

= EV (x(0), 0) + E

∫T

0
LV (x(t), t)dt

= EV (x(0), 0) + E

∫T

0
L1V (x(t), x(t − τ, t))dt

≤ EV (x(0), 0) +
1
2
E

∫T

0

(
γ2‖v(t)‖2 − ‖z(t)‖2

)
dt,

(A.2)

where, in (A.2), L is the so-called infinitesimal operator of (2.5), which is defined by

LV (x(t), t) = Vt(x(t), t) + V ′
x(x(t), t)

[
f(x(t), x(t − τ), t) + g(x(t), x(t − τ), t)v(t)

]

+
1
2
[h(x(t), x(t − τ), t) + s(x(t), x(t − τ), t)v(t)]′Vxx(x(t), t)

· [h(x(t), x(t − τ), t) + s(x(t), x(t − τ), t)v(t)].

(A.3)

In view of V being positive and V (0, 0) = 0, it follows that for the zero initial condition
x(s) ≡ 0, for all s ∈ [−τ, 0],

E

∫T

0
‖z(t)‖2dt ≤ E

∫T

0
‖v(t)‖2dt, (A.4)

which proves Lemma 2.2.
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B. Proof of Lemma 2.3

By (A.2), we know that, for any t > 0,

EV (x(t), t) − EV (x(0), 0) =
∫ t

0
EL1V (x(s), x(s − τ), s)|v=0ds. (B.1)

By given conditions (i) and (ii), (B.1) yields

EV (x(t), t) − EV (x(0), 0) ≤ −c3
∫ t

0
E‖x(s)‖2ds + c4

∫ t

0
E‖x(s − τ)‖2ds

≤ −c3
c2

∫ t

0
EV (x(s), s)ds +

c4
c1

∫ t

0
EV (x(s − τ), s − τ)ds.

(B.2)

When 0 ≤ t ≤ τ , we have

EV (x(t), t) ≤
(
c4c2
c1

τ + c2

)
‖φ‖2 − c3

c2

∫ t

0
EV (x(s), s)ds. (B.3)

Applying Gronwall’s inequality, it follows that EV (x(t), t) ≤ ((c4c2/c1)τ + c2)‖φ‖2e−(c3/c2)t.
Again, using condition (i),

E‖x(t)‖2 ≤ ((c4c2/c1)τ + c2)
c1

∥∥φ
∥∥2

e−(c3/c2)t. (B.4)

When t > τ > 0, letting μ = s − τ , (B.2) yields

EV (x(t), t) ≤ c2
∥∥φ

∥∥2 − c3
c2

∫ t

0
EV (x(s), s)ds +

c4
c1

∫ t−τ

−τ
EV

(
x
(
μ
)
, μ

)
dtμ

≤ c2
∥∥φ

∥∥2 − c3
c2

∫ t

0
EV (x(s), s)ds

+
c4
c1

∫0

−τ
EV

(
x
(
μ
)
, μ

)
dμ +

c4
c1

∫ t

0
EV

(
x
(
μ
)
, μ

)
dμ

=
(
c4c2
c1

τ + c2

)∥∥φ
∥∥2 −

(
c3
c2

− c4
c1

)∫ t

0
EV (x(s), s)ds.

(B.5)

Repeating the same procedure as above, we have

E‖x(t)‖2 ≤ (c4c2/c1)τ + c2
c1

∥∥φ
∥∥2

e−((c3/c2)−(c4/c1))t. (B.6)

Lemma 2.3 is hence proved.
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