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The monitoring of a multivariate process with the use of multivariate statistical process control
(MSPC) charts has received considerable attention. However, in practice, the use of MSPC chart
typically encounters a difficulty. This difficult involves which quality variable or which set of the
quality variables is responsible for the generation of the signal. This study proposes a hybrid
scheme which is composed of independent component analysis (ICA) and support vector machine
(SVM) to determine the fault quality variables when a step-change disturbance existed in a multi-
variate process. The proposed hybrid ICA-SVM scheme initially applies ICA to the Hotelling T2
MSPC chart to generate independent components (ICs). The hidden information of the fault qua-
lity variables can be identified in these ICs. The ICs are then served as the input variables of
the classifier SVM for performing the classification process. The performance of various process
designs is investigated and compared with the typical classification method. Using the proposed
approach, the fault quality variables for a multivariate process can be accurately and reliably deter-
mined.

1. Introduction

In recent years, considerable concern has arisen over the multivariate statistical process
control (MSPC) charts in monitoring a multivariate process [1-6]. The MSPC chart is one of
the most effective techniques to detect the occurrence of a multivariate process disturbance.
An out-of-control signal implies that disturbances have been occurred in the process. When
a signal is triggered by the MSPC chart, the process personnel should begin to search for the
root causes of the underlying disturbance. Once the root causes have been determined, the
process personnel would significantly decrease the effects of the disturbance and then bring
the underlying process back in a state of statistical control.
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When the root causes have been determined, the necessary remedial actions can be
properly taken in order to compensate for the effects of the underlying disturbance. Also,
the identification and fixing of the root causes would mainly depend on the accurate iden-
tification of the quality variables at fault. As a consequence, the identification of the quality
variables at fault in a multivariate process is a very important research issue.

However, the use of the MSPC charts typically encounters a major problem in the
interpretation of the signal. Although the MSPC chart’s signal will indicate that the under-
lying process is out of control, the quality variables at fault are very difficult to determine. The
degree of difficulty increases when the number of quality variables (p) in the multivariate
process increases. Typically, there are 2p — 1 possible sets of quality variable at fault in an out-
of-control multivariate process which has p quality variables. For example, there are 31 pos-
sible sets of quality variables at fault in a multivariate process with 5 quality variables. When
a MSPC signal is triggered, it is not straightforward to determine which one of the 31 possible
combinations is responsible for this signal.

Runger et al. [1] introduced a decomposition method to overcome this problem. They
computed an approximate chi-square statistic to determine which of the monitored quality
variables invoked the MSPC signal. However, their method has some limitations in certain
situations [2]. Specifically, their approach may not be able to offer an accurate identification
rate (AIR) when a small magnitude of process disturbance exists in a multivariate process.
Some classification techniques are therefore developed to overcome the drawback of their
approach [2, 3]. Shao and Hsu [2] used the Artificial Neural Networks (ANNSs) and support
vector machine (SVM) approaches to determine the quality variables at fault in the case
of process mean shifts. C. S. Cheng and H. P. Cheng [3] also studied the ANN and SVM
techniques to determine the quality variables at fault in the case of process variance shifts.

Huang et al. [4] demonstrated that performance of hierarchical support vector
machine technique is better than the traditional SVM. Also, Shao et al. [5] proposed decom-
position schemes and developed useful statistics to estimate the quality variables at fault
in the case of variance shifts that have occurred in a multivariate process. However, in their
approach, the sample size needed was very large, which may be different from what is
encountered in practice.

Many studies on the utilization of one-shot or one-step classifiers” approach have been
conducted [1-4, 6]. However, very little is known about the hybrid scheme for determining
the quality variables at fault in a manufacturing process [7, 8]. In this paper, we present the
use of a hybrid mechanism, which integrates independent component analysis (ICA) and
SVM as processing methods to improve the results in determining the quality variables at
fault in an out-of-control multivariate process. The basic concept of the proposed hybrid
approach is that the most useful information to determine the quality variables at fault may be
embedded in the monitor statistics, for example, the Hotelling T? statistics in the Hotelling T?
control chart. We could enhance the AIR if we decompose the monitor statistics and input the
decomposed factors to the classifiers.

Due to its frequent use in real applications [2, 9, 10], this study uses the Hotelling T2
control chart to detect the process mean shifts in a multivariate process. In addition, since the
ICA has been reported to have the capability of distinguishability [11-19], this study uses the
ICA as the first-step technique to extract the independent components (ICs) from Hotelling T?
statistics. The hidden useful information of the quality variables at fault would be embedded
in these ICs. In the second step of classification, those ICs are then used as the input variables
of the classifiers. This study considers the SVM as a classifier for the reason of its great poten-
tial and superior performance in practical applications [20-27].
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This study is organized as follows. Section 2 discusses the individual components of
the proposed hybrid mechanism. Section 3 addresses the appropriate models for determining
the quality variables at fault when the process mean shifts are introduced in a multivariate
process. In this section, the various experimental settings and the simulation results are also
discussed. The final section summarizes the research findings and presents our conclusions.

2. Methodologies

There are two components in our proposed hybrid scheme, and they include independent
component analysis and the support vector machine. The following section addresses the
applications and the use of these two techniques.

2.1. Independent Component Analysis

The present study employs ICA to enhance the accurate identification rate (AIR) of the pro-
posed hybrid scheme. There are some ICA applications for process monitoring. Lu et al. [11]
successfully combined the ICA and SVM to identify the control chart patterns. Kano et al.
[12] applied the ICs, instead of the original measurements, to monitor a process. In their
study, a set of devised statistical process control charts have been developed effectively
for each IC. Lee et al. [13] used the utilization of kernel density estimation to define the
control limits of ICs that do not satisfy Gaussian distribution. In order to monitor the batch
processes which combine independent component analysis and kernel estimation, Lee et al.
[14] extended their original method to multiway ICA. Xia and Howell [15] developed a
spectral ICA approach to transform the process measurements from the time domain to the
frequency domain and to identify major oscillations.

LetX = [x1,x2,-.., xm]T be a matrix of size mxn, m < n, consisting of observed mixture
signals x; of size 1 xn,i=1,2,...,m. In the basic ICA model, the matrix X can be modeled as
follows:

X=AS=> as;, (2.1)
i=1

where a; is the ith column of the m xm unknown mixing matrix A; s; is the ith row of the mxn
source matrix S. The vectors s; are latent source signals that cannot be directly observed from
the observed mixture signals x;. The ICA model aims at finding an m x m demixing matrix B
such that

Y = [yi] = BX = [biX], (2.2)

where y; is the ith row of the matrix Y, i = 1,2,...,m. The vectors y; must be as statistically
independent as possible and are called independent components (ICs). ICs are used to esti-
mate the latent source signals s;. The vector b; in (2.2) is the ith row of the demixing matrix
B,i =1,2,...,m. It is used to filter the observed signals X to generate the corresponding
independent component y;, thatis, y; =b;X,i=1,2,...,m.

The ICA modeling is formulated as an optimization problem by setting up the measure
of the independence of ICs as an objective function and using some optimization techniques
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for solving the demixing matrix B [28, 29]. The ICs with non-Gaussian distributions imply
the statistical independence [28, 29], and the non-Gaussianity of the ICs can be measured by
the negentropy [28]:

J(y) = H(ygauss) = H(y), (2.3)

where ygauss is @ Gaussian random vector having the same covariance matrix as y. H is the
entropy of a random vector y with density p(y) defined as H(y) = — [ p(y) log p(y)dy.

The negentropy is always nonnegative and is zero if and only if y has a Gaussian
distribution. Since the problem in using negentropy is computationally very difficult, an
approximation of negentropy is proposed [28] as follows:

J(y) = [E{G(y)} - E{G(®)}]*, (2.4)

where v is a Gaussian variable of zero mean and unit variance, and y is a random variable
with zero mean and unit variance. G is a nonquadratic function and is given by G(y) =
log(cosh y) in this study. The FastICA algorithm proposed by [28] is adopted in this paper to
solve for the demixing matrix W. Two preprocessing steps are common in the ICA modeling,
centering and whitening [28]. Firstly, the input matrix X is centered by subtracting the row
means of the input matrix, thatis, x; < (x;—E(x;)). The matrix X with zero mean is then passed
through the whitening matrix V to remove the second-order statistic of the input matrix, that
is, Z = VX. The whitening matrix V is twice the inverse square root of the covariance matrix
of the input matrix, that is, V = 2(Cx))_(1/ 2 where Cx = E (xxT) is the covariance matrix of
X. The rows of the whitened input matrix Z, denoted by z, are uncorrelated and have unit
variance, that is, E(zz") = I In this study, it is assumed that the training and testing process
datasets are centered and whitened.

2.2, Support Vector Machine

The use of SVM algorithm can be described as follows. Let {(x;i, yi) }f.\zj 1 Xi € R%,y; € {-1,1} be
the training set with input vectors and labels. Here, N is the number of sample observations
and d is the dimension of each observation, y; is known target. The algorithm is to seek the
hyperplane w - x; + g = 0, where w is the vector of hyperplane and g is a bias term, to separate
the data from two classes with maximal margin width 2/ [wl|%>, and all the points under the
boundary are named support vector. In order to obtain the optimal hyperplane, the SVM was
used to solve the following optimization problem [30]:

1
Min  ®(x) = 5[]’
(2.5)
s.t. yi<wa,-+b>21, i=1,2,...,N.

It is difficult to solve (2.5), and we need to transform the optimization problem to
be dual problem by Lagrange method. The value of a in the Lagrange method must be
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nonnegative real coefficients. Equation (2.5) is transformed into the following constrained
form [30]:

T
D, WYX X
i=1j=1

NI =

N
Max ®@(w,q, ¢ a,p) = Zai -
i1

N 2.6
s.t. Z ajy; =0 (26)
j=1

0<a; £C, i=1,2,...,N.

In (2.6), C is the penalty factor and determines the degree of penalty assigned to an error.
It can be viewed as a tuning parameter which can be used to control the tradeoff between
maximizing the margin and the classification error.

In general, it could not find the linear separate hyperplane in all application data. For
problems that cannot be linearly separated in the input space, the SVM uses the kernel
method to transform the original input space into a high-dimensional feature space where an
optimal linear separating hyperplane can be found. The common kernel function is linear,
polynomial, radial basis function (RBF), and sigmoid. In this study, we used multiclass SVM
method proposed by Hsu and Lin [31].

3. The Proposed Approach and the Example
3.1. The ICA-SVM Scheme

This study integrates ICA and SVM for determining the quality variables at fault of an out-
of-control multivariate process. In the training phase, the aim of the proposed scheme is to
obtain the proper parameter setting for the SVM model. Since the RBF kernel function is
adopted in this study, the performance of SVM is primarily affected by the setting of para-
meters C and y. There are no general rules for the choice of those two parameters. This study
uses the grid search proposed by Hsu et al. [32] for these two parameters setting. The trained
SVM model with proper parameter setting is preserved and employed in the testing phase.

The proposed model first collects two sets of Hotelling T? statistics from an out-of-
control process. The ICA model is used to generate the two estimated ICs from the observed
Hotelling T? statistics. Subsequently, the proposed approach considers those two ICs and 3
averaged quality variables, 4 averaged quality variables, and 5 averaged quality variables as
the inputs for SVM in the case of processes with 3 quality characteristics, 4 quality charac-
teristics, and 5 quality characteristics, respectively.

3.2. The Simulated Example

This study employs a simulated example to demonstrate the use of our proposed approach.
In our simulation, we assume that a multivariate process is initially in control, and the sample
observations come from a multivariate normal distribution with known mean vector y, and
covariance matrix Zy. This study assumes that a disturbance has intruded into the underlying
process at time £. It results in a mean vector change which is shifted from p, to p,.
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Figure 1: The 700 data vectors (i.e., X1, X,, and Yg) for 7 combinations of possible fault sets, (1,0,0), (0,1,0),
(0,0,1), (1,1,0), (1,0,1), (0,1,1), and (1,1,1), in the cases of p =0, p = 0.6, and p = 0.9.

This study applies Hotelling T? control chart to monitor a multivariate process in the
cases of 3, 4, and 5 quality characteristics. For each type of process, this study considers the
following types of correlation, p, between any two quality variables: (1) no correlation (i.e.,
p = 0), (2) moderate correlation (i.e., p = 0.6), and (3) high correlation (i.e., p = 0.9). Now,
consider a case of out-of-control multivariate normal process with 3 quality characteristics.
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Figure 2: The corresponding Hotelling T statistics for the data sets in Figure 1.

Since the process has 3 quality characteristics (i.e., p = 3), the possible sets of quality variables
at fault would be 2p — 1 = 7. In our study, we use the following notations: (1,0,0), (0,1,0),
(0,0,1), (1,1,0), (1,0,1), (0,1,1), and (1,1,1) to represent the 7 possible sets, in which “0” stands
for the “in-control” state and “1” stands for the “out-of-control” state. The meaning of (1,1,0)
stands for the first and second quality variables (i.e., X; and X5) that are at fault while the
third quality variable (i.e., X3) is not at fault.

Without loss of generality, we assume that each quality characteristic for an in-control
process is sampled from a normal distribution with zero mean and one standard deviation.
We also assume that the out-of-control process has a mean shift of 1 standard deviation, and,
thus, the out-of-control control process is sampled from a normal distribution with a mean of
one and one standard deviation. The sample size (n) is assumed to be 5.

The sample averages (Z-, i =1,2,and 3) are used to calculate the Hotelling T2 statistics.
The Hotelling T? statistics are computed as follows:

T = n<i—§/>s—1 (X—f), 3.1)

where 7: the sample size, X: the mean vector at the time ¢, X: the grand mean vector of the
quality characteristics, and S7': the inverse of variance and covariance matrix.

This study generates 100 data sets of observations (each of sample size 5) for every
possible combination of fault sets. Since there are 7 possible sets of quality variables at fault
in the case of p = 3, we have 700 data sets in a simulation run. Those 700 data sets are initially
used to serve as the training data. This study generates another 700 data sets for the purpose
of the testing. Figure 1 displays the 700 data sets of X1, X5, and X3 in the cases of p =0,
p = 0.6, and p = 0.9, respectively. In the first step of classification, we also use the data set
of out-of-control Hotelling T? statistics which is shown in Figure 2. Figure 3 displays the two
ICs which are generated by using ICA technique.
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Figure 3: The corresponding two ICs to the Hotelling T? statistics in Figure 2.
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Table 1: The accurate identification rate (%) for p = 2.

p=0 p=01 p=02 p=03 p=04 p=05 p=06 p=07 p=08 p=09
Typical approach ~ 79.6  79.0 754 80.2 7896 812 85.9 88.4 92.4 95.3
Proposed approach 78.2  82.2 81.6 81.7 83.2 83.3 87.4 91.0 96.8 99.7

Table 2: The accurate identification rate (%) for p = 3.

p=0 p=01 p=02 p=03 p=04 p=05 p=06 p=07 p=08 p=09
Typical approach 625  62.3 63.3 63.3 67.2 70.2 75.8 78.0 83.4 83.6
Proposed approach 67.1  67.3 68.8 70.7 71.9 75.6 81.3 84.7 93.8 98.7

Table 3: The accurate identification rate (%) for p = 5.

p=0 p=01 p=02 p=03 p=04 p=05 p=06 p=07 p=08 p=09
Typical approach ~ 41.0  41.3 43.3 45.5 49.0 52.5 57.7 63.7 66.5 68.1
Proposed approach 484 494 51.2 53.6 57.8 63.6 71.2 79.9 89.9 98.4

3.3. The Results

Consider the case of a multivariate process with a three-quality characteristics (i.e., p = 3).
The typical approach directly uses four variables, X1, X, §3, and the Hotelling T2 statistics as
inputs for SVM. Different from the typical approach, the proposed approach initially decom-
poses the Hotelling T? statistics as two ICs, and then the proposed approach uses those two
ICs as the inputs for SVM classifier. Therefore, the proposed approach employs five variables,
X1, Xo, Yg,, and the two ICs, as the inputs for the classifier SVM. Tables 1, 2, and 3 report the
accurate identification rates (AIRs) when the typical and proposed approaches apply to the
multivariate process when p = 2, p = 3, and p = 5. In Table 1, in the case of p = 0, we notice
that the AIRs are 79.6% and 78.2%, respectively, for the typical and proposed approaches. The
same AIR interpretations apply to the remaining conditions for Tables 1, 2, and 3.

Observing Table 1, one is able to conclude that the AIR for the proposed approach is
almost larger (or better) than the cases of typical approach except for the case of p = 0. This
implies that the proposed approach has a better performance. Also, in the case of p = 0, the
difference in performance between the two approaches is not significant. Those findings are
displayed in Figure 4.

Observing Tables 2 and 3 for the cases of p = 3 and p = 4, respectively, we can be very
sure that the proposed approach outperforms the typical approach. The AIR values for the
proposed approach are always larger. In addition, it is apparently that the AIR values become
larger when the values of p become larger. The values of AIR are smaller when the number of
quality characteristics increases. Those research findings are demonstrated in Figures 5 and
6.

4. Conclusion

Determination of the quality variables at fault for an out-of-control multivariate process is
very important in practice. While most of the studies use the single step of classification, this
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study proposes a hybrid or a two-step approach, ICA-SVM, to enhance the performance of
the typical approach. Accordingly, our proposed approach has two more extra inputs, two
ICs, for the SVM classifier models. Again, those two ICs are obtained from running the ICA
models as the first-step modeling in our proposed scheme. The two ICs are then served as
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inputs for the second-step modeling in our proposed scheme. The proposed ICA-SVM hybrid
mechanism is able to enhance the accurate identification rate for the determination of quality
variables at fault in a multivariate process.

In this study, a multivariate process with 2, 3, and 5 quality variables and various
correlations structures are considered for evaluating the performance between the typical
one-step and proposed hybrid approaches. Experimental results strongly agreed that the
proposed hybrid ICA-SVM scheme is able to produce the better accurate identification rate
for the testing datasets. Observing the experimental results, we can strongly conclude that the
proposed hybrid approach is able to effectively determine the quality variables for a multi-
variate process.

Our approach requires several steps and to total is quite complicated; therefore, we
have not attempted analytic evaluation. However, we believe that our simulation example is
generically applicable for monitoring real manufacturing processes when the circumstances
of the processes resemble to the simulation conditions of this study. To make the proposed
method more applicable, a multivariate process with 6 to 10 quality characteristics and
a different set of correlations between quality characteristics will be discussed in future
research.
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