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This study investigates the response frequency conversion characteristic of a nonlinear curved
panel mounted with a centre mass and the sound radiations. A set of coupled governing differen-
tial equations is set up and used to generate the nonlinear vibration responses, which are used to
calculate the corresponding radiated sounds. The vibration, sound levels, and the ratio of the anti-
symmetrical to symmetrical mode responses are plotted against the excitation level and compared
with a set of experimental data. The frequency conversion characteristic is investigated from the
frequency spectrums of the vibration responses.

1. Introduction

Previous studies of various nonlinear vibration/oscillation systems have been studied over
recent decades [1–15]. Some researchers particularly worked on nonlinear curved/buckled
beams/plates. Detailed discussions on the quadratic nonlinear responses of a two-degrees-of-
freedom beam-mass system can be found in the work of Nayfeh and Mook [16] and Schmidt
and Tondl [17]. Besides, some previous studies [18, 19] have shown that the nonlinear anti-
symmetric mode responses of a curved panel can be excited symmetrically due to the
quadratic nonlinearity. It was found that the dominant response frequency was much lower
than the excitation frequency. However, there are few research works which focus on the
sound radiation of a nonlinear structure. In this study, the response frequency conversion
characteristic of nonlinear curved panel vibrations and the sound radiations are further inves-
tigated in detail. In order to observe the frequency conversion characteristics, the resonant
frequencies of the first symmetrical and antisymmetrical modes of the panel have to be tuned
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Figure 1: Side view of a curved panel mounted with a mass.

close to each other. According to the experimental experience documented in [20], adding
masses on the panel surface makes easier for tuning of the resonant frequencies of a curved
panel in a particular range. That is why a centre mass is considered andmounted on the panel
in this study.

2. Methodology

Figure 1 shows a simply supported curved panel mounted with a central mass that is subject
to a harmonic excitation. It is assumed that the flexural bending along the width is neglected.
Thus, the structure is simplified and considered as a beamlike panel. The governing diff-
erential equation of a curved structure with a centre mass that is subject to a harmonic uni-
formly distributed pressure force [19] is given by
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where w is the transverse displacement caused by the panel bending; ẇ and ẅ are the first
and second derivatives of the transverse displacement with respect to time t;w′, w′′, andw′′′′

are the first, second, and fourth derivatives of the transverse displacement with respect to the
spatial variable x; w = q0φ1 is the initial transverse displacement; q0 is the transverse dis-
placement at the center; E is the Young’s modulus; ρ is the material density;Ω is the damping
coefficient;A isB×h = the cross-sectional area;B is thewidth; h is the thickness; L is the length;
M is mcδ(L/2); mc is the center mass; δ(x) is the Dirac delta function; ω is the excitation
frequency; κ is the excitation parameter; g is gravity is 9.81ms−2. The transverse displacement
is expressed in terms of the mode shapes and given by

w(x, t) =
N∑

i=1

qi(t)φi(x), (2.2)

where qi is the modal amplitude of the ith mode; φi is the ith sine function mode shape (i.e.
sin(iπx/L)); i is the mode number;N is the number of modes considered (only the first three
modes are considered in this study). According to [21], the resonant frequency of a nonlinear
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isotopic simply supported beam/plate can be accurately obtained using the single-mode
approach. Hence, (2.1) can be easily reduced into a Duffing equation which has been solved
by various methods (e.g. the variational approach [2], Hamiltonian approach [3, 4], elliptical
Integral method [8], the harmonic balance method [8], the numerical integration method
[18, 19], etc.). In Appendix, the procedure to obtain the resonant frequency of the Duffing
equation is shown.

The residual can be found by substituting (2.2) into (2.1) and then multiplied by φi,
integratedwith respect to the beam length, and set it to zero. A set of weighted residual differ-
ential equations is generated (see (2.3)-(2.4)). These differential equations can be solved using
the Runge-Kutta numerical integration to obtain the modal responses
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where φ′
i, φ

′′
i , and φ′′′′

i are the first, second, and fourth derivatives of the ith mode shape, res-
pectively, and i, j, m, k are the mode numbers. ξωi = Ω, where ξ is the modal damping
coefficient
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Figure 2: Experimental setup.

Then, the sound power radiated from the ith mode can be calculated using the radiation
efficiency formulas which have been adopted in [22, 23]. The following two formulas are the
simplified version in [22] for quick calculation:
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, for antisymmetric modes,

(2.6b)

where K = ω/Cair, Cair = sound speed in air.
The experimental setup, which was the same as that in [19], contained a curved steel

panel with a thickness of 0.5mm, an arc length of 310mm, and a breadth of 350mm (see
Figure 2). It was mounted with a centre mass of 20 g. The first symmetrical and antisym-
metrical mode resonant frequencies are ωsym = 101 and ωanti = 50Hz, respectively (i.e.
ωsym/ωanti ≈ 2). Note that the structure was not perfectly simply supported. The curved
panel was sinusoidally excited by a shaker table. The modal vibrations of the structure and
the base frame were measured using accelerometers placed at x = L/4, L/2, and 3/4L, while
another accelerometer was used to monitor the dynamic response of the shaker table.

3. Results and Discussions

In Figure 3(a), the relative total vibration levels are plotted against the excitation parameter,
κ. The dimensions of the curved panel are the same as those in the experimental setup. The
modal damping coefficient is equal to ξ = 0.02. The centre mass is also equal to 20 g. The ratios
of the resonant frequencies of the first symmetrical and antisymmetrical modes are tuned to
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Figure 3: (a) Relative total vibration level (ωsym/ωanti-sym = 2, ω = ωsym), (b) relative modal vibration
levels of point A in (a), (c) relative total sound level (ωsym/ωanti = 2, ω = ωsym).

two by adjusting the curvature or the initial centre deflection. The vibration level in the case
of (h = 0.7mm at κ = 0.01) is normalized as zero. The total vibration levels are monotonically
increasing for all cases. The excitation frequency is equal to the resonant frequency of the first
mode. Generally, the thinner the panel is, the higher the vibration level is. Figure 3(b) shows
the frequency spectrum of the point A marked in Figure 3(a). It can be seen that the response
frequency of the dominantmode, which is the first antisymmetrical mode, is much lower than
the excitation frequency (only one-half!). This phenomenon is described as “high-frequency
excitation input-low-frequency response output.” The response frequencies of the first and
second symmetrical modes are the same as the excitation frequency, but the modal vibration
amplitudes of the first and second symmetrical modes are much lower than that of the first
antisymmetrical mode (even though the excitation and the structure are symmetrical). In
Figure 3(c), the relative total radiated sound levels of the three cases are plotted against the
normalized excitation. The sound level of the solid line is exponentially deceasing and almost
constant for κ > 0.1. The sound level of the dotted line is exponentially deceasing for κ < 0.1,
bottom around κ = 0.1, and slowly increasing for κ > 0.1. Similarly, the sound level of the dash
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Figure 4: (a) Relative total vibration level (ωsym/ωanti-sym = 1.85, ω = ωsym), (b) relative modal vibration
levels of point B in (a), (c) relative total sound level (ωsym/ωanti = 1.85, ω = ωsym).

line is exponentially deceasing for κ < 0.04, bottom around κ = 0.04, and slowly increasing
for κ > 0.04. It is found that although the sound level of the solid line is the highest for κ < 0.1,
the corresponding vibration level is always the lowest; on the contrary, the sound level of the
dash line is highest for κ < 0.07, the corresponding vibration level is always the highest. It
is because the radiation efficiency of the first antisymmetric mode is much lower than the
others, and thus the overall sound radiation is smaller.

Figure 4(a) shows other 3 cases in which the ratios of the resonant frequencies are not
tuned to two. No centre mass is considered in these 3 cases. The vibration level of the thinnest
beam is monotonically deceasing. For the other two cases in Figure 4(a), the vibration levels
increase from κ = 0.01 to 0.02, peak around κ = 0.02 to 0.03, and decease κ = 0.03 to 0.2.
Figure 4(b) shows the frequency spectrum of the point B marked in Figure 4(a). It can be seen
that the first antisymmetrical mode is not as dominant as the one in Figure 3(b). It is because
the ratio of the resonant frequencies is not tuned to two. The vibration levels of the first
symmetrical and antisymmetrical modes are almost equal and much higher than that of the
second symmetrical mode. In Figure 4(c), the relative total radiated sound levels of the three
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cases in Figure 4(a) are plotted against the normalized excitation. The sound level of the dash
line is exponentially deceasing. The sound levels of the solid and dotted lines are increasing
for κ < 0.03, peak around κ = 0.03, and decreasing for κ > 0.03. The sound level of the
solid line is lower for κ < 0.03 and higher for κ > 0.03 than that of dotted lines, respectively.
It is found that although the sound level of the dash line is lowest for κ > 0.015, the corre-
sponding vibration level is always the highest in Figure 4(a); on the contrary, the sound levels
of the dash and dotted lines are higher for κ > 0.015, the corresponding vibration levels
always lower than that of the solid line. Besides, the vibration level of each case in Figure 4(a)
is always higher than that of the case with the same thickness in Figure 3(a). It is because
the resonant frequency ratios are not tuned to two. The smaller energy transfer to antisym-
metrical modes results into the higher overall vibration.

Figure 5 shows the ratio of the antisymmetrical mode to symmetrical mode vibration
levels for various resonant frequency ratios. It can be seen that if the resonant frequency
ratio is closer to two, the antisymmetrical mode vibration level is higher. When the resonant
frequency ratio is equal or close to two, the antisymmetrical mode vibration level is increasing
against the excitation level for κ < 0.02, peaks around κ = 0.02, and decreasing for κ > 0.02.
When the resonant frequency ratio is far from two, the antisymmetrical mode vibration level
is monotonically increasing against the excitation level. The experiment data was obtained
using the curved panel with a resonant frequency ratio of close to two. It is shown that that
the experimental antisymmetrical mode vibration level is monotonically increasing against
the excitation level; it only agrees well with the theoretical case in which the resonant ratio
is 1.66. As the panel was not perfectly simply supported and symmetrical, that would result
into a smaller energy transfer to the antisymmetrical mode. Thus the experiment data look
likes the case of the resonant frequency ratio not tuned to two.

4. Conclusions

The nonlinear curved panels mounted a centre mass and the sound radiations have been
studied. The results indicate that if the resonant frequency ratio is more far from two and the
excitation and the structure are symmetrical, a higher excitation level is required to induce
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the antisymmetrical mode vibration. In the frequency spectrums, it can be seen in some cases
studied that the response frequency of the dominant mode, which is the first antisymmetrical
mode, is much lower than the excitation frequency. This can be considered as “high-frequency
excitation input-low-frequency response output.” Besides, as the radiation efficiency of the
antisymmetric mode is much lower than the others, the overall sound radiation is thus much
smaller.

Appendix

Harmonic Balance Method

The harmonic balance method was employed for solving the Duffing equation, which repre-
sents the large amplitude free vibration of a beam in a previous study, and the result agreed
well with the elliptic solution in [24]. Therefore, the method is selected here. As aforemen-
tioned, the single-mode approach is employed. Then, (2.3) can be reduced to the following
form:

q̈n + ε1qn + ε2q
2
n + ε3q

3
n = 0, (A.1)

where ε1, ε2, and ε3 are the linear, quadratic, cubic nonlinear modal coefficients which depend
on the mass, initial deflection, linear stiffness, nonlinear stiffnesses, and modal contribution
factors; n is the mode number.

The solution of a nonlinear system is assumed to be of the form of a Fourier series:

qn = C0 + C1 cos(ωnt) + C2 cos(2ωnt) + · · · , (A.2)

C = C0 + C1 + C2 + · · · , (A.3)

where C0, C1, C2 . . . and so forth are the amplitudes of the harmonic components; C is the
initial amplitude; ωn is the resonant frequency.

For example, one constant and two harmonic terms are considered in (A.2). The Fourier
expansion of the quadratic and cubic terms of the output q(t) in (A.1) can be expressed,
when retaining 2 harmonic components, as

q2n = C0 + C1 cos(ωnt) + C2 cos(2ωnt)

q3n = C0 + C1 cos(ωnt) + C2 cos(2ωnt),
(A.4)

where

C0 =
ωn

2π

∫2π/ωn

0
(C0 + C1 cos(ωnt) + C2 cos(2ωnt))2dt,

C1 =
ωn

2π

∫2π/ωn

0
(C0 + C1 cos(ωnt) + C2 cos(2ωnt))2 cos(ωnt)dt,
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C2 =
ωn

2π

∫2π/ωn

0
(C0 + C1 cos(ωnt) + C2 cos(2ωnt))2 cos(2ωnt)dt,

C0 =
ωn

2π

∫2π/ωn

0
(C0 + C1 cos(ωnt) + C2 cos(2ωnt))3dt,

C1 =
ωn

2π

∫2π/ωn

0
(C0 + C1 cos(ωnt) + C2 cos(2ωnt))3 cos(ωnt)dt,

C2 =
ωn

2π

∫2π/ωn

0
(C0 + C1 cos(ωnt) + C2 cos(2ωnt))3 cos(2ωnt)dt.

(A.5)

Substituting (A.2) into (A.1) and equating coefficients associated with each harmonic com-
ponent yields 3 equations as follows:

ε1C0 + ε2C0 + ε3C0 = 0,

−ω2
nC1 + ε1C1 + ε2C1 + ε3C1 = 0,

−ω2
nC2 + ε1C2 + ε2C2 + ε3C2 = 0.

(A.6)

There are four equations (A.3), (A.6) and four unknowns ωn, C0, C1, C2. Hence the resonant
frequency ωn, can be found.

Hamiltonian Approach

If the initial centre deflection, qo = 0 in (2.3) (i.e., it is a flat panel), (A.1) can be rewritten in
the following form:

q̈n + ε1qn + ε3q
3
n = 0. (A.7)

The Hamiltonian approach is now employed here for solving the Duffing equation in (A.1)
to obtain the resonant frequency.

The Hamiltonian in (A.7) can be easily obtained, which reads

H =
1
2
q̈2n +

1
2
ε1q

2
n +

1
4
ε3q

4
n = 0. (A.8)

Integrating (A.8) with respect to t from 0 to T/4 yields

H
(
qn
)
=
∫T/4

0

{
1
2
q̈2n +

1
2
ε1q

2
n +

1
4
ε3q

4
n

}
dt. (A.9)
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Consider that the solution can be expressed as qn = C cosωnt and substitute it to (A.9) as fol-
lows:

H
(
qn
)
=

π

8
C2ωn +

π

8ωn
C2
[
ε1 +

3
8
ε3C

2
]
. (A.10)

According to [3, 4], setting

∂

∂C

∂H(u)
∂(1/ωn)

= 0. (A.11)

By solving (A.11), the only unknown ωn is given by

ωn =

√

ε1 +
3
4
ε3C

2. (A.12)
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